From e7d12d3549caaae7024e23fae0aa1cfaac8221ae Mon Sep 17 00:00:00 2001 From: vahidrezanezhad Date: Mon, 27 Nov 2023 20:18:24 +0100 Subject: [PATCH] first update for only images extraction --- qurator/eynollah/eynollah.py | 637 +++++++++++++++++++++-------------- 1 file changed, 376 insertions(+), 261 deletions(-) diff --git a/qurator/eynollah/eynollah.py b/qurator/eynollah/eynollah.py index 49422fa..2375ad3 100644 --- a/qurator/eynollah/eynollah.py +++ b/qurator/eynollah/eynollah.py @@ -195,6 +195,7 @@ class Eynollah: self.allow_scaling = allow_scaling self.headers_off = headers_off self.light_version = light_version + self.extract_only_images = True self.ignore_page_extraction = ignore_page_extraction self.pcgts = pcgts if not dir_in: @@ -225,6 +226,7 @@ class Eynollah: self.model_page_dir = dir_models + "/eynollah-page-extraction_20210425" self.model_region_dir_p_ens = dir_models + "/eynollah-main-regions-ensembled_20210425" self.model_region_dir_p_ens_light = dir_models + "/eynollah-main-regions_20220314" + self.model_region_dir_p_ens_light_only_images_extraction = dir_models + "/eynollah-main-regions_20231127_672_org_ens_11_13_16_17_18" if self.textline_light: self.model_textline_dir = dir_models + "/eynollah-textline_light_20210425" else: @@ -249,7 +251,23 @@ class Eynollah: self.ls_imgs = os.listdir(self.dir_in) - if dir_in and not light_version: + if dir_in and self.extract_only_images: + config = tf.compat.v1.ConfigProto() + config.gpu_options.allow_growth = True + session = tf.compat.v1.Session(config=config) + set_session(session) + + self.model_page = self.our_load_model(self.model_page_dir) + self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier) + #self.model_bin = self.our_load_model(self.model_dir_of_binarization) + #self.model_textline = self.our_load_model(self.model_textline_dir) + self.model_region = self.our_load_model(self.model_region_dir_p_ens_light_only_images_extraction) + #self.model_region_fl_np = self.our_load_model(self.model_region_dir_fully_np) + #self.model_region_fl = self.our_load_model(self.model_region_dir_fully) + + self.ls_imgs = os.listdir(self.dir_in) + + if dir_in and not (light_version or self.extract_only_images): config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True session = tf.compat.v1.Session(config=config) @@ -267,6 +285,7 @@ class Eynollah: self.ls_imgs = os.listdir(self.dir_in) + def _cache_images(self, image_filename=None, image_pil=None): ret = {} @@ -462,6 +481,27 @@ class Eynollah: num_column_is_classified = True return img_new, num_column_is_classified + + def calculate_width_height_by_columns_extract_only_images(self, img, num_col, width_early, label_p_pred): + self.logger.debug("enter calculate_width_height_by_columns") + if num_col == 1: + img_w_new = 700 + elif num_col == 2: + img_w_new = 900 + elif num_col == 3: + img_w_new = 1500 + elif num_col == 4: + img_w_new = 1800 + elif num_col == 5: + img_w_new = 2200 + elif num_col == 6: + img_w_new = 2500 + img_h_new = int(img.shape[0] / float(img.shape[1]) * img_w_new) + + img_new = resize_image(img, img_h_new, img_w_new) + num_column_is_classified = True + + return img_new, num_column_is_classified def resize_image_with_column_classifier(self, is_image_enhanced, img_bin): self.logger.debug("enter resize_image_with_column_classifier") @@ -511,7 +551,7 @@ class Eynollah: is_image_enhanced = True return img, img_new, is_image_enhanced - + def resize_and_enhance_image_with_column_classifier(self,light_version): self.logger.debug("enter resize_and_enhance_image_with_column_classifier") dpi = self.dpi @@ -569,17 +609,22 @@ class Eynollah: num_col = np.argmax(label_p_pred[0]) + 1 self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5)) - - if dpi < DPI_THRESHOLD: - img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred) - if light_version: - image_res = np.copy(img_new) + + if not self.extract_only_images: + if dpi < DPI_THRESHOLD: + img_new, num_column_is_classified = self.calculate_width_height_by_columns(img, num_col, width_early, label_p_pred) + if light_version: + image_res = np.copy(img_new) + else: + image_res = self.predict_enhancement(img_new) + is_image_enhanced = True else: - image_res = self.predict_enhancement(img_new) - is_image_enhanced = True + num_column_is_classified = True + image_res = np.copy(img) + is_image_enhanced = False else: - num_column_is_classified = True - image_res = np.copy(img) + img_new, num_column_is_classified = self.calculate_width_height_by_columns_extract_only_images(img, num_col, width_early, label_p_pred) + image_res = np.copy(img_new) is_image_enhanced = False self.logger.debug("exit resize_and_enhance_image_with_column_classifier") @@ -867,11 +912,13 @@ class Eynollah: seg_not_base = label_p_pred[0,:,:,4] ##seg2 = -label_p_pred[0,:,:,2] - - seg_not_base[seg_not_base>0.03] =1 - seg_not_base[seg_not_base<1] =0 - - + if self.extract_only_images: + seg_not_base[seg_not_base>0.3] =1 + seg_not_base[seg_not_base<1] =0 + else: + seg_not_base[seg_not_base>0.03] =1 + seg_not_base[seg_not_base<1] =0 + seg_test = label_p_pred[0,:,:,1] ##seg2 = -label_p_pred[0,:,:,2] @@ -888,13 +935,10 @@ class Eynollah: seg_line[seg_line>0.1] =1 seg_line[seg_line<1] =0 - - seg_background = label_p_pred[0,:,:,0] - ##seg2 = -label_p_pred[0,:,:,2] - - - seg_background[seg_background>0.25] =1 - seg_background[seg_background<1] =0 + if not self.extract_only_images: + seg_background = label_p_pred[0,:,:,0] + seg_background[seg_background>0.25] =1 + seg_background[seg_background<1] =0 ##seg = seg+seg2 #seg = label_p_pred[0,:,:,2] #seg[seg>0.4] =1 @@ -908,7 +952,8 @@ class Eynollah: #seg[seg==1]=0 #seg[seg_test==1]=1 seg[seg_not_base==1]=4 - seg[seg_background==1]=0 + if not self.extract_only_images: + seg[seg_background==1]=0 seg[(seg_line==1) & (seg==0)]=3 seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) @@ -1573,6 +1618,60 @@ class Eynollah: q.put(slopes_sub) poly.put(poly_sub) box_sub.put(boxes_sub_new) + + def get_regions_light_v_extract_only_images(self,img,is_image_enhanced, num_col_classifier): + self.logger.debug("enter get_regions_light_v") + erosion_hurts = False + img_org = np.copy(img) + img_height_h = img_org.shape[0] + img_width_h = img_org.shape[1] + + #model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) + + + img_resized = np.copy(img) + + + + if not self.dir_in: + model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens_light_only_images_extraction) + prediction_regions_org = self.do_prediction_new_concept(True, img_resized, model_region) + else: + prediction_regions_org = self.do_prediction_new_concept(True, img_resized, self.model_region) + + #plt.imshow(prediction_regions_org[:,:,0]) + #plt.show() + + prediction_regions_org = resize_image(prediction_regions_org,img_height_h, img_width_h ) + + + prediction_regions_org=prediction_regions_org[:,:,0] + + mask_lines_only = (prediction_regions_org[:,:] ==3)*1 + + mask_texts_only = (prediction_regions_org[:,:] ==1)*1 + + mask_images_only=(prediction_regions_org[:,:] ==2)*1 + + polygons_lines_xml, hir_lines_xml = return_contours_of_image(mask_lines_only) + polygons_lines_xml = textline_con_fil = filter_contours_area_of_image(mask_lines_only, polygons_lines_xml, hir_lines_xml, max_area=1, min_area=0.00001) + + + polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only,1,0.00001) + + polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only,1,0.00001) + + text_regions_p_true = np.zeros(prediction_regions_org.shape) + + text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_lines, color=(3,3,3)) + + text_regions_p_true[:,:][mask_images_only[:,:] == 1] = 2 + + text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts = polygons_of_only_texts, color=(1,1,1)) + + polygons_of_images = return_contours_of_interested_region(text_regions_p_true, 2) + + return text_regions_p_true, erosion_hurts, polygons_lines_xml, polygons_of_images def get_regions_light_v(self,img,is_image_enhanced, num_col_classifier): self.logger.debug("enter get_regions_light_v") erosion_hurts = False @@ -2824,6 +2923,8 @@ class Eynollah: Get image and scales, then extract the page of scanned image """ self.logger.debug("enter run") + + self.extract_only_images = True t0_tot = time.time() @@ -2836,272 +2937,286 @@ class Eynollah: if self.dir_in: self.reset_file_name_dir(os.path.join(self.dir_in,img_name)) - img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) - self.logger.info("Enhancing took %.1fs ", time.time() - t0) - t1 = time.time() - if self.light_version: - text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier) - slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) + if self.extract_only_images: + img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) + self.logger.info("Enhancing took %.1fs ", time.time() - t0) + + text_regions_p_1 ,erosion_hurts, polygons_lines_xml,polygons_of_images = self.get_regions_light_v_extract_only_images(img_res, is_image_enhanced, num_col_classifier) #self.logger.info("Textregion detection took %.1fs ", time.time() - t1t) - num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea = \ - self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts) - #self.logger.info("run graphics %.1fs ", time.time() - t1t) - textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea) - else: - text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier) - self.logger.info("Textregion detection took %.1fs ", time.time() - t1) + + if self.plotter: + self.plotter.write_images_into_directory(polygons_of_images, img_res) + #plt.imshow(text_regions_p_1) + #plt.show() + else: + img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) + self.logger.info("Enhancing took %.1fs ", time.time() - t0) + t1 = time.time() - num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction = \ - self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts) - self.logger.info("Graphics detection took %.1fs ", time.time() - t1) - #self.logger.info('cont_page %s', cont_page) - - if not num_col: - self.logger.info("No columns detected, outputting an empty PAGE-XML") - pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], cont_page, [], []) - self.logger.info("Job done in %.1fs", time.time() - t1) - if self.dir_in: - self.writer.write_pagexml(pcgts) - continue + if self.light_version: + text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea = self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier) + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) + #self.logger.info("Textregion detection took %.1fs ", time.time() - t1t) + num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea = \ + self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, num_col_classifier, num_column_is_classified, erosion_hurts) + #self.logger.info("run graphics %.1fs ", time.time() - t1t) + textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea) else: - return pcgts + text_regions_p_1 ,erosion_hurts, polygons_lines_xml = self.get_regions_from_xy_2models(img_res, is_image_enhanced, num_col_classifier) + self.logger.info("Textregion detection took %.1fs ", time.time() - t1) + + t1 = time.time() + num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, text_regions_p_1, cont_page, table_prediction = \ + self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts) + self.logger.info("Graphics detection took %.1fs ", time.time() - t1) + #self.logger.info('cont_page %s', cont_page) + + if not num_col: + self.logger.info("No columns detected, outputting an empty PAGE-XML") + pcgts = self.writer.build_pagexml_no_full_layout([], page_coord, [], [], [], [], [], [], [], [], [], [], cont_page, [], []) + self.logger.info("Job done in %.1fs", time.time() - t1) + if self.dir_in: + self.writer.write_pagexml(pcgts) + continue + else: + return pcgts - t1 = time.time() - if not self.light_version: - textline_mask_tot_ea = self.run_textline(image_page) - self.logger.info("textline detection took %.1fs", time.time() - t1) + t1 = time.time() + if not self.light_version: + textline_mask_tot_ea = self.run_textline(image_page) + self.logger.info("textline detection took %.1fs", time.time() - t1) + t1 = time.time() + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) + self.logger.info("deskewing took %.1fs", time.time() - t1) t1 = time.time() - slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) - self.logger.info("deskewing took %.1fs", time.time() - t1) - t1 = time.time() - #plt.imshow(table_prediction) - #plt.show() - - textline_mask_tot, text_regions_p, image_page_rotated = self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction) - self.logger.info("detection of marginals took %.1fs", time.time() - t1) - t1 = time.time() - if not self.full_layout: - polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts) - - if self.full_layout: - polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts) - text_only = ((img_revised_tab[:, :] == 1)) * 1 - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 - - - min_con_area = 0.000005 - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - contours_only_text, hir_on_text = return_contours_of_image(text_only) - contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) - - if len(contours_only_text_parent) > 0: - areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) - areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) - #self.logger.info('areas_cnt_text %s', areas_cnt_text) - contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] - contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] - areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] - index_con_parents = np.argsort(areas_cnt_text_parent) - contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) - areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) - - cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) - cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) - - contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) - contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) - - areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d]) - areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) - - if len(areas_cnt_text_d)>0: - contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] - index_con_parents_d = np.argsort(areas_cnt_text_d) - contours_only_text_parent_d = list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d]) - areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d]) - - cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) - cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) - try: - if len(cx_bigest_d) >= 5: - cx_bigest_d_last5 = cx_bigest_d[-5:] - cy_biggest_d_last5 = cy_biggest_d[-5:] - dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))] - ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d) - else: - cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):] - cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):] - dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))] - ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d) - - cx_bigest_d_big[0] = cx_bigest_d[ind_largest] - cy_biggest_d_big[0] = cy_biggest_d[ind_largest] - except Exception as why: - self.logger.error(why) - - (h, w) = text_only.shape[:2] - center = (w // 2.0, h // 2.0) - M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0) - M_22 = np.array(M)[:2, :2] - p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big]) - x_diff = p_big[0] - cx_bigest_d_big - y_diff = p_big[1] - cy_biggest_d_big + #plt.imshow(table_prediction) + #plt.show() - contours_only_text_parent_d_ordered = [] - for i in range(len(contours_only_text_parent)): - p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]]) - p[0] = p[0] - x_diff[0] - p[1] = p[1] - y_diff[0] - dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] - contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) - # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) - # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) - # plt.imshow(img2[:,:,0]) - # plt.show() + textline_mask_tot, text_regions_p, image_page_rotated = self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, num_col_classifier, slope_deskew, text_regions_p_1, table_prediction) + self.logger.info("detection of marginals took %.1fs", time.time() - t1) + t1 = time.time() + if not self.full_layout: + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, boxes, boxes_d, polygons_of_marginals, contours_tables = self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, table_prediction, erosion_hurts) + + if self.full_layout: + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, num_col_classifier, img_only_regions, table_prediction, erosion_hurts) + text_only = ((img_revised_tab[:, :] == 1)) * 1 + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 + + + min_con_area = 0.000005 + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + contours_only_text, hir_on_text = return_contours_of_image(text_only) + contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) + + if len(contours_only_text_parent) > 0: + areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) + areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) + #self.logger.info('areas_cnt_text %s', areas_cnt_text) + contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] + contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] + areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] + index_con_parents = np.argsort(areas_cnt_text_parent) + contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) + areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) + + cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) + cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) + + contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) + contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) + + areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d]) + areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) + + if len(areas_cnt_text_d)>0: + contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] + index_con_parents_d = np.argsort(areas_cnt_text_d) + contours_only_text_parent_d = list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d]) + areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d]) + + cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) + cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) + try: + if len(cx_bigest_d) >= 5: + cx_bigest_d_last5 = cx_bigest_d[-5:] + cy_biggest_d_last5 = cy_biggest_d[-5:] + dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) for j in range(len(cy_biggest_d_last5))] + ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d) + else: + cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):] + cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):] + dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) for j in range(len(cy_biggest_d_last5))] + ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d) + + cx_bigest_d_big[0] = cx_bigest_d[ind_largest] + cy_biggest_d_big[0] = cy_biggest_d[ind_largest] + except Exception as why: + self.logger.error(why) + + (h, w) = text_only.shape[:2] + center = (w // 2.0, h // 2.0) + M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0) + M_22 = np.array(M)[:2, :2] + p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big]) + x_diff = p_big[0] - cx_bigest_d_big + y_diff = p_big[1] - cy_biggest_d_big + + contours_only_text_parent_d_ordered = [] + for i in range(len(contours_only_text_parent)): + p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]]) + p[0] = p[0] - x_diff[0] + p[1] = p[1] - y_diff[0] + dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] + contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) + # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) + # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) + # plt.imshow(img2[:,:,0]) + # plt.show() + else: + contours_only_text_parent_d_ordered = [] + contours_only_text_parent_d = [] + contours_only_text_parent = [] + else: contours_only_text_parent_d_ordered = [] contours_only_text_parent_d = [] contours_only_text_parent = [] - - else: - contours_only_text_parent_d_ordered = [] - contours_only_text_parent_d = [] - contours_only_text_parent = [] - else: - contours_only_text, hir_on_text = return_contours_of_image(text_only) - contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) - - if len(contours_only_text_parent) > 0: - areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) - areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) - - contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] - contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] - areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] - - index_con_parents = np.argsort(areas_cnt_text_parent) - contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) - areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) - - cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) - cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) - #self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent) - # self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d) - # self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d)) else: - pass - if self.light_version: - txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first) - else: - txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) - boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) - boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) - - if not self.curved_line: - if self.light_version: - if self.textline_light: - slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew) - slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew) + contours_only_text, hir_on_text = return_contours_of_image(text_only) + contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) + + if len(contours_only_text_parent) > 0: + areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) + areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) + + contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] + contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) if areas_cnt_text[jz] > min_con_area] + areas_cnt_text_parent = [area for area in areas_cnt_text if area > min_con_area] + + index_con_parents = np.argsort(areas_cnt_text_parent) + contours_only_text_parent = list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) + areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) + + cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) + cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) + #self.logger.debug('areas_cnt_text_parent %s', areas_cnt_text_parent) + # self.logger.debug('areas_cnt_text_parent_d %s', areas_cnt_text_parent_d) + # self.logger.debug('len(contours_only_text_parent) %s', len(contours_only_text_parent_d)) else: - slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) - slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) + pass + if self.light_version: + txt_con_org = get_textregion_contours_in_org_image_light(contours_only_text_parent, self.image, slope_first) else: - slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) - slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) - - else: + txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) + boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) + boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) - scale_param = 1 - all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew) - all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier) - all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) - all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) - - if self.full_layout: - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) + if not self.curved_line: if self.light_version: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + if self.textline_light: + slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, image_page_rotated, boxes_text, slope_deskew) + slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, image_page_rotated, boxes_marginals, slope_deskew) + else: + slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new_light(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) + slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new_light(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) else: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) + slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _ = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) + else: - #takes long timee - contours_only_text_parent_d_ordered = None - if self.light_version: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + + scale_param = 1 + all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew) + all_found_textline_polygons = small_textlines_to_parent_adherence2(all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier) + all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) + all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) + + if self.full_layout: + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) + if self.light_version: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + else: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) else: - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + #takes long timee + contours_only_text_parent_d_ordered = None + if self.light_version: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header_light(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + else: + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) - if self.plotter: - self.plotter.save_plot_of_layout(text_regions_p, image_page) - self.plotter.save_plot_of_layout_all(text_regions_p, image_page) - - pixel_img = 4 - polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) - all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, kernel=KERNEL, curved_line=self.curved_line) - pixel_lines = 6 - + if self.plotter: + self.plotter.save_plot_of_layout(text_regions_p, image_page) + self.plotter.save_plot_of_layout_all(text_regions_p, image_page) + + pixel_img = 4 + polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) + all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, kernel=KERNEL, curved_line=self.curved_line) + pixel_lines = 6 + + + if not self.headers_off: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h) + else: + _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h_d_ordered) + elif self.headers_off: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) + else: + _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) + + if num_col_classifier >= 3: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + regions_without_separators = regions_without_separators.astype(np.uint8) + regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6) + + else: + regions_without_separators_d = regions_without_separators_d.astype(np.uint8) + regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) + - if not self.headers_off: if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h) + boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) else: - _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines, contours_only_text_parent_h_d_ordered) - elif self.headers_off: + boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) + + #print(boxes_d,'boxes_d') + #img_once = np.zeros((textline_mask_tot_d.shape[0],textline_mask_tot_d.shape[1])) + #for box_i in boxes_d: + #img_once[int(box_i[2]):int(box_i[3]),int(box_i[0]):int(box_i[1]) ] =1 + #plt.imshow(img_once) + #plt.show() + #print(np.unique(img_once),'img_once') + if self.plotter: + self.plotter.write_images_into_directory(polygons_of_images, image_page) + t_order = time.time() + if self.full_layout: if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) else: - _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, self.tables, pixel_lines) + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d) - if num_col_classifier >= 3: + pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml) + self.logger.info("Job done in %.1fs", time.time() - t0) + ##return pcgts + else: + contours_only_text_parent_h = None if np.abs(slope_deskew) < SLOPE_THRESHOLD: - regions_without_separators = regions_without_separators.astype(np.uint8) - regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6) - + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) else: - regions_without_separators_d = regions_without_separators_d.astype(np.uint8) - regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) - - - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new(splitter_y_new, regions_without_separators, matrix_of_lines_ch, num_col_classifier, erosion_hurts, self.tables, self.right2left) - else: - boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new(splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, num_col_classifier, erosion_hurts, self.tables, self.right2left) - - #print(boxes_d,'boxes_d') - #img_once = np.zeros((textline_mask_tot_d.shape[0],textline_mask_tot_d.shape[1])) - #for box_i in boxes_d: - #img_once[int(box_i[2]):int(box_i[3]),int(box_i[0]):int(box_i[1]) ] =1 - #plt.imshow(img_once) - #plt.show() - #print(np.unique(img_once),'img_once') - if self.plotter: - self.plotter.write_images_into_directory(polygons_of_images, image_page) - t_order = time.time() - if self.full_layout: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) - else: - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d) - - pcgts = self.writer.build_pagexml_full_layout(contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_xml) - self.logger.info("Job done in %.1fs", time.time() - t0) - ##return pcgts - else: - contours_only_text_parent_h = None - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) - else: - contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) - order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d) - pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables) - self.logger.info("Job done in %.1fs", time.time() - t0) - ##return pcgts - self.writer.write_pagexml(pcgts) - #self.logger.info("Job done in %.1fs", time.time() - t0) + contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) + order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d) + pcgts = self.writer.build_pagexml_no_full_layout(txt_con_org, page_coord, order_text_new, id_of_texts_tot, all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_xml, contours_tables) + self.logger.info("Job done in %.1fs", time.time() - t0) + ##return pcgts + self.writer.write_pagexml(pcgts) + #self.logger.info("Job done in %.1fs", time.time() - t0) if self.dir_in: self.logger.info("All jobs done in %.1fs", time.time() - t0_tot)