diff --git a/src/eynollah/utils/contour.py b/src/eynollah/utils/contour.py index a9a7172..ee2faa7 100644 --- a/src/eynollah/utils/contour.py +++ b/src/eynollah/utils/contour.py @@ -141,12 +141,12 @@ def return_parent_contours(contours, hierarchy): if hierarchy[0][i][3] == -1] return contours_parent -def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002): +def return_contours_of_interested_region(region_pre_p, label, min_area=0.0002): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: - cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 + cnts_images = (region_pre_p[:, :, 0] == label) * 1 else: - cnts_images = (region_pre_p[:, :] == pixel) * 1 + cnts_images = (region_pre_p[:, :] == label) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) @@ -264,12 +264,12 @@ def get_textregion_contours_in_org_image_light(cnts, img, confidence_matrix, map confs.append(np.sum(confidence_matrix * cnt_mask) / np.sum(cnt_mask)) return cnts, confs -def return_contours_of_interested_textline(region_pre_p, pixel): +def return_contours_of_interested_textline(region_pre_p, label): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: - cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 + cnts_images = (region_pre_p[:, :, 0] == label) * 1 else: - cnts_images = (region_pre_p[:, :] == pixel) * 1 + cnts_images = (region_pre_p[:, :] == label) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) @@ -292,12 +292,12 @@ def return_contours_of_image(image): contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours, hierarchy -def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003): +def return_contours_of_interested_region_by_min_size(region_pre_p, label, min_size=0.00003): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: - cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 + cnts_images = (region_pre_p[:, :, 0] == label) * 1 else: - cnts_images = (region_pre_p[:, :] == pixel) * 1 + cnts_images = (region_pre_p[:, :] == label) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) @@ -310,12 +310,12 @@ def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_si return contours_imgs -def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area): +def return_contours_of_interested_region_by_size(region_pre_p, label, min_area, max_area): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: - cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 + cnts_images = (region_pre_p[:, :, 0] == label) * 1 else: - cnts_images = (region_pre_p[:, :] == pixel) * 1 + cnts_images = (region_pre_p[:, :] == label) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)