mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-07 06:59:58 +02:00
list literal is faster than using list constructor to create a new list
This commit is contained in:
parent
70af00182b
commit
f2f93e0251
5 changed files with 12 additions and 24 deletions
|
@ -138,8 +138,7 @@ def return_x_start_end_mothers_childs_and_type_of_reading_order(
|
||||||
min_ys=np.min(y_sep)
|
min_ys=np.min(y_sep)
|
||||||
max_ys=np.max(y_sep)
|
max_ys=np.max(y_sep)
|
||||||
|
|
||||||
y_mains=[]
|
y_mains= [min_ys]
|
||||||
y_mains.append(min_ys)
|
|
||||||
y_mains_sep_ohne_grenzen=[]
|
y_mains_sep_ohne_grenzen=[]
|
||||||
|
|
||||||
for ii in range(len(new_main_sep_y)):
|
for ii in range(len(new_main_sep_y)):
|
||||||
|
@ -493,8 +492,7 @@ def find_num_col(regions_without_separators, num_col_classifier, tables, multipl
|
||||||
# print(forest[np.argmin(z[forest]) ] )
|
# print(forest[np.argmin(z[forest]) ] )
|
||||||
if not isNaN(forest[np.argmin(z[forest])]):
|
if not isNaN(forest[np.argmin(z[forest])]):
|
||||||
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
||||||
forest = []
|
forest = [peaks_neg_fin[i + 1]]
|
||||||
forest.append(peaks_neg_fin[i + 1])
|
|
||||||
if i == (len(peaks_neg_fin) - 1):
|
if i == (len(peaks_neg_fin) - 1):
|
||||||
# print(print(forest[np.argmin(z[forest]) ] ))
|
# print(print(forest[np.argmin(z[forest]) ] ))
|
||||||
if not isNaN(forest[np.argmin(z[forest])]):
|
if not isNaN(forest[np.argmin(z[forest])]):
|
||||||
|
@ -662,8 +660,7 @@ def find_num_col_only_image(regions_without_separators, multiplier=3.8):
|
||||||
# print(forest[np.argmin(z[forest]) ] )
|
# print(forest[np.argmin(z[forest]) ] )
|
||||||
if not isNaN(forest[np.argmin(z[forest])]):
|
if not isNaN(forest[np.argmin(z[forest])]):
|
||||||
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
||||||
forest = []
|
forest = [peaks_neg_fin[i + 1]]
|
||||||
forest.append(peaks_neg_fin[i + 1])
|
|
||||||
if i == (len(peaks_neg_fin) - 1):
|
if i == (len(peaks_neg_fin) - 1):
|
||||||
# print(print(forest[np.argmin(z[forest]) ] ))
|
# print(print(forest[np.argmin(z[forest]) ] ))
|
||||||
if not isNaN(forest[np.argmin(z[forest])]):
|
if not isNaN(forest[np.argmin(z[forest])]):
|
||||||
|
@ -1235,8 +1232,7 @@ def order_of_regions(textline_mask, contours_main, contours_header, y_ref):
|
||||||
y_max_header = np.array([np.max(contours_header[j][:, 0, 1]) for j in range(len(contours_header))])
|
y_max_header = np.array([np.max(contours_header[j][:, 0, 1]) for j in range(len(contours_header))])
|
||||||
# print(cy_main,'mainy')
|
# print(cy_main,'mainy')
|
||||||
|
|
||||||
peaks_neg_new = []
|
peaks_neg_new = [0 + y_ref]
|
||||||
peaks_neg_new.append(0 + y_ref)
|
|
||||||
for iii in range(len(peaks_neg)):
|
for iii in range(len(peaks_neg)):
|
||||||
peaks_neg_new.append(peaks_neg[iii] + y_ref)
|
peaks_neg_new.append(peaks_neg[iii] + y_ref)
|
||||||
peaks_neg_new.append(textline_mask.shape[0] + y_ref)
|
peaks_neg_new.append(textline_mask.shape[0] + y_ref)
|
||||||
|
@ -1404,8 +1400,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(
|
||||||
return img_p_in[:,:,0], special_separators
|
return img_p_in[:,:,0], special_separators
|
||||||
|
|
||||||
def return_points_with_boundies(peaks_neg_fin, first_point, last_point):
|
def return_points_with_boundies(peaks_neg_fin, first_point, last_point):
|
||||||
peaks_neg_tot = []
|
peaks_neg_tot = [first_point]
|
||||||
peaks_neg_tot.append(first_point)
|
|
||||||
for ii in range(len(peaks_neg_fin)):
|
for ii in range(len(peaks_neg_fin)):
|
||||||
peaks_neg_tot.append(peaks_neg_fin[ii])
|
peaks_neg_tot.append(peaks_neg_fin[ii])
|
||||||
peaks_neg_tot.append(last_point)
|
peaks_neg_tot.append(last_point)
|
||||||
|
@ -1588,8 +1583,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables,
|
||||||
args_cy_splitter=np.argsort(cy_main_splitters)
|
args_cy_splitter=np.argsort(cy_main_splitters)
|
||||||
cy_main_splitters_sort=cy_main_splitters[args_cy_splitter]
|
cy_main_splitters_sort=cy_main_splitters[args_cy_splitter]
|
||||||
|
|
||||||
splitter_y_new=[]
|
splitter_y_new= [0]
|
||||||
splitter_y_new.append(0)
|
|
||||||
for i in range(len(cy_main_splitters_sort)):
|
for i in range(len(cy_main_splitters_sort)):
|
||||||
splitter_y_new.append( cy_main_splitters_sort[i] )
|
splitter_y_new.append( cy_main_splitters_sort[i] )
|
||||||
splitter_y_new.append(region_pre_p.shape[0])
|
splitter_y_new.append(region_pre_p.shape[0])
|
||||||
|
@ -1663,8 +1657,7 @@ def return_boxes_of_images_by_order_of_reading_new(
|
||||||
num_col, peaks_neg_fin = find_num_col(
|
num_col, peaks_neg_fin = find_num_col(
|
||||||
regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],
|
regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],
|
||||||
num_col_classifier, tables, multiplier=3.)
|
num_col_classifier, tables, multiplier=3.)
|
||||||
peaks_neg_fin_early=[]
|
peaks_neg_fin_early= [0]
|
||||||
peaks_neg_fin_early.append(0)
|
|
||||||
#print(peaks_neg_fin,'peaks_neg_fin')
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
||||||
for p_n in peaks_neg_fin:
|
for p_n in peaks_neg_fin:
|
||||||
peaks_neg_fin_early.append(p_n)
|
peaks_neg_fin_early.append(p_n)
|
||||||
|
|
|
@ -239,8 +239,7 @@ def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first
|
||||||
|
|
||||||
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
if len(cont_int)==0:
|
if len(cont_int)==0:
|
||||||
cont_int = []
|
cont_int = [contour_par]
|
||||||
cont_int.append(contour_par)
|
|
||||||
confidence_contour = 0
|
confidence_contour = 0
|
||||||
else:
|
else:
|
||||||
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
|
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
|
||||||
|
|
|
@ -1174,8 +1174,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
|
||||||
if diff_peaks[i] > cut_off:
|
if diff_peaks[i] > cut_off:
|
||||||
if not np.isnan(forest[np.argmin(z[forest])]):
|
if not np.isnan(forest[np.argmin(z[forest])]):
|
||||||
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
||||||
forest = []
|
forest = [peaks_neg[i + 1]]
|
||||||
forest.append(peaks_neg[i + 1])
|
|
||||||
if i == (len(peaks_neg) - 1):
|
if i == (len(peaks_neg) - 1):
|
||||||
if not np.isnan(forest[np.argmin(z[forest])]):
|
if not np.isnan(forest[np.argmin(z[forest])]):
|
||||||
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
||||||
|
@ -1195,8 +1194,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
|
||||||
if diff_peaks_pos[i] > cut_off:
|
if diff_peaks_pos[i] > cut_off:
|
||||||
if not np.isnan(forest[np.argmax(z[forest])]):
|
if not np.isnan(forest[np.argmax(z[forest])]):
|
||||||
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
||||||
forest = []
|
forest = [peaks[i + 1]]
|
||||||
forest.append(peaks[i + 1])
|
|
||||||
if i == (len(peaks) - 1):
|
if i == (len(peaks) - 1):
|
||||||
if not np.isnan(forest[np.argmax(z[forest])]):
|
if not np.isnan(forest[np.argmax(z[forest])]):
|
||||||
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
||||||
|
|
|
@ -305,8 +305,7 @@ class sbb_predict:
|
||||||
input_1= np.zeros( (inference_bs, img_height, img_width,3))
|
input_1= np.zeros( (inference_bs, img_height, img_width,3))
|
||||||
|
|
||||||
|
|
||||||
starting_list_of_regions = []
|
starting_list_of_regions = [list(range(labels_con.shape[2]))]
|
||||||
starting_list_of_regions.append( list(range(labels_con.shape[2])) )
|
|
||||||
|
|
||||||
index_update = 0
|
index_update = 0
|
||||||
index_selected = starting_list_of_regions[0]
|
index_selected = starting_list_of_regions[0]
|
||||||
|
|
|
@ -365,8 +365,7 @@ def run(_config, n_classes, n_epochs, input_height,
|
||||||
|
|
||||||
y_tot=np.zeros((testX.shape[0],n_classes))
|
y_tot=np.zeros((testX.shape[0],n_classes))
|
||||||
|
|
||||||
score_best=[]
|
score_best= [0]
|
||||||
score_best.append(0)
|
|
||||||
|
|
||||||
num_rows = return_number_of_total_training_data(dir_train)
|
num_rows = return_number_of_total_training_data(dir_train)
|
||||||
weights=[]
|
weights=[]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue