list literal is faster than using list constructor to create a new list

This commit is contained in:
cneud 2025-10-01 00:26:27 +02:00
parent 70af00182b
commit f2f93e0251
5 changed files with 12 additions and 24 deletions

View file

@ -138,8 +138,7 @@ def return_x_start_end_mothers_childs_and_type_of_reading_order(
min_ys=np.min(y_sep) min_ys=np.min(y_sep)
max_ys=np.max(y_sep) max_ys=np.max(y_sep)
y_mains=[] y_mains= [min_ys]
y_mains.append(min_ys)
y_mains_sep_ohne_grenzen=[] y_mains_sep_ohne_grenzen=[]
for ii in range(len(new_main_sep_y)): for ii in range(len(new_main_sep_y)):
@ -493,8 +492,7 @@ def find_num_col(regions_without_separators, num_col_classifier, tables, multipl
# print(forest[np.argmin(z[forest]) ] ) # print(forest[np.argmin(z[forest]) ] )
if not isNaN(forest[np.argmin(z[forest])]): if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])]) peaks_neg_true.append(forest[np.argmin(z[forest])])
forest = [] forest = [peaks_neg_fin[i + 1]]
forest.append(peaks_neg_fin[i + 1])
if i == (len(peaks_neg_fin) - 1): if i == (len(peaks_neg_fin) - 1):
# print(print(forest[np.argmin(z[forest]) ] )) # print(print(forest[np.argmin(z[forest]) ] ))
if not isNaN(forest[np.argmin(z[forest])]): if not isNaN(forest[np.argmin(z[forest])]):
@ -662,8 +660,7 @@ def find_num_col_only_image(regions_without_separators, multiplier=3.8):
# print(forest[np.argmin(z[forest]) ] ) # print(forest[np.argmin(z[forest]) ] )
if not isNaN(forest[np.argmin(z[forest])]): if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])]) peaks_neg_true.append(forest[np.argmin(z[forest])])
forest = [] forest = [peaks_neg_fin[i + 1]]
forest.append(peaks_neg_fin[i + 1])
if i == (len(peaks_neg_fin) - 1): if i == (len(peaks_neg_fin) - 1):
# print(print(forest[np.argmin(z[forest]) ] )) # print(print(forest[np.argmin(z[forest]) ] ))
if not isNaN(forest[np.argmin(z[forest])]): if not isNaN(forest[np.argmin(z[forest])]):
@ -1235,8 +1232,7 @@ def order_of_regions(textline_mask, contours_main, contours_header, y_ref):
y_max_header = np.array([np.max(contours_header[j][:, 0, 1]) for j in range(len(contours_header))]) y_max_header = np.array([np.max(contours_header[j][:, 0, 1]) for j in range(len(contours_header))])
# print(cy_main,'mainy') # print(cy_main,'mainy')
peaks_neg_new = [] peaks_neg_new = [0 + y_ref]
peaks_neg_new.append(0 + y_ref)
for iii in range(len(peaks_neg)): for iii in range(len(peaks_neg)):
peaks_neg_new.append(peaks_neg[iii] + y_ref) peaks_neg_new.append(peaks_neg[iii] + y_ref)
peaks_neg_new.append(textline_mask.shape[0] + y_ref) peaks_neg_new.append(textline_mask.shape[0] + y_ref)
@ -1404,8 +1400,7 @@ def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(
return img_p_in[:,:,0], special_separators return img_p_in[:,:,0], special_separators
def return_points_with_boundies(peaks_neg_fin, first_point, last_point): def return_points_with_boundies(peaks_neg_fin, first_point, last_point):
peaks_neg_tot = [] peaks_neg_tot = [first_point]
peaks_neg_tot.append(first_point)
for ii in range(len(peaks_neg_fin)): for ii in range(len(peaks_neg_fin)):
peaks_neg_tot.append(peaks_neg_fin[ii]) peaks_neg_tot.append(peaks_neg_fin[ii])
peaks_neg_tot.append(last_point) peaks_neg_tot.append(last_point)
@ -1588,8 +1583,7 @@ def find_number_of_columns_in_document(region_pre_p, num_col_classifier, tables,
args_cy_splitter=np.argsort(cy_main_splitters) args_cy_splitter=np.argsort(cy_main_splitters)
cy_main_splitters_sort=cy_main_splitters[args_cy_splitter] cy_main_splitters_sort=cy_main_splitters[args_cy_splitter]
splitter_y_new=[] splitter_y_new= [0]
splitter_y_new.append(0)
for i in range(len(cy_main_splitters_sort)): for i in range(len(cy_main_splitters_sort)):
splitter_y_new.append( cy_main_splitters_sort[i] ) splitter_y_new.append( cy_main_splitters_sort[i] )
splitter_y_new.append(region_pre_p.shape[0]) splitter_y_new.append(region_pre_p.shape[0])
@ -1663,8 +1657,7 @@ def return_boxes_of_images_by_order_of_reading_new(
num_col, peaks_neg_fin = find_num_col( num_col, peaks_neg_fin = find_num_col(
regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:], regions_without_separators[int(splitter_y_new[i]):int(splitter_y_new[i+1]),:],
num_col_classifier, tables, multiplier=3.) num_col_classifier, tables, multiplier=3.)
peaks_neg_fin_early=[] peaks_neg_fin_early= [0]
peaks_neg_fin_early.append(0)
#print(peaks_neg_fin,'peaks_neg_fin') #print(peaks_neg_fin,'peaks_neg_fin')
for p_n in peaks_neg_fin: for p_n in peaks_neg_fin:
peaks_neg_fin_early.append(p_n) peaks_neg_fin_early.append(p_n)

View file

@ -239,8 +239,7 @@ def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(cont_int)==0: if len(cont_int)==0:
cont_int = [] cont_int = [contour_par]
cont_int.append(contour_par)
confidence_contour = 0 confidence_contour = 0
else: else:
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])

View file

@ -1174,8 +1174,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
if diff_peaks[i] > cut_off: if diff_peaks[i] > cut_off:
if not np.isnan(forest[np.argmin(z[forest])]): if not np.isnan(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])]) peaks_neg_true.append(forest[np.argmin(z[forest])])
forest = [] forest = [peaks_neg[i + 1]]
forest.append(peaks_neg[i + 1])
if i == (len(peaks_neg) - 1): if i == (len(peaks_neg) - 1):
if not np.isnan(forest[np.argmin(z[forest])]): if not np.isnan(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])]) peaks_neg_true.append(forest[np.argmin(z[forest])])
@ -1195,8 +1194,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
if diff_peaks_pos[i] > cut_off: if diff_peaks_pos[i] > cut_off:
if not np.isnan(forest[np.argmax(z[forest])]): if not np.isnan(forest[np.argmax(z[forest])]):
peaks_pos_true.append(forest[np.argmax(z[forest])]) peaks_pos_true.append(forest[np.argmax(z[forest])])
forest = [] forest = [peaks[i + 1]]
forest.append(peaks[i + 1])
if i == (len(peaks) - 1): if i == (len(peaks) - 1):
if not np.isnan(forest[np.argmax(z[forest])]): if not np.isnan(forest[np.argmax(z[forest])]):
peaks_pos_true.append(forest[np.argmax(z[forest])]) peaks_pos_true.append(forest[np.argmax(z[forest])])

View file

@ -305,8 +305,7 @@ class sbb_predict:
input_1= np.zeros( (inference_bs, img_height, img_width,3)) input_1= np.zeros( (inference_bs, img_height, img_width,3))
starting_list_of_regions = [] starting_list_of_regions = [list(range(labels_con.shape[2]))]
starting_list_of_regions.append( list(range(labels_con.shape[2])) )
index_update = 0 index_update = 0
index_selected = starting_list_of_regions[0] index_selected = starting_list_of_regions[0]

View file

@ -365,8 +365,7 @@ def run(_config, n_classes, n_epochs, input_height,
y_tot=np.zeros((testX.shape[0],n_classes)) y_tot=np.zeros((testX.shape[0],n_classes))
score_best=[] score_best= [0]
score_best.append(0)
num_rows = return_number_of_total_training_data(dir_train) num_rows = return_number_of_total_training_data(dir_train)
weights=[] weights=[]