mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-06-09 20:29:55 +02:00
remove unused find_features_of_contours
This commit is contained in:
parent
823592126e
commit
e2ae6dbd44
3 changed files with 13 additions and 14 deletions
|
@ -33,7 +33,6 @@ from .utils.contour import (
|
|||
filter_contours_area_of_image_tables,
|
||||
filter_contours_area_of_image,
|
||||
find_contours_mean_y_diff,
|
||||
find_features_of_contours,
|
||||
find_new_features_of_contoures,
|
||||
get_text_region_boxes_by_given_contours,
|
||||
get_textregion_contours_in_org_image,
|
||||
|
|
|
@ -3057,3 +3057,16 @@ def return_bonding_box_of_contours(cnts):
|
|||
boxes_tot.append(box)
|
||||
return boxes_tot
|
||||
|
||||
def find_features_of_contours(contours_main):
|
||||
|
||||
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
||||
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
||||
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
|
||||
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
|
||||
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
|
||||
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
|
||||
|
||||
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
|
||||
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
|
||||
|
||||
return y_min_main, y_max_main, areas_main
|
||||
|
|
|
@ -26,19 +26,6 @@ def find_contours_mean_y_diff(contours_main):
|
|||
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
|
||||
return np.mean(np.diff(np.sort(np.array(cy_main))))
|
||||
|
||||
def find_features_of_contours(contours_main):
|
||||
|
||||
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
||||
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
||||
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
|
||||
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
|
||||
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
|
||||
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
|
||||
|
||||
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
|
||||
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
|
||||
|
||||
return y_min_main, y_max_main, areas_main
|
||||
|
||||
def get_text_region_boxes_by_given_contours(contours):
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue