mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-06-09 20:29:55 +02:00
typo: s,hierachy,hierarchy,
This commit is contained in:
parent
6036478889
commit
ec9939c3c7
5 changed files with 28 additions and 28 deletions
|
@ -833,8 +833,8 @@ class Eynollah:
|
||||||
slope_for_all = [slope_deskew][0]
|
slope_for_all = [slope_deskew][0]
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
textline_con, hierachy = return_contours_of_image(img_int_p)
|
textline_con, hierarchy = return_contours_of_image(img_int_p)
|
||||||
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierachy, max_area=1, min_area=0.0008)
|
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierarchy, max_area=1, min_area=0.0008)
|
||||||
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
||||||
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
||||||
|
|
||||||
|
@ -944,8 +944,8 @@ class Eynollah:
|
||||||
bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv])
|
bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv])
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
textline_con, hierachy = return_contours_of_image(img_int_p)
|
textline_con, hierarchy = return_contours_of_image(img_int_p)
|
||||||
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierachy, max_area=1, min_area=0.00008)
|
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierarchy, max_area=1, min_area=0.00008)
|
||||||
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
||||||
sigma_des = int(y_diff_mean * (4.0 / 40.0))
|
sigma_des = int(y_diff_mean * (4.0 / 40.0))
|
||||||
if sigma_des < 1:
|
if sigma_des < 1:
|
||||||
|
@ -1018,8 +1018,8 @@ class Eynollah:
|
||||||
crop_img = crop_img[:, :, 0]
|
crop_img = crop_img[:, :, 0]
|
||||||
crop_img = cv2.erode(crop_img, KERNEL, iterations=2)
|
crop_img = cv2.erode(crop_img, KERNEL, iterations=2)
|
||||||
try:
|
try:
|
||||||
textline_con, hierachy = return_contours_of_image(crop_img)
|
textline_con, hierarchy = return_contours_of_image(crop_img)
|
||||||
textline_con_fil = filter_contours_area_of_image(crop_img, textline_con, hierachy, max_area=1, min_area=0.0008)
|
textline_con_fil = filter_contours_area_of_image(crop_img, textline_con, hierarchy, max_area=1, min_area=0.0008)
|
||||||
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil)
|
||||||
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
||||||
crop_img[crop_img > 0] = 1
|
crop_img[crop_img > 0] = 1
|
||||||
|
|
|
@ -957,7 +957,7 @@ def small_textlines_to_parent_adherence2(textlines_con, textline_iamge, num_col)
|
||||||
img_text2 = img_text2.astype(np.uint8)
|
img_text2 = img_text2.astype(np.uint8)
|
||||||
imgray = cv2.cvtColor(img_text2, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_text2, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
cont, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
cont, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
# print(cont[0],type(cont))
|
# print(cont[0],type(cont))
|
||||||
|
|
||||||
|
@ -1187,7 +1187,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
|
||||||
imgray = cv2.cvtColor(img_p_in_ver, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_p_in_ver, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_lines_ver,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
contours_lines_ver,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
slope_lines_ver,dist_x_ver, x_min_main_ver ,x_max_main_ver ,cy_main_ver,slope_lines_org_ver,y_min_main_ver, y_max_main_ver, cx_main_ver=find_features_of_lines(contours_lines_ver)
|
slope_lines_ver,dist_x_ver, x_min_main_ver ,x_max_main_ver ,cy_main_ver,slope_lines_org_ver,y_min_main_ver, y_max_main_ver, cx_main_ver=find_features_of_lines(contours_lines_ver)
|
||||||
|
|
||||||
|
@ -1201,7 +1201,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(im
|
||||||
imgray = cv2.cvtColor(img_in_hor, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_in_hor, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_lines_hor,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
contours_lines_hor,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
slope_lines_hor,dist_x_hor, x_min_main_hor ,x_max_main_hor ,cy_main_hor,slope_lines_org_hor,y_min_main_hor, y_max_main_hor, cx_main_hor=find_features_of_lines(contours_lines_hor)
|
slope_lines_hor,dist_x_hor, x_min_main_hor ,x_max_main_hor ,cy_main_hor,slope_lines_org_hor,y_min_main_hor, y_max_main_hor, cx_main_hor=find_features_of_lines(contours_lines_hor)
|
||||||
|
|
||||||
|
@ -1335,7 +1335,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
|
||||||
ret_e, thresh_e = cv2.threshold(imgray_e, 0, 255, 0)
|
ret_e, thresh_e = cv2.threshold(imgray_e, 0, 255, 0)
|
||||||
|
|
||||||
#print('burda3')
|
#print('burda3')
|
||||||
contours_line_e,hierachy_e=cv2.findContours(thresh_e,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
contours_line_e,hierarchy_e=cv2.findContours(thresh_e,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
#slope_lines_e,dist_x_e, x_min_main_e ,x_max_main_e ,cy_main_e,slope_lines_org_e,y_min_main_e, y_max_main_e, cx_main_e=self.find_features_of_lines(contours_line_e)
|
#slope_lines_e,dist_x_e, x_min_main_e ,x_max_main_e ,cy_main_e,slope_lines_org_e,y_min_main_e, y_max_main_e, cx_main_e=self.find_features_of_lines(contours_line_e)
|
||||||
|
|
||||||
|
@ -1442,7 +1442,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
|
||||||
imgray = cv2.cvtColor(vertical, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(vertical, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_line_vers,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
contours_line_vers,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_line_vers)
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_line_vers)
|
||||||
#print(slope_lines,'vertical')
|
#print(slope_lines,'vertical')
|
||||||
args=np.array( range(len(slope_lines) ))
|
args=np.array( range(len(slope_lines) ))
|
||||||
|
@ -1465,7 +1465,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_l
|
||||||
imgray = cv2.cvtColor(horizontal, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(horizontal, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_line_hors,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
contours_line_hors,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_line_hors)
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_line_hors)
|
||||||
|
|
||||||
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
||||||
|
|
|
@ -194,8 +194,8 @@ def return_contours_of_image(image):
|
||||||
image = image.astype(np.uint8)
|
image = image.astype(np.uint8)
|
||||||
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
contours, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
return contours, hierachy
|
return contours, hierarchy
|
||||||
|
|
||||||
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
|
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
|
||||||
|
|
||||||
|
|
|
@ -117,7 +117,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
# print(len(contours_combined),'len textlines mixed')
|
# print(len(contours_combined),'len textlines mixed')
|
||||||
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
||||||
|
@ -172,7 +172,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
# print(len(contours_combined),'len textlines mixed')
|
# print(len(contours_combined),'len textlines mixed')
|
||||||
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
||||||
|
@ -217,7 +217,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
# print(len(contours_combined),'len textlines mixed')
|
# print(len(contours_combined),'len textlines mixed')
|
||||||
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
||||||
|
@ -267,7 +267,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
##imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
##imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
||||||
##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
##contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
##contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
##print(len(contours_combined),'len textlines mixed')
|
##print(len(contours_combined),'len textlines mixed')
|
||||||
##areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
##areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
||||||
|
@ -322,7 +322,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
# print(len(contours_combined),'len textlines mixed')
|
# print(len(contours_combined),'len textlines mixed')
|
||||||
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
||||||
|
@ -377,7 +377,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
||||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
contours_combined, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
contours_combined, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
# print(len(contours_combined),'len textlines mixed')
|
# print(len(contours_combined),'len textlines mixed')
|
||||||
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
areas_cnt_text = np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
||||||
|
@ -408,7 +408,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
######imgray = cv2.cvtColor(img_con, cv2.COLOR_BGR2GRAY)
|
######imgray = cv2.cvtColor(img_con, cv2.COLOR_BGR2GRAY)
|
||||||
######ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
######ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
######contours_new,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
######contours_new,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
#####contours_new,hir_new=return_contours_of_image(img_con)
|
#####contours_new,hir_new=return_contours_of_image(img_con)
|
||||||
#####contours_new_parent=return_parent_contours( contours_new,hir_new)
|
#####contours_new_parent=return_parent_contours( contours_new,hir_new)
|
||||||
|
@ -442,7 +442,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
|
||||||
#####imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
#####imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
||||||
#####ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
#####ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||||
|
|
||||||
#####contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
#####contours_combined,hierarchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
|
||||||
#####areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
#####areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
||||||
|
|
||||||
|
|
|
@ -102,8 +102,8 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
|
||||||
else:
|
else:
|
||||||
peaks_new_tot = peaks_e[:]
|
peaks_new_tot = peaks_e[:]
|
||||||
|
|
||||||
textline_con, hierachy = return_contours_of_image(img_patch)
|
textline_con, hierarchy = return_contours_of_image(img_patch)
|
||||||
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
|
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierarchy, max_area=1, min_area=0.0008)
|
||||||
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
||||||
|
|
||||||
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
||||||
|
@ -219,8 +219,8 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
||||||
peaks_new_tot=peaks_e[:]
|
peaks_new_tot=peaks_e[:]
|
||||||
|
|
||||||
|
|
||||||
textline_con,hierachy=return_contours_of_image(img_patch)
|
textline_con,hierarchy=return_contours_of_image(img_patch)
|
||||||
textline_con_fil=filter_contours_area_of_image(img_patch,textline_con,hierachy,max_area=1,min_area=0.0008)
|
textline_con_fil=filter_contours_area_of_image(img_patch,textline_con,hierarchy,max_area=1,min_area=0.0008)
|
||||||
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
|
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
|
||||||
|
|
||||||
sigma_gaus=int( y_diff_mean * (7./40.0) )
|
sigma_gaus=int( y_diff_mean * (7./40.0) )
|
||||||
|
@ -1054,8 +1054,8 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
|
||||||
else:
|
else:
|
||||||
peaks_new_tot = peaks_e[:]
|
peaks_new_tot = peaks_e[:]
|
||||||
|
|
||||||
textline_con, hierachy = return_contours_of_image(img_patch)
|
textline_con, hierarchy = return_contours_of_image(img_patch)
|
||||||
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
|
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierarchy, max_area=1, min_area=0.0008)
|
||||||
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
||||||
|
|
||||||
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue