mirror of
				https://github.com/qurator-spk/eynollah.git
				synced 2025-10-27 07:44:12 +01:00 
			
		
		
		
	
							parent
							
								
									22a8e93031
								
							
						
					
					
						commit
						d3735b12f4
					
				
					 1 changed files with 38 additions and 166 deletions
				
			
		|  | @ -229,6 +229,8 @@ class Eynollah: | ||||||
|             self.model_textline_dir = dir_models + "/eynollah-textline_20210425.h5" |             self.model_textline_dir = dir_models + "/eynollah-textline_20210425.h5" | ||||||
|         self.model_tables = dir_models + "/eynollah-tables_20210319.h5" |         self.model_tables = dir_models + "/eynollah-tables_20210319.h5" | ||||||
|          |          | ||||||
|  |         self.models = {} | ||||||
|  |          | ||||||
|         if dir_in and light_version: |         if dir_in and light_version: | ||||||
|             config = tf.compat.v1.ConfigProto() |             config = tf.compat.v1.ConfigProto() | ||||||
|             config.gpu_options.allow_growth = True |             config.gpu_options.allow_growth = True | ||||||
|  | @ -391,10 +393,6 @@ class Eynollah: | ||||||
|                     prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg |                     prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg | ||||||
| 
 | 
 | ||||||
|         prediction_true = prediction_true.astype(int) |         prediction_true = prediction_true.astype(int) | ||||||
|         session_enhancement.close() |  | ||||||
|         del model_enhancement |  | ||||||
|         del session_enhancement |  | ||||||
|         gc.collect() |  | ||||||
| 
 | 
 | ||||||
|         return prediction_true |         return prediction_true | ||||||
| 
 | 
 | ||||||
|  | @ -500,13 +498,6 @@ class Eynollah: | ||||||
|         num_col = np.argmax(label_p_pred[0]) + 1 |         num_col = np.argmax(label_p_pred[0]) + 1 | ||||||
| 
 | 
 | ||||||
|         self.logger.info("Found %s columns (%s)", num_col, label_p_pred) |         self.logger.info("Found %s columns (%s)", num_col, label_p_pred) | ||||||
|         if not self.dir_in: |  | ||||||
|             session_col_classifier.close() |  | ||||||
|              |  | ||||||
|             del model_num_classifier |  | ||||||
|             del session_col_classifier |  | ||||||
|             K.clear_session() |  | ||||||
|         gc.collect() |  | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | @ -537,12 +528,6 @@ class Eynollah: | ||||||
|              |              | ||||||
|             prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) |             prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) | ||||||
|              |              | ||||||
|             if not self.dir_in: |  | ||||||
|                 session_bin.close() |  | ||||||
|                 del model_bin |  | ||||||
|                 del session_bin |  | ||||||
|             gc.collect() |  | ||||||
|              |  | ||||||
|             prediction_bin = prediction_bin.astype(np.uint8) |             prediction_bin = prediction_bin.astype(np.uint8) | ||||||
|             img= np.copy(prediction_bin) |             img= np.copy(prediction_bin) | ||||||
|             img_bin = np.copy(prediction_bin) |             img_bin = np.copy(prediction_bin) | ||||||
|  | @ -579,10 +564,7 @@ class Eynollah: | ||||||
|             label_p_pred = model_num_classifier.predict(img_in, verbose=0) |             label_p_pred = model_num_classifier.predict(img_in, verbose=0) | ||||||
|         num_col = np.argmax(label_p_pred[0]) + 1 |         num_col = np.argmax(label_p_pred[0]) + 1 | ||||||
|          |          | ||||||
|         self.logger.info("Found %s columns (%s)", num_col, label_p_pred) |         self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5)) | ||||||
|         if not self.dir_in: |  | ||||||
|             session_col_classifier.close() |  | ||||||
|             K.clear_session() |  | ||||||
| 
 | 
 | ||||||
|         if dpi < DPI_THRESHOLD: |         if dpi < DPI_THRESHOLD: | ||||||
|             img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred) |             img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred) | ||||||
|  | @ -595,8 +577,6 @@ class Eynollah: | ||||||
|             num_column_is_classified = True |             num_column_is_classified = True | ||||||
|             image_res = np.copy(img) |             image_res = np.copy(img) | ||||||
|             is_image_enhanced = False |             is_image_enhanced = False | ||||||
|         if not self.dir_in: |  | ||||||
|             session_col_classifier.close() |  | ||||||
| 
 | 
 | ||||||
|          |          | ||||||
|         self.logger.debug("exit resize_and_enhance_image_with_column_classifier") |         self.logger.debug("exit resize_and_enhance_image_with_column_classifier") | ||||||
|  | @ -665,9 +645,14 @@ class Eynollah: | ||||||
|      |      | ||||||
|     def start_new_session_and_model(self, model_dir): |     def start_new_session_and_model(self, model_dir): | ||||||
|         self.logger.debug("enter start_new_session_and_model (model_dir=%s)", model_dir) |         self.logger.debug("enter start_new_session_and_model (model_dir=%s)", model_dir) | ||||||
|         gpu_options = tf.compat.v1.GPUOptions(allow_growth=True) |         #gpu_options = tf.compat.v1.GPUOptions(allow_growth=True) | ||||||
|         #gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=7.7, allow_growth=True) |         #gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=7.7, allow_growth=True) | ||||||
|         session = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options)) |         #session = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options)) | ||||||
|  |         physical_devices = tf.config.list_physical_devices('GPU') | ||||||
|  |         try: | ||||||
|  |             tf.config.experimental.set_memory_growth(physical_devices[0], True) | ||||||
|  |         except: | ||||||
|  |             self.logger.warning("no GPU device available") | ||||||
| 
 | 
 | ||||||
|         # try: |         # try: | ||||||
|         #     model = load_model(model_dir, compile=False) |         #     model = load_model(model_dir, compile=False) | ||||||
|  | @ -676,9 +661,13 @@ class Eynollah: | ||||||
|         if model_dir.endswith('.h5') and Path(model_dir[:-3]).exists(): |         if model_dir.endswith('.h5') and Path(model_dir[:-3]).exists(): | ||||||
|             # prefer SavedModel over HDF5 format if it exists |             # prefer SavedModel over HDF5 format if it exists | ||||||
|             model_dir = model_dir[:-3] |             model_dir = model_dir[:-3] | ||||||
|  |         if model_dir in self.models: | ||||||
|  |             model = self.models[model_dir] | ||||||
|  |         else: | ||||||
|             model = load_model(model_dir, compile=False) |             model = load_model(model_dir, compile=False) | ||||||
|  |             self.models[model_dir] = model | ||||||
| 
 | 
 | ||||||
|         return model, session |         return model, None | ||||||
| 
 | 
 | ||||||
|     def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): |     def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): | ||||||
|         self.logger.debug("enter do_prediction") |         self.logger.debug("enter do_prediction") | ||||||
|  | @ -797,8 +786,8 @@ class Eynollah: | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||||
| 
 | 
 | ||||||
|             prediction_true = prediction_true.astype(np.uint8) |             prediction_true = prediction_true.astype(np.uint8) | ||||||
|         del model |         #del model | ||||||
|         gc.collect() |         #gc.collect() | ||||||
|         return prediction_true |         return prediction_true | ||||||
|     def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_percent=0.1): |     def do_prediction_new_concept(self, patches, img, model, marginal_of_patch_percent=0.1): | ||||||
|         self.logger.debug("enter do_prediction") |         self.logger.debug("enter do_prediction") | ||||||
|  | @ -963,17 +952,19 @@ class Eynollah: | ||||||
|                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color |                         prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color | ||||||
| 
 | 
 | ||||||
|             prediction_true = prediction_true.astype(np.uint8) |             prediction_true = prediction_true.astype(np.uint8) | ||||||
|         del model |         ##del model | ||||||
|         gc.collect() |         ##gc.collect() | ||||||
|         return prediction_true |         return prediction_true | ||||||
| 
 | 
 | ||||||
|     def extract_page(self): |     def extract_page(self): | ||||||
|         self.logger.debug("enter extract_page") |         self.logger.debug("enter extract_page") | ||||||
|         cont_page = [] |         cont_page = [] | ||||||
|         if not self.ignore_page_extraction: |         if not self.ignore_page_extraction: | ||||||
|  |             img = cv2.GaussianBlur(self.image, (5, 5), 0) | ||||||
|  |              | ||||||
|             if not self.dir_in: |             if not self.dir_in: | ||||||
|                 model_page, session_page = self.start_new_session_and_model(self.model_page_dir) |                 model_page, session_page = self.start_new_session_and_model(self.model_page_dir) | ||||||
|             img = cv2.GaussianBlur(self.image, (5, 5), 0) |                  | ||||||
|             if not self.dir_in: |             if not self.dir_in: | ||||||
|                 img_page_prediction = self.do_prediction(False, img, model_page) |                 img_page_prediction = self.do_prediction(False, img, model_page) | ||||||
|             else: |             else: | ||||||
|  | @ -1003,12 +994,7 @@ class Eynollah: | ||||||
|                 box = [0, 0, img.shape[1], img.shape[0]] |                 box = [0, 0, img.shape[1], img.shape[0]] | ||||||
|             croped_page, page_coord = crop_image_inside_box(box, self.image) |             croped_page, page_coord = crop_image_inside_box(box, self.image) | ||||||
|             cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]])) |             cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]])) | ||||||
|             if not self.dir_in: |              | ||||||
|                 session_page.close() |  | ||||||
|                 del model_page |  | ||||||
|                 del session_page |  | ||||||
|                 K.clear_session() |  | ||||||
|             gc.collect() |  | ||||||
|             self.logger.debug("exit extract_page") |             self.logger.debug("exit extract_page") | ||||||
|         else: |         else: | ||||||
|             box = [0, 0, self.image.shape[1], self.image.shape[0]] |             box = [0, 0, self.image.shape[1], self.image.shape[0]] | ||||||
|  | @ -1046,14 +1032,6 @@ class Eynollah: | ||||||
|                 box = [0, 0, img.shape[1], img.shape[0]] |                 box = [0, 0, img.shape[1], img.shape[0]] | ||||||
|             croped_page, page_coord = crop_image_inside_box(box, img) |             croped_page, page_coord = crop_image_inside_box(box, img) | ||||||
|              |              | ||||||
|             if not self.dir_in: |  | ||||||
|                 session_page.close() |  | ||||||
|                 del model_page |  | ||||||
|                 del session_page |  | ||||||
|                 K.clear_session() |  | ||||||
|              |  | ||||||
|             gc.collect() |  | ||||||
|              |  | ||||||
|             self.logger.debug("exit early_page_for_num_of_column_classification") |             self.logger.debug("exit early_page_for_num_of_column_classification") | ||||||
|         else: |         else: | ||||||
|             img = self.imread() |             img = self.imread() | ||||||
|  | @ -1156,12 +1134,6 @@ class Eynollah: | ||||||
|         prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent) |         prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent) | ||||||
|         prediction_regions = resize_image(prediction_regions, img_height_h, img_width_h) |         prediction_regions = resize_image(prediction_regions, img_height_h, img_width_h) | ||||||
|          |          | ||||||
|         if not self.dir_in: |  | ||||||
|             session_region.close() |  | ||||||
|             del model_region |  | ||||||
|             del session_region |  | ||||||
|         gc.collect() |  | ||||||
|          |  | ||||||
|         self.logger.debug("exit extract_text_regions") |         self.logger.debug("exit extract_text_regions") | ||||||
|         return prediction_regions, prediction_regions2 |         return prediction_regions, prediction_regions2 | ||||||
|      |      | ||||||
|  | @ -1558,8 +1530,6 @@ class Eynollah: | ||||||
|             prediction_textline_longshot = self.do_prediction(False, img, self.model_textline) |             prediction_textline_longshot = self.do_prediction(False, img, self.model_textline) | ||||||
|         prediction_textline_longshot_true_size = resize_image(prediction_textline_longshot, img_h, img_w) |         prediction_textline_longshot_true_size = resize_image(prediction_textline_longshot, img_h, img_w) | ||||||
|          |          | ||||||
|         if not self.dir_in: |  | ||||||
|             session_textline.close() |  | ||||||
| 
 | 
 | ||||||
|         if self.textline_light: |         if self.textline_light: | ||||||
|             return (prediction_textline[:, :, 0]==1)*1, (prediction_textline_longshot_true_size[:, :, 0]==1)*1 |             return (prediction_textline[:, :, 0]==1)*1, (prediction_textline_longshot_true_size[:, :, 0]==1)*1 | ||||||
|  | @ -1631,8 +1601,6 @@ class Eynollah: | ||||||
|         else: |         else: | ||||||
|             img_w_new = 4000 |             img_w_new = 4000 | ||||||
|             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) |             img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new) | ||||||
|         gc.collect() |  | ||||||
|         ##img_resized = resize_image(img_bin,img_height_h, img_width_h ) |  | ||||||
|         img_resized = resize_image(img,img_h_new, img_w_new ) |         img_resized = resize_image(img,img_h_new, img_w_new ) | ||||||
|          |          | ||||||
|         if not self.dir_in: |         if not self.dir_in: | ||||||
|  | @ -1645,11 +1613,6 @@ class Eynollah: | ||||||
|         prediction_bin = prediction_bin*255 |         prediction_bin = prediction_bin*255 | ||||||
|          |          | ||||||
|         prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) |         prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) | ||||||
|         if not self.dir_in: |  | ||||||
|             session_bin.close() |  | ||||||
|             del model_bin |  | ||||||
|             del session_bin |  | ||||||
|         gc.collect() |  | ||||||
|          |          | ||||||
|         prediction_bin = prediction_bin.astype(np.uint16) |         prediction_bin = prediction_bin.astype(np.uint16) | ||||||
|         #img= np.copy(prediction_bin) |         #img= np.copy(prediction_bin) | ||||||
|  | @ -1695,9 +1658,6 @@ class Eynollah: | ||||||
|          |          | ||||||
|         text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1)) |         text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1)) | ||||||
|          |          | ||||||
|         #erosion_hurts = True |  | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
|         return text_regions_p_true, erosion_hurts, polygons_lines_xml, textline_mask_tot_ea |         return text_regions_p_true, erosion_hurts, polygons_lines_xml, textline_mask_tot_ea | ||||||
| 
 | 
 | ||||||
|     def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): |     def get_regions_from_xy_2models(self,img,is_image_enhanced, num_col_classifier): | ||||||
|  | @ -1742,16 +1702,9 @@ class Eynollah: | ||||||
|                 prediction_regions_org = self.do_prediction(True, img, model_region) |                 prediction_regions_org = self.do_prediction(True, img, model_region) | ||||||
|             prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h ) |             prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h ) | ||||||
| 
 | 
 | ||||||
|             ##plt.imshow(prediction_regions_org[:,:,0]) |  | ||||||
|             ##plt.show() |  | ||||||
|             prediction_regions_org=prediction_regions_org[:,:,0] |             prediction_regions_org=prediction_regions_org[:,:,0] | ||||||
|             prediction_regions_org[(prediction_regions_org[:,:]==1) & (mask_zeros_y[:,:]==1)]=0 |             prediction_regions_org[(prediction_regions_org[:,:]==1) & (mask_zeros_y[:,:]==1)]=0 | ||||||
|              |              | ||||||
|             if not self.dir_in: |  | ||||||
|                 session_region.close() |  | ||||||
|                 del model_region |  | ||||||
|                 del session_region |  | ||||||
|             gc.collect() |  | ||||||
|              |              | ||||||
|             if not self.dir_in: |             if not self.dir_in: | ||||||
|                 model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2) |                 model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2) | ||||||
|  | @ -1763,11 +1716,6 @@ class Eynollah: | ||||||
|                 prediction_regions_org2 = self.do_prediction(True, img, model_region, 0.2) |                 prediction_regions_org2 = self.do_prediction(True, img, model_region, 0.2) | ||||||
|             prediction_regions_org2=resize_image(prediction_regions_org2, img_height_h, img_width_h ) |             prediction_regions_org2=resize_image(prediction_regions_org2, img_height_h, img_width_h ) | ||||||
| 
 | 
 | ||||||
|             if not self.dir_in: |  | ||||||
|                 session_region.close() |  | ||||||
|                 del model_region |  | ||||||
|                 del session_region |  | ||||||
|             gc.collect() |  | ||||||
| 
 | 
 | ||||||
|             mask_zeros2 = (prediction_regions_org2[:,:,0] == 0) |             mask_zeros2 = (prediction_regions_org2[:,:,0] == 0) | ||||||
|             mask_lines2 = (prediction_regions_org2[:,:,0] == 3) |             mask_lines2 = (prediction_regions_org2[:,:,0] == 3) | ||||||
|  | @ -1788,8 +1736,6 @@ class Eynollah: | ||||||
|             mask_lines_only=(prediction_regions_org[:,:]==3)*1 |             mask_lines_only=(prediction_regions_org[:,:]==3)*1 | ||||||
|             prediction_regions_org = cv2.erode(prediction_regions_org[:,:], KERNEL, iterations=2) |             prediction_regions_org = cv2.erode(prediction_regions_org[:,:], KERNEL, iterations=2) | ||||||
| 
 | 
 | ||||||
|             #plt.imshow(text_region2_1st_channel) |  | ||||||
|             #plt.show() |  | ||||||
| 
 | 
 | ||||||
|             prediction_regions_org = cv2.dilate(prediction_regions_org[:,:], KERNEL, iterations=2) |             prediction_regions_org = cv2.dilate(prediction_regions_org[:,:], KERNEL, iterations=2) | ||||||
|              |              | ||||||
|  | @ -1811,11 +1757,6 @@ class Eynollah: | ||||||
|                      |                      | ||||||
|                     prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) |                     prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) | ||||||
|                      |                      | ||||||
|                     if not self.dir_in: |  | ||||||
|                         session_bin.close() |  | ||||||
|                         del model_bin |  | ||||||
|                         del session_bin |  | ||||||
|                     gc.collect() |  | ||||||
|                  |                  | ||||||
|                  |                  | ||||||
|                 if not self.dir_in: |                 if not self.dir_in: | ||||||
|  | @ -1834,11 +1775,6 @@ class Eynollah: | ||||||
|                 prediction_regions_org=prediction_regions_org[:,:,0] |                 prediction_regions_org=prediction_regions_org[:,:,0] | ||||||
|                  |                  | ||||||
|                 mask_lines_only=(prediction_regions_org[:,:]==3)*1 |                 mask_lines_only=(prediction_regions_org[:,:]==3)*1 | ||||||
|                 if not self.dir_in: |  | ||||||
|                     session_region.close() |  | ||||||
|                     del model_region |  | ||||||
|                     del session_region |  | ||||||
|                 gc.collect() |  | ||||||
|                  |                  | ||||||
|                  |                  | ||||||
|             mask_texts_only=(prediction_regions_org[:,:]==1)*1 |             mask_texts_only=(prediction_regions_org[:,:]==1)*1 | ||||||
|  | @ -1859,19 +1795,11 @@ class Eynollah: | ||||||
|             text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_texts, color=(1,1,1)) |             text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_texts, color=(1,1,1)) | ||||||
| 
 | 
 | ||||||
|              |              | ||||||
|             if not self.dir_in: |  | ||||||
|                 K.clear_session() |  | ||||||
|             return text_regions_p_true, erosion_hurts, polygons_lines_xml |             return text_regions_p_true, erosion_hurts, polygons_lines_xml | ||||||
|         except: |         except: | ||||||
|              |              | ||||||
|             if self.input_binary: |             if self.input_binary: | ||||||
|                 prediction_bin = np.copy(img_org) |                 prediction_bin = np.copy(img_org) | ||||||
|             else: |  | ||||||
|                 if not self.dir_in: |  | ||||||
|                     session_region.close() |  | ||||||
|                     del model_region |  | ||||||
|                     del session_region |  | ||||||
|                 gc.collect() |  | ||||||
|                  |                  | ||||||
|                 if not self.dir_in: |                 if not self.dir_in: | ||||||
|                     model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) |                     model_bin, session_bin = self.start_new_session_and_model(self.model_dir_of_binarization) | ||||||
|  | @ -1888,12 +1816,6 @@ class Eynollah: | ||||||
|                 prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) |                 prediction_bin =np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2) | ||||||
| 
 | 
 | ||||||
|              |              | ||||||
|                 if not self.dir_in: |  | ||||||
|                     session_bin.close() |  | ||||||
|                     del model_bin |  | ||||||
|                     del session_bin |  | ||||||
|                 gc.collect() |  | ||||||
|              |  | ||||||
|              |              | ||||||
|                 if not self.dir_in: |                 if not self.dir_in: | ||||||
|                     model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) |                     model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) | ||||||
|  | @ -1910,11 +1832,6 @@ class Eynollah: | ||||||
|             prediction_regions_org=prediction_regions_org[:,:,0] |             prediction_regions_org=prediction_regions_org[:,:,0] | ||||||
|              |              | ||||||
|             #mask_lines_only=(prediction_regions_org[:,:]==3)*1 |             #mask_lines_only=(prediction_regions_org[:,:]==3)*1 | ||||||
|             if not self.dir_in: |  | ||||||
|                 session_region.close() |  | ||||||
|                 del model_region |  | ||||||
|                 del session_region |  | ||||||
|             gc.collect() |  | ||||||
|              |              | ||||||
|             #img = resize_image(img_org, int(img_org.shape[0]*1), int(img_org.shape[1]*1)) |             #img = resize_image(img_org, int(img_org.shape[0]*1), int(img_org.shape[1]*1)) | ||||||
|              |              | ||||||
|  | @ -1925,12 +1842,6 @@ class Eynollah: | ||||||
|             #prediction_regions_org = prediction_regions_org[:,:,0] |             #prediction_regions_org = prediction_regions_org[:,:,0] | ||||||
|              |              | ||||||
|             #prediction_regions_org[(prediction_regions_org[:,:] == 1) & (mask_zeros_y[:,:] == 1)]=0 |             #prediction_regions_org[(prediction_regions_org[:,:] == 1) & (mask_zeros_y[:,:] == 1)]=0 | ||||||
|             #session_region.close() |  | ||||||
|             #del model_region |  | ||||||
|             #del session_region |  | ||||||
|             #gc.collect() |  | ||||||
|              |  | ||||||
|              |  | ||||||
|              |              | ||||||
|              |              | ||||||
|             mask_lines_only = (prediction_regions_org[:,:] ==3)*1 |             mask_lines_only = (prediction_regions_org[:,:] ==3)*1 | ||||||
|  | @ -1957,8 +1868,6 @@ class Eynollah: | ||||||
|             text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1)) |             text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1)) | ||||||
|              |              | ||||||
|             erosion_hurts = True |             erosion_hurts = True | ||||||
|             if not self.dir_in: |  | ||||||
|                 K.clear_session() |  | ||||||
|             return text_regions_p_true, erosion_hurts, polygons_lines_xml |             return text_regions_p_true, erosion_hurts, polygons_lines_xml | ||||||
| 
 | 
 | ||||||
|     def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot): |     def do_order_of_regions_full_layout(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot): | ||||||
|  | @ -2516,10 +2425,6 @@ class Eynollah: | ||||||
|         prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20) |         prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20) | ||||||
|         prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20) |         prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20) | ||||||
|          |          | ||||||
|         del model_region |  | ||||||
|         del session_region |  | ||||||
|         gc.collect() |  | ||||||
|          |  | ||||||
|          |          | ||||||
|         return prediction_table_erode.astype(np.int16) |         return prediction_table_erode.astype(np.int16) | ||||||
|     def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts): |     def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts): | ||||||
|  | @ -2619,8 +2524,7 @@ class Eynollah: | ||||||
|         self.logger.info("Resizing and enhancing image...") |         self.logger.info("Resizing and enhancing image...") | ||||||
|         is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified, img_bin = self.resize_and_enhance_image_with_column_classifier(light_version) |         is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified, img_bin = self.resize_and_enhance_image_with_column_classifier(light_version) | ||||||
|         self.logger.info("Image was %senhanced.", '' if is_image_enhanced else 'not ') |         self.logger.info("Image was %senhanced.", '' if is_image_enhanced else 'not ') | ||||||
|         if not self.dir_in: | 
 | ||||||
|             K.clear_session() |  | ||||||
|         scale = 1 |         scale = 1 | ||||||
|         if is_image_enhanced: |         if is_image_enhanced: | ||||||
|             if self.allow_enhancement: |             if self.allow_enhancement: | ||||||
|  | @ -2646,8 +2550,6 @@ class Eynollah: | ||||||
|         textline_mask_tot_ea, _ = self.textline_contours(image_page, True, scaler_h_textline, scaler_w_textline) |         textline_mask_tot_ea, _ = self.textline_contours(image_page, True, scaler_h_textline, scaler_w_textline) | ||||||
|         if self.textline_light: |         if self.textline_light: | ||||||
|             textline_mask_tot_ea = textline_mask_tot_ea.astype(np.int16) |             textline_mask_tot_ea = textline_mask_tot_ea.astype(np.int16) | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
|         if self.plotter: |         if self.plotter: | ||||||
|             self.plotter.save_plot_of_textlines(textline_mask_tot_ea, image_page) |             self.plotter.save_plot_of_textlines(textline_mask_tot_ea, image_page) | ||||||
|         return textline_mask_tot_ea |         return textline_mask_tot_ea | ||||||
|  | @ -2660,7 +2562,7 @@ class Eynollah: | ||||||
| 
 | 
 | ||||||
|         if self.plotter: |         if self.plotter: | ||||||
|             self.plotter.save_deskewed_image(slope_deskew) |             self.plotter.save_deskewed_image(slope_deskew) | ||||||
|         self.logger.info("slope_deskew: %s", slope_deskew) |         self.logger.info("slope_deskew: %.2f°", slope_deskew) | ||||||
|         return slope_deskew, slope_first |         return slope_deskew, slope_first | ||||||
| 
 | 
 | ||||||
|     def run_marginals(self, image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction): |     def run_marginals(self, image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction): | ||||||
|  | @ -2709,8 +2611,6 @@ class Eynollah: | ||||||
| 
 | 
 | ||||||
|         if np.abs(slope_deskew) >= SLOPE_THRESHOLD: |         if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||||
|             _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) |             _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
| 
 | 
 | ||||||
|         self.logger.info("num_col_classifier: %s", num_col_classifier) |         self.logger.info("num_col_classifier: %s", num_col_classifier) | ||||||
| 
 | 
 | ||||||
|  | @ -2775,8 +2675,6 @@ class Eynollah: | ||||||
|         pixel_img = 10 |         pixel_img = 10 | ||||||
|         contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) |         contours_tables = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) | ||||||
|          |          | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
|         self.logger.debug('exit run_boxes_no_full_layout') |         self.logger.debug('exit run_boxes_no_full_layout') | ||||||
|         return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables |         return polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables | ||||||
| 
 | 
 | ||||||
|  | @ -2807,9 +2705,6 @@ class Eynollah: | ||||||
|              |              | ||||||
|             if np.abs(slope_deskew) >= SLOPE_THRESHOLD: |             if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||||
|                 num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, splitter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier, self.tables, pixel_lines) |                 num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, splitter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier, self.tables, pixel_lines) | ||||||
|             if not self.dir_in: |  | ||||||
|                 K.clear_session() |  | ||||||
|             gc.collect() |  | ||||||
| 
 | 
 | ||||||
|             if num_col_classifier>=3: |             if num_col_classifier>=3: | ||||||
|                 if np.abs(slope_deskew) < SLOPE_THRESHOLD: |                 if np.abs(slope_deskew) < SLOPE_THRESHOLD: | ||||||
|  | @ -2875,38 +2770,22 @@ class Eynollah: | ||||||
|         text_regions_p[:, :][text_regions_p[:, :] == 2] = 5 |         text_regions_p[:, :][text_regions_p[:, :] == 2] = 5 | ||||||
|         text_regions_p[:, :][text_regions_p[:, :] == 3] = 6 |         text_regions_p[:, :][text_regions_p[:, :] == 3] = 6 | ||||||
|         text_regions_p[:, :][text_regions_p[:, :] == 4] = 8 |         text_regions_p[:, :][text_regions_p[:, :] == 4] = 8 | ||||||
|         if not self.dir_in: | 
 | ||||||
|             K.clear_session() |  | ||||||
|         image_page = image_page.astype(np.uint8) |         image_page = image_page.astype(np.uint8) | ||||||
| 
 | 
 | ||||||
|         regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, True, cols=num_col_classifier) |         regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, True, cols=num_col_classifier) | ||||||
|         text_regions_p[:,:][regions_fully[:,:,0]==6]=6 |         text_regions_p[:,:][regions_fully[:,:,0]==6]=6 | ||||||
|         regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) |         regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) | ||||||
|         regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4 |         regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4 | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
| 
 | 
 | ||||||
|         # plt.imshow(regions_fully[:,:,0]) |  | ||||||
|         # plt.show() |  | ||||||
|         regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully) |         regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully) | ||||||
|         # plt.imshow(regions_fully[:,:,0]) | 
 | ||||||
|         # plt.show() |  | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
|         regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier) |         regions_fully_np, _ = self.extract_text_regions(image_page, False, cols=num_col_classifier) | ||||||
|         # plt.imshow(regions_fully_np[:,:,0]) |  | ||||||
|         # plt.show() |  | ||||||
|         if num_col_classifier > 2: |         if num_col_classifier > 2: | ||||||
|             regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0 |             regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0 | ||||||
|         else: |         else: | ||||||
|             regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p) |             regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p) | ||||||
| 
 | 
 | ||||||
|         # plt.imshow(regions_fully_np[:,:,0]) |  | ||||||
|         # plt.show() |  | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
|         # plt.imshow(regions_fully[:,:,0]) |  | ||||||
|         # plt.show() |  | ||||||
|         regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions) |         regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions) | ||||||
|         # plt.imshow(regions_fully[:,:,0]) |         # plt.imshow(regions_fully[:,:,0]) | ||||||
|         # plt.show() |         # plt.show() | ||||||
|  | @ -2929,8 +2808,6 @@ class Eynollah: | ||||||
|             regions_without_separators_d = None |             regions_without_separators_d = None | ||||||
|         if not self.tables: |         if not self.tables: | ||||||
|             regions_without_separators = (text_regions_p[:, :] == 1) * 1 |             regions_without_separators = (text_regions_p[:, :] == 1) * 1 | ||||||
|         if not self.dir_in: |  | ||||||
|             K.clear_session() |  | ||||||
|         img_revised_tab = np.copy(text_regions_p[:, :]) |         img_revised_tab = np.copy(text_regions_p[:, :]) | ||||||
|         polygons_of_images = return_contours_of_interested_region(img_revised_tab, 5) |         polygons_of_images = return_contours_of_interested_region(img_revised_tab, 5) | ||||||
|         self.logger.debug('exit run_boxes_full_layout') |         self.logger.debug('exit run_boxes_full_layout') | ||||||
|  | @ -3025,13 +2902,12 @@ class Eynollah: | ||||||
|                 contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) |                 contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) | ||||||
|                              |                              | ||||||
|                 if len(contours_only_text_parent) > 0: |                 if len(contours_only_text_parent) > 0: | ||||||
|                     areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) |                     areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) | ||||||
|                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) |                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) | ||||||
|                     #self.logger.info('areas_cnt_text %s', areas_cnt_text) |                     #self.logger.info('areas_cnt_text %s', areas_cnt_text) | ||||||
|                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] |                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] | ||||||
|                     contours_only_text_parent = [contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz] > min_con_area] |                     contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] | ||||||
|                     areas_cnt_text_parent = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > min_con_area] |                     areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] | ||||||
| 
 |  | ||||||
|                     index_con_parents = np.argsort(areas_cnt_text_parent) |                     index_con_parents = np.argsort(areas_cnt_text_parent) | ||||||
|                     contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents]) |                     contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents]) | ||||||
|                     areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) |                     areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) | ||||||
|  | @ -3042,14 +2918,14 @@ class Eynollah: | ||||||
|                     contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) |                     contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) | ||||||
|                     contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) |                     contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) | ||||||
| 
 | 
 | ||||||
|                     areas_cnt_text_d = np.array([cv2.contourArea(contours_only_text_parent_d[j]) for j in range(len(contours_only_text_parent_d))]) |                     areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d]) | ||||||
|                     areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) |                     areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) | ||||||
|                      |                      | ||||||
|                     if len(areas_cnt_text_d)>0: |                     if len(areas_cnt_text_d)>0: | ||||||
|                         contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] |                         contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] | ||||||
|                         index_con_parents_d=np.argsort(areas_cnt_text_d) |                         index_con_parents_d = np.argsort(areas_cnt_text_d) | ||||||
|                         contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d] ) |                         contours_only_text_parent_d = list(np.array(contours_only_text_parent_d)[index_con_parents_d]) | ||||||
|                         areas_cnt_text_d=list(np.array(areas_cnt_text_d)[index_con_parents_d] ) |                         areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d]) | ||||||
| 
 | 
 | ||||||
|                         cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) |                         cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) | ||||||
|                         cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) |                         cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) | ||||||
|  | @ -3103,12 +2979,12 @@ class Eynollah: | ||||||
|                 contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) |                 contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) | ||||||
|                  |                  | ||||||
|                 if len(contours_only_text_parent) > 0: |                 if len(contours_only_text_parent) > 0: | ||||||
|                     areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) |                     areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) | ||||||
|                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) |                     areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) | ||||||
| 
 | 
 | ||||||
|                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] |                     contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] | ||||||
|                     contours_only_text_parent = [contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz] > min_con_area] |                     contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] | ||||||
|                     areas_cnt_text_parent = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > min_con_area] |                     areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] | ||||||
| 
 | 
 | ||||||
|                     index_con_parents = np.argsort(areas_cnt_text_parent) |                     index_con_parents = np.argsort(areas_cnt_text_parent) | ||||||
|                     contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents]) |                     contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents]) | ||||||
|  | @ -3146,8 +3022,6 @@ class Eynollah: | ||||||
|                 all_found_texline_polygons = small_textlines_to_parent_adherence2(all_found_texline_polygons, textline_mask_tot_ea, num_col_classifier) |                 all_found_texline_polygons = small_textlines_to_parent_adherence2(all_found_texline_polygons, textline_mask_tot_ea, num_col_classifier) | ||||||
|                 all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) |                 all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) | ||||||
|                 all_found_texline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_texline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) |                 all_found_texline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_texline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) | ||||||
|             if not self.dir_in: |  | ||||||
|                 K.clear_session() |  | ||||||
|              |              | ||||||
|             if self.full_layout: |             if self.full_layout: | ||||||
|                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: |                 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: | ||||||
|  | @ -3167,8 +3041,6 @@ class Eynollah: | ||||||
|                 if self.plotter: |                 if self.plotter: | ||||||
|                     self.plotter.save_plot_of_layout(text_regions_p, image_page) |                     self.plotter.save_plot_of_layout(text_regions_p, image_page) | ||||||
|                     self.plotter.save_plot_of_layout_all(text_regions_p, image_page) |                     self.plotter.save_plot_of_layout_all(text_regions_p, image_page) | ||||||
|                 if not self.dir_in: |  | ||||||
|                     K.clear_session() |  | ||||||
|          |          | ||||||
|                 pixel_img = 4 |                 pixel_img = 4 | ||||||
|                 polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) |                 polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue