mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-11-10 06:34:11 +01:00
integrate training docs
This commit is contained in:
parent
6e3399fe7a
commit
e5254dc6c5
2 changed files with 38 additions and 43 deletions
|
|
@ -1,3 +1,41 @@
|
||||||
|
# Prerequisistes
|
||||||
|
|
||||||
|
## 1. Install Eynollah with training dependencies
|
||||||
|
|
||||||
|
Clone the repository and install eynollah along with the dependencies necessary for training:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
git clone https://github.com/qurator-spk/eynollah
|
||||||
|
cd eynollah
|
||||||
|
pip install '.[training]'
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2. Pretrained encoder
|
||||||
|
|
||||||
|
Download our pretrained weights and add them to a `train/pretrained_model` folder:
|
||||||
|
|
||||||
|
```sh
|
||||||
|
cd train
|
||||||
|
wget -O pretrained_model.tar.gz https://zenodo.org/records/17243320/files/pretrained_model_v0_5_1.tar.gz?download=1
|
||||||
|
tar xf pretrained_model.tar.gz
|
||||||
|
```
|
||||||
|
|
||||||
|
## 3. Example data
|
||||||
|
|
||||||
|
### Binarization
|
||||||
|
A small sample of training data for binarization experiment can be found on [Zenodo](https://zenodo.org/records/17243320/files/training_data_sample_binarization_v0_5_1.tar.gz?download=1),
|
||||||
|
which contains `images` and `labels` folders.
|
||||||
|
|
||||||
|
## 4. Helpful tools
|
||||||
|
|
||||||
|
* [`pagexml2img`](https://github.com/qurator-spk/page2img)
|
||||||
|
> Tool to extract 2-D or 3-D RGB images from PAGE-XML data. In the former case, the output will be 1 2-D image array which each class has filled with a pixel value. In the case of a 3-D RGB image,
|
||||||
|
each class will be defined with a RGB value and beside images, a text file of classes will also be produced.
|
||||||
|
* [`cocoSegmentationToPng`](https://github.com/nightrome/cocostuffapi/blob/17acf33aef3c6cc2d6aca46dcf084266c2778cf0/PythonAPI/pycocotools/cocostuffhelper.py#L130)
|
||||||
|
> Convert COCO GT or results for a single image to a segmentation map and write it to disk.
|
||||||
|
* [`ocrd-segment-extract-pages`](https://github.com/OCR-D/ocrd_segment/blob/master/ocrd_segment/extract_pages.py)
|
||||||
|
> Extract region classes and their colours in mask (pseg) images. Allows the color map as free dict parameter, and comes with a default that mimics PageViewer's coloring for quick debugging; it also warns when regions do overlap.
|
||||||
|
|
||||||
# Training documentation
|
# Training documentation
|
||||||
|
|
||||||
This document aims to assist users in preparing training datasets, training models, and
|
This document aims to assist users in preparing training datasets, training models, and
|
||||||
|
|
|
||||||
|
|
@ -1,43 +0,0 @@
|
||||||
# Training eynollah
|
|
||||||
|
|
||||||
This README explains the technical details of how to set up and run training, for detailed information on parameterization, see [`docs/train.md`](../docs/train.md)
|
|
||||||
|
|
||||||
## Introduction
|
|
||||||
|
|
||||||
This folder contains the source code for training an encoder model for document image segmentation.
|
|
||||||
|
|
||||||
## Installation
|
|
||||||
|
|
||||||
Clone the repository and install eynollah along with the dependencies necessary for training:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
git clone https://github.com/qurator-spk/eynollah
|
|
||||||
cd eynollah
|
|
||||||
pip install '.[training]'
|
|
||||||
```
|
|
||||||
|
|
||||||
### Pretrained encoder
|
|
||||||
|
|
||||||
Download our pretrained weights and add them to a `train/pretrained_model` folder:
|
|
||||||
|
|
||||||
```sh
|
|
||||||
cd train
|
|
||||||
wget -O pretrained_model.tar.gz https://zenodo.org/records/17243320/files/pretrained_model_v0_5_1.tar.gz?download=1
|
|
||||||
tar xf pretrained_model.tar.gz
|
|
||||||
```
|
|
||||||
|
|
||||||
### Binarization training data
|
|
||||||
|
|
||||||
A small sample of training data for binarization experiment can be found [on
|
|
||||||
zenodo](https://zenodo.org/records/17243320/files/training_data_sample_binarization_v0_5_1.tar.gz?download=1),
|
|
||||||
which contains `images` and `labels` folders.
|
|
||||||
|
|
||||||
### Helpful tools
|
|
||||||
|
|
||||||
* [`pagexml2img`](https://github.com/qurator-spk/page2img)
|
|
||||||
> Tool to extract 2-D or 3-D RGB images from PAGE-XML data. In the former case, the output will be 1 2-D image array which each class has filled with a pixel value. In the case of a 3-D RGB image,
|
|
||||||
each class will be defined with a RGB value and beside images, a text file of classes will also be produced.
|
|
||||||
* [`cocoSegmentationToPng`](https://github.com/nightrome/cocostuffapi/blob/17acf33aef3c6cc2d6aca46dcf084266c2778cf0/PythonAPI/pycocotools/cocostuffhelper.py#L130)
|
|
||||||
> Convert COCO GT or results for a single image to a segmentation map and write it to disk.
|
|
||||||
* [`ocrd-segment-extract-pages`](https://github.com/OCR-D/ocrd_segment/blob/master/ocrd_segment/extract_pages.py)
|
|
||||||
> Extract region classes and their colours in mask (pseg) images. Allows the color map as free dict parameter, and comes with a default that mimics PageViewer's coloring for quick debugging; it also warns when regions do overlap.
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue