Merge branch 'refs/heads/main' into extracting_images_only

# Conflicts:
#	src/eynollah/eynollah.py
pull/132/head
cneud 2 months ago
commit de32d86fb6

@ -1,51 +0,0 @@
version: 2
jobs:
build-python37:
machine:
- image: ubuntu-2004:2023.02.1
steps:
- checkout
- restore_cache:
keys:
- model-cache
- run: make models
- save_cache:
key: model-cache
paths:
models_eynollah.tar.gz
models_eynollah
- run:
name: "Set Python Version"
command: pyenv install -s 3.7.16 && pyenv global 3.7.16
- run: make install
- run: make smoke-test
build-python38:
machine:
- image: ubuntu-2004:2023.02.1
steps:
- checkout
- restore_cache:
keys:
- model-cache
- run: make models
- save_cache:
key: model-cache
paths:
models_eynollah.tar.gz
models_eynollah
- run:
name: "Set Python Version"
command: pyenv install -s 3.8.16 && pyenv global 3.8.16
- run: make install
- run: make smoke-test
workflows:
version: 2
build:
jobs:
# - build-python37
- build-python38

@ -1,7 +1,7 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
name: Python package
name: Test
on: [push]
@ -14,8 +14,8 @@ jobs:
python-version: ['3.8', '3.9', '3.10', '3.11']
steps:
- uses: actions/checkout@v2
- uses: actions/cache@v2
- uses: actions/checkout@v4
- uses: actions/cache@v4
id: model_cache
with:
path: models_eynollah
@ -24,7 +24,7 @@ jobs:
if: steps.model_cache.outputs.cache-hit != 'true'
run: make models
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies

@ -5,6 +5,14 @@ Versioned according to [Semantic Versioning](http://semver.org/).
## Unreleased
## [0.3.1] - 2024-08-27
Fixed:
* regression in OCR-D processor, #106
* Expected Ptrcv::UMat for argument 'contour', #110
* Memory usage explosion with very narrow images (e.g. book spine), #67
## [0.3.0] - 2023-05-13
Changed:
@ -117,6 +125,8 @@ Fixed:
Initial release
<!-- link-labels -->
[0.3.1]: ../../compare/v0.3.1...v0.3.0
[0.3.0]: ../../compare/v0.3.0...v0.2.0
[0.2.0]: ../../compare/v0.2.0...v0.1.0
[0.1.0]: ../../compare/v0.1.0...v0.0.11
[0.0.11]: ../../compare/v0.0.11...v0.0.10

@ -24,12 +24,15 @@ models: models_eynollah
models_eynollah: models_eynollah.tar.gz
# tar xf models_eynollah_renamed.tar.gz --transform 's/models_eynollah_renamed/models_eynollah/'
# tar xf models_eynollah_renamed.tar.gz
tar xf 2022-04-05.SavedModel.tar.gz --transform 's/models_eynollah_renamed/models_eynollah/'
# tar xf models_eynollah_renamed_savedmodel.tar.gz --transform 's/models_eynollah_renamed_savedmodel/models_eynollah/'
tar xf models_eynollah.tar.gz
models_eynollah.tar.gz:
# wget 'https://qurator-data.de/eynollah/2021-04-25/models_eynollah.tar.gz'
# wget 'https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed.tar.gz'
wget 'https://ocr-d.kba.cloud/2022-04-05.SavedModel.tar.gz'
# wget 'https://ocr-d.kba.cloud/2022-04-05.SavedModel.tar.gz'
# wget 'https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed_savedmodel.tar.gz'
wget https://github.com/qurator-spk/eynollah/releases/download/v0.3.0/models_eynollah.tar.gz
# Install with pip
install:

@ -1,10 +1,10 @@
# Eynollah
> Document Layout Analysis (segmentation) using pre-trained models and heuristics
> Document Layout Analysis with Deep Learning and Heuristics
[![PyPI Version](https://img.shields.io/pypi/v/eynollah)](https://pypi.org/project/eynollah/)
[![CircleCI Build Status](https://circleci.com/gh/qurator-spk/eynollah.svg?style=shield)](https://circleci.com/gh/qurator-spk/eynollah)
[![GH Actions Test](https://github.com/qurator-spk/eynollah/actions/workflows/test-eynollah.yml/badge.svg)](https://github.com/qurator-spk/eynollah/actions/workflows/test-eynollah.yml)
[![License: ASL](https://img.shields.io/github/license/qurator-spk/eynollah)](https://opensource.org/license/apache-2-0/)
[![DOI](https://img.shields.io/badge/DOI-10.1145%2F3604951.3605513-red)](https://doi.org/10.1145/3604951.3605513)
![](https://user-images.githubusercontent.com/952378/102350683-8a74db80-3fa5-11eb-8c7e-f743f7d6eae2.jpg)
@ -14,17 +14,18 @@
* Support for various image optimization operations:
* cropping (border detection), binarization, deskewing, dewarping, scaling, enhancing, resizing
* Text line segmentation to bounding boxes or polygons (contours) including for curved lines and vertical text
* Detection of reading order
* Detection of reading order (left-to-right or right-to-left)
* Output in [PAGE-XML](https://github.com/PRImA-Research-Lab/PAGE-XML)
* [OCR-D](https://github.com/qurator-spk/eynollah#use-as-ocr-d-processor) interface
:warning: Development is currently focused on achieving the best possible quality of results for a wide variety of historical documents and therefore processing can be very slow. We aim to improve this, but contributions are welcome.
## Installation
Python versions `3.8-3.11` with Tensorflow versions >=`2.12` on Linux are currently supported. Unfortunately we can not currently support Windows or MacOS.
Windows users may be able to successfully run the tool through [WSL](https://learn.microsoft.com/en-us/windows/wsl/).
Python `3.8-3.11` with Tensorflow `2.12-2.15` on Linux are currently supported.
For (limited) GPU support the CUDA toolkit needs to be installed.
You can either install via
You can either install from PyPI
```
pip install eynollah
@ -40,45 +41,48 @@ cd eynollah; pip install -e .
Alternatively, you can run `make install` or `make install-dev` for editable installation.
## Models
Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data.de/eynollah/).
Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data.de/eynollah/) or [huggingface](https://huggingface.co/SBB?search_models=eynollah).
In case you want to train your own model to use with Eynollah, have a look at [sbb_pixelwise_segmentation](https://github.com/qurator-spk/sbb_pixelwise_segmentation).
## Train
🚧 **Work in progress**
In case you want to train your own model, have a look at [`sbb_pixelwise_segmentation`](https://github.com/qurator-spk/sbb_pixelwise_segmentation).
## Usage
The command-line interface can be called like this:
```sh
eynollah \
-i <image file> \
-i <single image file> | -di <directory containing image files> \
-o <output directory> \
-m <path to directory containing model files> \
-m <directory containing model files> \
[OPTIONS]
```
The following options can be used to further configure the processing:
| option | description |
|----------|:-------------|
| `-fl` | full layout analysis including all steps and segmentation classes |
| `-light` | lighter and faster but simpler method for main region detection and deskewing |
| `-tab` | apply table detection |
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
| `-as` | apply scaling |
| `-cl` | apply contour detection for curved text lines instead of bounding boxes |
| `-ib` | apply binarization (the resulting image is saved to the output directory) |
| `-ep` | enable plotting (MUST always be used with `-sl`, `-sd`, `-sa`, `-si` or `-ae`) |
| `-ho` | ignore headers for reading order dectection |
| `-di <directory>` | process all images in a directory in batch mode |
| `-si <directory>` | save image regions detected to this directory |
| `-sd <directory>` | save deskewed image to this directory |
| `-sl <directory>` | save layout prediction as plot to this directory |
| `-sp <directory>` | save cropped page image to this directory |
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
If no option is set, the tool will perform layout detection of main regions (background, text, images, separators and marginals).
The tool produces better quality output when RGB images are used as input than greyscale or binarized images.
| option | description |
|-------------------|:-------------------------------------------------------------------------------|
| `-fl` | full layout analysis including all steps and segmentation classes |
| `-light` | lighter and faster but simpler method for main region detection and deskewing |
| `-tab` | apply table detection |
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
| `-as` | apply scaling |
| `-cl` | apply contour detection for curved text lines instead of bounding boxes |
| `-ib` | apply binarization (the resulting image is saved to the output directory) |
| `-ep` | enable plotting (MUST always be used with `-sl`, `-sd`, `-sa`, `-si` or `-ae`) |
| `-ho` | ignore headers for reading order dectection |
| `-si <directory>` | save image regions detected to this directory |
| `-sd <directory>` | save deskewed image to this directory |
| `-sl <directory>` | save layout prediction as plot to this directory |
| `-sp <directory>` | save cropped page image to this directory |
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
If no option is set, the tool performs layout detection of main regions (background, text, images, separators and marginals).
The best output quality is produced when RGB images are used as input rather than greyscale or binarized images.
#### Use as OCR-D processor
🚧 **Work in progress**
Eynollah ships with a CLI interface to be used as [OCR-D](https://ocr-d.de) processor.
@ -96,11 +100,14 @@ ocrd-eynollah-segment -I OCR-D-IMG-BIN -O SEG-LINE -P models
uses the original (RGB) image despite any binarization that may have occured in previous OCR-D processing steps
#### Additional documentation
Please check the [wiki](https://github.com/qurator-spk/eynollah/wiki).
## How to cite
If you find this tool useful in your work, please consider citing our paper:
```bibtex
@inproceedings{rezanezhad2023eynollah,
@inproceedings{hip23rezanezhad,
title = {Document Layout Analysis with Deep Learning and Heuristics},
author = {Rezanezhad, Vahid and Baierer, Konstantin and Gerber, Mike and Labusch, Kai and Neudecker, Clemens},
booktitle = {Proceedings of the 7th International Workshop on Historical Document Imaging and Processing {HIP} 2023,

@ -1 +1 @@
qurator/eynollah/ocrd-tool.json
src/eynollah/ocrd-tool.json

@ -0,0 +1,43 @@
[build-system]
requires = ["setuptools>=61.0", "wheel", "setuptools-ocrd"]
[project]
name = "eynollah"
authors = [
{name = "Vahid Rezanezhad"},
{name = "Staatsbibliothek zu Berlin - Preußischer Kulturbesitz"},
]
description = "Document Layout Analysis"
readme = "README.md"
license.file = "LICENSE"
requires-python = ">=3.8"
keywords = ["document layout analysis", "image segmentation"]
dynamic = ["dependencies", "version"]
classifiers = [
"Development Status :: 4 - Beta",
"Environment :: Console",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Topic :: Scientific/Engineering :: Image Processing",
]
[project.scripts]
eynollah = "eynollah.cli:main"
ocrd-eynollah-segment = "eynollah.ocrd_cli:main"
[project.urls]
Homepage = "https://github.com/qurator-spk/eynollah"
Repository = "https://github.com/qurator-spk/eynollah.git"
[tool.setuptools.dynamic]
dependencies = {file = ["requirements.txt"]}
[tool.setuptools.packages.find]
where = ["src"]
[tool.setuptools.package-data]
"*" = ["*.json", '*.yml', '*.xml', '*.xsd']

@ -1 +0,0 @@
__import__("pkg_resources").declare_namespace(__name__)

@ -2,7 +2,7 @@
ocrd >= 2.23.3
numpy <1.24.0
scikit-learn >= 0.23.2
tensorflow >=2.12.0
tensorflow == 2.12.1
imutils >= 0.5.3
matplotlib
setuptools >= 50

@ -1,28 +0,0 @@
from setuptools import setup, find_packages
from json import load
install_requires = open('requirements.txt').read().split('\n')
with open('ocrd-tool.json', 'r', encoding='utf-8') as f:
version = load(f)['version']
setup(
name='eynollah',
version=version,
long_description=open('README.md').read(),
long_description_content_type='text/markdown',
author='Vahid Rezanezhad',
url='https://github.com/qurator-spk/eynollah',
license='Apache License 2.0',
namespace_packages=['qurator'],
packages=find_packages(exclude=['tests']),
install_requires=install_requires,
package_data={
'': ['*.json']
},
entry_points={
'console_scripts': [
'eynollah=qurator.eynollah.cli:main',
'ocrd-eynollah-segment=qurator.eynollah.ocrd_cli:main',
]
},
)

@ -1,7 +1,7 @@
import sys
import click
from ocrd_utils import initLogging, setOverrideLogLevel
from qurator.eynollah.eynollah import Eynollah
from eynollah.eynollah import Eynollah
@click.command()
@ -209,9 +209,11 @@ def main(
light_version=light_version,
ignore_page_extraction=ignore_page_extraction,
)
eynollah.run()
#pcgts = eynollah.run()
##eynollah.writer.write_pagexml(pcgts)
if dir_in:
eynollah.run()
else:
pcgts = eynollah.run()
eynollah.writer.write_pagexml(pcgts)
if __name__ == "__main__":
main()

@ -29,7 +29,8 @@ warnings.filterwarnings("ignore")
from scipy.signal import find_peaks
import matplotlib.pyplot as plt
from scipy.ndimage import gaussian_filter1d
from tensorflow.python.keras.backend import set_session
# use tf1 compatibility for keras backend
from tensorflow.compat.v1.keras.backend import set_session
from tensorflow.keras import layers
from .utils.contour import (
@ -257,7 +258,7 @@ class Eynollah:
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
set_session(session)
self.model_page = self.our_load_model(self.model_page_dir)
self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier)
self.model_bin = self.our_load_model(self.model_dir_of_binarization)
@ -265,9 +266,9 @@ class Eynollah:
self.model_region = self.our_load_model(self.model_region_dir_p_ens_light_only_images_extraction)
#self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np)
#self.model_region_fl = self.our_load_model(self.model_region_dir_fully)
self.ls_imgs = os.listdir(self.dir_in)
if dir_in and not (light_version or self.extract_only_images):
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
@ -286,7 +287,6 @@ class Eynollah:
self.ls_imgs = os.listdir(self.dir_in)
def _cache_images(self, image_filename=None, image_pil=None):
ret = {}
@ -482,7 +482,7 @@ class Eynollah:
num_column_is_classified = True
return img_new, num_column_is_classified
def calculate_width_height_by_columns_extract_only_images(self, img, num_col, width_early, label_p_pred):
self.logger.debug("enter calculate_width_height_by_columns")
if num_col == 1:
@ -552,7 +552,7 @@ class Eynollah:
is_image_enhanced = True
return img, img_new, is_image_enhanced
def resize_and_enhance_image_with_column_classifier(self,light_version):
self.logger.debug("enter resize_and_enhance_image_with_column_classifier")
dpi = self.dpi
@ -610,7 +610,7 @@ class Eynollah:
num_col = np.argmax(label_p_pred[0]) + 1
self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5))
if not self.extract_only_images:
if dpi < DPI_THRESHOLD:
img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred)
@ -624,9 +624,6 @@ class Eynollah:
image_res = np.copy(img)
is_image_enhanced = False
else:
#img_new, num_column_is_classified = self.calculate_width_height_by_columns_extract_only_images(img, num_col, width_early, label_p_pred)
#image_res = np.copy(img_new)
#is_image_enhanced = True
num_column_is_classified = True
image_res = np.copy(img)
is_image_enhanced = False
@ -925,6 +922,7 @@ class Eynollah:
seg_not_base[seg_not_base<1] =0
seg_test = label_p_pred[0,:,:,1]
##seg2 = -label_p_pred[0,:,:,2]
@ -1623,7 +1621,7 @@ class Eynollah:
q.put(slopes_sub)
poly.put(poly_sub)
box_sub.put(boxes_sub_new)
def get_regions_light_v_extract_only_images(self,img,is_image_enhanced, num_col_classifier):
self.logger.debug("enter get_regions_extract_images_only")
erosion_hurts = False
@ -1646,7 +1644,7 @@ class Eynollah:
img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new)
img_resized = resize_image(img,img_h_new, img_w_new )
if not self.dir_in:
@ -1654,61 +1652,61 @@ class Eynollah:
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region)
else:
prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region)
#plt.imshow(prediction_regions_org[:,:,0])
#plt.show()
prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h )
image_page, page_coord, cont_page = self.extract_page()
prediction_regions_org = prediction_regions_org[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
prediction_regions_org=prediction_regions_org[:,:,0]
mask_lines_only = (prediction_regions_org[:,:] ==3)*1
mask_texts_only = (prediction_regions_org[:,:] ==1)*1
mask_images_only=(prediction_regions_org[:,:] ==2)*1
polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only)
polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001)
polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001)
polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001)
text_regions_p_true = np.zeros(prediction_regions_org.shape)
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3))
text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2
text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1))
text_regions_p_true[text_regions_p_true.shape[0]-15:text_regions_p_true.shape[0], :] = 0
text_regions_p_true[:, text_regions_p_true.shape[1]-15:text_regions_p_true.shape[1]] = 0
##polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.0001)
polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2, 0.001)
image_boundary_of_doc = np.zeros((text_regions_p_true.shape[0], text_regions_p_true.shape[1]))
###image_boundary_of_doc[:6, :] = 1
###image_boundary_of_doc[text_regions_p_true.shape[0]-6:text_regions_p_true.shape[0], :] = 1
###image_boundary_of_doc[:, :6] = 1
###image_boundary_of_doc[:, text_regions_p_true.shape[1]-6:text_regions_p_true.shape[1]] = 1
#plt.imshow(image_boundary_of_doc)
#plt.show()
polygons_of_images_fin = []
for ploy_img_ind in polygons_of_images:
"""
@ -1737,9 +1735,9 @@ class Eynollah:
box = [x, y, w, h]
_, page_coord_img = crop_image_inside_box(box, text_regions_p_true)
#cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]]))
polygons_of_images_fin.append(np.array([[page_coord_img[2], page_coord_img[0]], [page_coord_img[3], page_coord_img[0]], [page_coord_img[3], page_coord_img[1]], [page_coord_img[2], page_coord_img[1]]]) )
return text_regions_p_true, erosion_hurts, polygons_lines_xml, polygons_of_images_fin, image_page, page_coord, cont_page
def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier):
self.logger.debug("enter get_regions_light_v")
@ -2592,7 +2590,7 @@ class Eynollah:
prediction_table_erode = cv2.erode(prediction_table[:,:,0], KERNEL, iterations=20)
prediction_table_erode = cv2.dilate(prediction_table_erode, KERNEL, iterations=20)
return prediction_table_erode.astype(np.int16)
def run_graphics_and_columns_light(self, text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts):
img_g = self.imread(grayscale=True, uint8=True)
@ -3004,26 +3002,26 @@ class Eynollah:
if self.dir_in:
self.reset_file_name_dir(os.path.join(self.dir_in,img_name))
if self.extract_only_images:
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
text_regions_p_1 ,erosion_hurts, polygons_lines_xml,polygons_of_images,image_page, page_coord, cont_page = self.get_regions_light_v_extract_only_images(img_res, is_image_enhanced, num_col_classifier)
pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], polygons_of_images, [], [], [], [], [], cont_page, [], [])
if self.plotter:
self.plotter.write_images_into_directory(polygons_of_images, image_page)
#plt.imshow(text_regions_p_1)
#plt.show()
self.writer.write_pagexml(pcgts)
else:
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version)
self.logger.info("Enhancing took %.1fs ", time.time() - t0)
t1 = time.time()
if self.light_version:
text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier)
@ -3042,7 +3040,7 @@ class Eynollah:
self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts)
self.logger.info("Graphics detection took %.1fs ", time.time() - t1)
#self.logger.info('cont_page %s', cont_page)
if not num_col:
self.logger.info("No columns detected, outputting an empty PAGE-XML")
pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], cont_page, [], [])
@ -3076,13 +3074,13 @@ class Eynollah:
text_only = ((img_revised_tab[:, :] == 1)) * 1
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1
min_con_area = 0.000005
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
contours_only_text, hir_on_text = return_contours_of_image(text_only)
contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text)
if len(contours_only_text_parent) > 0:
areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent])
areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1])
@ -3102,7 +3100,7 @@ class Eynollah:
areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d])
areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1])
if len(areas_cnt_text_d)>0:
contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)]
index_con_parents_d = np.argsort(areas_cnt_text_d)
@ -3122,7 +3120,7 @@ class Eynollah:
cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):]
dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))]
ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d)
cx_bigest_d_big[0] = cx_bigest_d[ind_largest]
cy_biggest_d_big[0] = cy_biggest_d[ind_largest]
except Exception as why:
@ -3151,7 +3149,7 @@ class Eynollah:
contours_only_text_parent_d_ordered = []
contours_only_text_parent_d = []
contours_only_text_parent = []
else:
contours_only_text_parent_d_ordered = []
contours_only_text_parent_d = []
@ -3159,7 +3157,7 @@ class Eynollah:
else:
contours_only_text, hir_on_text = return_contours_of_image(text_only)
contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text)
if len(contours_only_text_parent) > 0:
areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent])
areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1])
@ -3185,7 +3183,7 @@ class Eynollah:
txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first)
boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent)
boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals)
if not self.curved_line:
if self.light_version:
if self.textline_light:
@ -3199,13 +3197,13 @@ class Eynollah:
slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew)
else:
scale_param = 1
all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew)
all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier)
all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew)
all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier)
if self.full_layout:
if np.abs(slope_deskew) >= SLOPE_THRESHOLD:
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con])
@ -3224,12 +3222,12 @@ class Eynollah:
if self.plotter:
self.plotter.save_plot_of_layout(text_regions_p, image_page)
self.plotter.save_plot_of_layout_all(text_regions_p, image_page)
pixel_img = 4
polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img)
all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, kernel=KERNEL, curved_line=self.curved_line)
pixel_lines = 6
if not self.headers_off:
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
@ -3250,12 +3248,12 @@ class Eynollah:
else:
regions_without_separators_d = regions_without_separators_d.astype(np.uint8)
regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6)
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left)
else:
boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left)
boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left)
#print(boxes_d,'boxes_d')
#img_once = np.zeros((textline_mask_tot_d.shape[0],textline_mask_tot_d.shape[1]))
@ -3273,19 +3271,23 @@ class Eynollah:
else:
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d)
pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml)
self.logger.info("Job done in %.1fs", time.time() - t0)
##return pcgts
pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml)
self.logger.info("Job done in %.1fs", time.time() - t0)
if not self.dir_in:
return pcgts
else:
contours_only_text_parent_h = None
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
else:
contours_only_text_parent_h = None
if np.abs(slope_deskew) < SLOPE_THRESHOLD:
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot)
else:
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con])
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d)
pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables)
self.logger.info("Job done in %.1fs", time.time() - t0)
##return pcgts
contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con])
order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d)
pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables)
self.logger.info("Job done in %.1fs", time.time() - t0)
if not self.dir_in:
return pcgts
if self.dir_in:
self.writer.write_pagexml(pcgts)
#self.logger.info("Job done in %.1fs", time.time() - t0)
if self.dir_in:

@ -1,5 +1,5 @@
{
"version": "0.3.0",
"version": "0.3.1",
"git_url": "https://github.com/qurator-spk/eynollah",
"tools": {
"ocrd-eynollah-segment": {

@ -42,7 +42,7 @@ class EynollahProcessor(Processor):
page = pcgts.get_Page()
# XXX loses DPI information
# page_image, _, _ = self.workspace.image_from_page(page, page_id, feature_filter='binarized')
image_filename = self.workspace.download_file(next(self.workspace.mets.find_files(url=page.imageFilename))).local_filename
image_filename = self.workspace.download_file(next(self.workspace.mets.find_files(local_filename=page.imageFilename))).local_filename
eynollah_kwargs = {
'dir_models': self.resolve_resource(self.parameter['models']),
'allow_enhancement': False,

@ -1,5 +1,5 @@
from tests.base import main
from qurator.eynollah.utils.counter import EynollahIdCounter
from eynollah.utils.counter import EynollahIdCounter
def test_counter_string():
c = EynollahIdCounter()

@ -1,6 +1,6 @@
import cv2
from pathlib import Path
from qurator.eynollah.utils.pil_cv2 import check_dpi
from eynollah.utils.pil_cv2 import check_dpi
from tests.base import main
def test_dpi():

@ -2,7 +2,7 @@ from os import environ
from pathlib import Path
from ocrd_utils import pushd_popd
from tests.base import CapturingTestCase as TestCase, main
from qurator.eynollah.cli import main as eynollah_cli
from eynollah.cli import main as eynollah_cli
testdir = Path(__file__).parent.resolve()

@ -1,7 +1,7 @@
def test_utils_import():
import qurator.eynollah.utils
import qurator.eynollah.utils.contour
import qurator.eynollah.utils.drop_capitals
import qurator.eynollah.utils.drop_capitals
import qurator.eynollah.utils.is_nan
import qurator.eynollah.utils.rotate
import eynollah.utils
import eynollah.utils.contour
import eynollah.utils.drop_capitals
import eynollah.utils.drop_capitals
import eynollah.utils.is_nan
import eynollah.utils.rotate

@ -1,5 +1,5 @@
from pytest import main
from qurator.eynollah.utils.xml import create_page_xml
from eynollah.utils.xml import create_page_xml
from ocrd_models.ocrd_page import to_xml
PAGE_2019 = 'http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15'

Loading…
Cancel
Save