mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-06-08 11:49:55 +02:00
more extraction of util/unused functions
This commit is contained in:
parent
3bb516bfb5
commit
f8c153775b
3 changed files with 1431 additions and 1430 deletions
File diff suppressed because it is too large
Load diff
|
@ -823,3 +823,671 @@ def image_change_background_pixels_to_zero(self, image_page):
|
|||
image_back_zero[:, :][image_back_zero[:, :] == -255] = 255
|
||||
return image_back_zero
|
||||
|
||||
def return_boxes_of_images_by_order_of_reading_without_seperator(spliter_y_new, image_p_rev, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n):
|
||||
|
||||
boxes = []
|
||||
|
||||
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
||||
# holes in the text and also finding spliter which covers more than one columns.
|
||||
for i in range(len(spliter_y_new) - 1):
|
||||
# print(spliter_y_new[i],spliter_y_new[i+1])
|
||||
matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])]
|
||||
# print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
||||
|
||||
# print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
||||
|
||||
# check to see is there any vertical seperator to find holes.
|
||||
if np.abs(spliter_y_new[i + 1] - spliter_y_new[i]) > 1.0 / 3.0 * regions_without_seperators.shape[0]: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
||||
|
||||
# org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
||||
# org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
||||
##plt.figure(figsize=(20,20))
|
||||
##plt.plot(org_img_dichte)
|
||||
##plt.show()
|
||||
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
||||
|
||||
num_col, peaks_neg_fin = find_num_col_only_image(image_p_rev[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=2.4)
|
||||
|
||||
# num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
||||
x_min_hor_some = matrix_new[:, 2][(matrix_new[:, 9] == 0)]
|
||||
x_max_hor_some = matrix_new[:, 3][(matrix_new[:, 9] == 0)]
|
||||
cy_hor_some = matrix_new[:, 5][(matrix_new[:, 9] == 0)]
|
||||
arg_org_hor_some = matrix_new[:, 0][(matrix_new[:, 9] == 0)]
|
||||
|
||||
peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1])
|
||||
|
||||
start_index_of_hor, newest_peaks, arg_min_hor_sort, lines_length_dels, lines_indexes_deleted = return_hor_spliter_by_index_for_without_verticals(peaks_neg_tot, x_min_hor_some, x_max_hor_some)
|
||||
|
||||
arg_org_hor_some_sort = arg_org_hor_some[arg_min_hor_sort]
|
||||
|
||||
start_index_of_hor_with_subset = [start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # start_index_of_hor[lines_length_dels>0]
|
||||
arg_min_hor_sort_with_subset = [arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
lines_indexes_deleted_with_subset = [lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
lines_length_dels_with_subset = [lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
|
||||
arg_org_hor_some_sort_subset = [arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
|
||||
# arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0]
|
||||
# lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0]
|
||||
# lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0]
|
||||
|
||||
# print(len(arg_min_hor_sort),len(arg_org_hor_some_sort),'vizzzzzz')
|
||||
|
||||
vahid_subset = np.zeros((len(start_index_of_hor_with_subset), len(start_index_of_hor_with_subset))) - 1
|
||||
for kkk1 in range(len(start_index_of_hor_with_subset)):
|
||||
|
||||
# print(lines_indexes_deleted,'hiii')
|
||||
index_del_sub = np.unique(lines_indexes_deleted_with_subset[kkk1])
|
||||
|
||||
for kkk2 in range(len(start_index_of_hor_with_subset)):
|
||||
|
||||
if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]):
|
||||
vahid_subset[kkk1, kkk2] = kkk1
|
||||
else:
|
||||
pass
|
||||
# print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0]))
|
||||
|
||||
# check the len of matrix if it has no length means that there is no spliter at all
|
||||
|
||||
if len(vahid_subset > 0):
|
||||
# print('hihoo')
|
||||
|
||||
# find parenets args
|
||||
line_int = np.zeros(vahid_subset.shape[0])
|
||||
|
||||
childs_id = []
|
||||
arg_child = []
|
||||
for li in range(vahid_subset.shape[0]):
|
||||
if np.all(vahid_subset[:, li] == -1):
|
||||
line_int[li] = -1
|
||||
else:
|
||||
line_int[li] = 1
|
||||
|
||||
# childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1]
|
||||
# helpi=[]
|
||||
# for nad in range(len(childs_args_in)):
|
||||
# helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]])
|
||||
|
||||
arg_child.append(arg_min_hor_sort_with_subset[li])
|
||||
|
||||
arg_parent = [arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
|
||||
start_index_of_hor_parent = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
|
||||
# arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
||||
# arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
||||
|
||||
# arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
||||
start_index_of_hor_child = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] != -1]
|
||||
|
||||
cy_hor_some_sort = cy_hor_some[arg_parent]
|
||||
|
||||
newest_y_spliter_tot = []
|
||||
|
||||
for tj in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = []
|
||||
newest_y_spliter.append(spliter_y_new[i])
|
||||
if tj in np.unique(start_index_of_hor_parent):
|
||||
cy_help = np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent) == tj]
|
||||
cy_help_sort = np.sort(cy_help)
|
||||
|
||||
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
||||
for mj in range(len(cy_help_sort)):
|
||||
newest_y_spliter.append(cy_help_sort[mj])
|
||||
newest_y_spliter.append(spliter_y_new[i + 1])
|
||||
|
||||
newest_y_spliter_tot.append(newest_y_spliter)
|
||||
|
||||
else:
|
||||
line_int = []
|
||||
newest_y_spliter_tot = []
|
||||
|
||||
for tj in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = []
|
||||
newest_y_spliter.append(spliter_y_new[i])
|
||||
|
||||
newest_y_spliter.append(spliter_y_new[i + 1])
|
||||
|
||||
newest_y_spliter_tot.append(newest_y_spliter)
|
||||
|
||||
# if line_int is all -1 means that big spliters have no child and we can easily go through
|
||||
if np.all(np.array(line_int) == -1):
|
||||
for j in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = newest_y_spliter_tot[j]
|
||||
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
# print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa')
|
||||
##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]])
|
||||
##plt.show()
|
||||
|
||||
# print(matrix_new[:,0][ (matrix_new[:,9]==1 )])
|
||||
for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]:
|
||||
pass
|
||||
|
||||
###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
||||
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
||||
# num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.4)
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
for j in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = newest_y_spliter_tot[j]
|
||||
|
||||
if j in start_index_of_hor_parent:
|
||||
|
||||
x_min_ch = x_min_hor_some[arg_child]
|
||||
x_max_ch = x_max_hor_some[arg_child]
|
||||
cy_hor_some_sort_child = cy_hor_some[arg_child]
|
||||
cy_hor_some_sort_child = np.sort(cy_hor_some_sort_child)
|
||||
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
|
||||
cy_child_in = cy_hor_some_sort_child[(cy_hor_some_sort_child > newest_y_spliter[n]) & (cy_hor_some_sort_child < newest_y_spliter[n + 1])]
|
||||
|
||||
if len(cy_child_in) > 0:
|
||||
###num_col_ch, peaks_neg_ch=find_num_col( regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
||||
|
||||
num_col_ch, peaks_neg_ch = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.3)
|
||||
|
||||
peaks_neg_ch = peaks_neg_ch[:] + newest_peaks[j]
|
||||
|
||||
peaks_neg_ch_tot = return_points_with_boundies(peaks_neg_ch, newest_peaks[j], newest_peaks[j + 1])
|
||||
|
||||
ss_in_ch, nst_p_ch, arg_n_ch, lines_l_del_ch, lines_in_del_ch = return_hor_spliter_by_index_for_without_verticals(peaks_neg_ch_tot, x_min_ch, x_max_ch)
|
||||
|
||||
newest_y_spliter_ch_tot = []
|
||||
|
||||
for tjj in range(len(nst_p_ch) - 1):
|
||||
newest_y_spliter_new = []
|
||||
newest_y_spliter_new.append(newest_y_spliter[n])
|
||||
if tjj in np.unique(ss_in_ch):
|
||||
|
||||
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
||||
for mjj in range(len(cy_child_in)):
|
||||
newest_y_spliter_new.append(cy_child_in[mjj])
|
||||
newest_y_spliter_new.append(newest_y_spliter[n + 1])
|
||||
|
||||
newest_y_spliter_ch_tot.append(newest_y_spliter_new)
|
||||
|
||||
for jn in range(len(nst_p_ch) - 1):
|
||||
newest_y_spliter_h = newest_y_spliter_ch_tot[jn]
|
||||
|
||||
for nd in range(len(newest_y_spliter_h) - 1):
|
||||
|
||||
matrix_new_new2 = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter_h[nd]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter_h[nd + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < nst_p_ch[jn + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > nst_p_ch[jn])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new2[:,9][matrix_new_new2[:,9]==1] )>0 and np.max(matrix_new_new2[:,8][matrix_new_new2[:,9]==1])>=0.2*(np.abs(newest_y_spliter_h[nd+1]-newest_y_spliter_h[nd] )):
|
||||
# num_col_sub_ch, peaks_neg_fin_sub_ch=find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]):int(newest_y_spliter_h[nd+1]),nst_p_ch[jn]:nst_p_ch[jn+1]],multiplier=2.3)
|
||||
|
||||
num_col_sub_ch, peaks_neg_fin_sub_ch = find_num_col_only_image(image_p_rev[int(newest_y_spliter_h[nd]) : int(newest_y_spliter_h[nd + 1]), nst_p_ch[jn] : nst_p_ch[jn + 1]], multiplier=2.3)
|
||||
# print(peaks_neg_fin_sub_ch,'gada kutullllllll')
|
||||
else:
|
||||
peaks_neg_fin_sub_ch = []
|
||||
|
||||
peaks_sub_ch = []
|
||||
peaks_sub_ch.append(nst_p_ch[jn])
|
||||
|
||||
for kjj in range(len(peaks_neg_fin_sub_ch)):
|
||||
peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj] + nst_p_ch[jn])
|
||||
|
||||
peaks_sub_ch.append(nst_p_ch[jn + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for khh in range(len(peaks_sub_ch) - 1):
|
||||
boxes.append([peaks_sub_ch[khh], peaks_sub_ch[khh + 1], newest_y_spliter_h[nd], newest_y_spliter_h[nd + 1]])
|
||||
|
||||
else:
|
||||
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
||||
###num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.3)
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
|
||||
for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]:
|
||||
pass
|
||||
|
||||
# plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
||||
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
||||
###num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.0)
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.3)
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]])
|
||||
return boxes
|
||||
|
||||
def return_region_segmentation_after_implementing_not_head_maintext_parallel(image_regions_eraly_p, boxes):
|
||||
image_revised = np.zeros((image_regions_eraly_p.shape[0], image_regions_eraly_p.shape[1]))
|
||||
for i in range(len(boxes)):
|
||||
|
||||
image_box = image_regions_eraly_p[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1])]
|
||||
image_box = np.array(image_box)
|
||||
# plt.imshow(image_box)
|
||||
# plt.show()
|
||||
|
||||
# print(int(boxes[i][2]),int(boxes[i][3]),int(boxes[i][0]),int(boxes[i][1]),'addaa')
|
||||
image_box = implent_law_head_main_not_parallel(image_box)
|
||||
image_box = implent_law_head_main_not_parallel(image_box)
|
||||
image_box = implent_law_head_main_not_parallel(image_box)
|
||||
|
||||
image_revised[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1])] = image_box[:, :]
|
||||
return image_revised
|
||||
|
||||
def return_boxes_of_images_by_order_of_reading_2cols(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n):
|
||||
boxes = []
|
||||
|
||||
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
||||
# holes in the text and also finding spliter which covers more than one columns.
|
||||
for i in range(len(spliter_y_new) - 1):
|
||||
# print(spliter_y_new[i],spliter_y_new[i+1])
|
||||
matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])]
|
||||
# print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
||||
|
||||
# print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
||||
|
||||
# check to see is there any vertical seperator to find holes.
|
||||
if 1 > 0: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
||||
# print(int(spliter_y_new[i]),int(spliter_y_new[i+1]),'burayaaaa galimiirrrrrrrrrrrrrrrrrrrrrrrrrrr')
|
||||
# org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
||||
# org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
||||
##plt.figure(figsize=(20,20))
|
||||
##plt.plot(org_img_dichte)
|
||||
##plt.show()
|
||||
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
||||
|
||||
try:
|
||||
num_col, peaks_neg_fin = find_num_col(regions_without_seperators[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=7.0)
|
||||
|
||||
except:
|
||||
peaks_neg_fin = []
|
||||
num_col = 0
|
||||
|
||||
peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1])
|
||||
|
||||
for kh in range(len(peaks_neg_tot) - 1):
|
||||
boxes.append([peaks_neg_tot[kh], peaks_neg_tot[kh + 1], spliter_y_new[i], spliter_y_new[i + 1]])
|
||||
|
||||
else:
|
||||
boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]])
|
||||
|
||||
return boxes
|
||||
|
||||
def return_boxes_of_images_by_order_of_reading(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n):
|
||||
boxes = []
|
||||
|
||||
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
||||
# holes in the text and also finding spliter which covers more than one columns.
|
||||
for i in range(len(spliter_y_new) - 1):
|
||||
# print(spliter_y_new[i],spliter_y_new[i+1])
|
||||
matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])]
|
||||
# print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
||||
|
||||
# print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
||||
|
||||
# check to see is there any vertical seperator to find holes.
|
||||
if len(matrix_new[:, 9][matrix_new[:, 9] == 1]) > 0 and np.max(matrix_new[:, 8][matrix_new[:, 9] == 1]) >= 0.1 * (np.abs(spliter_y_new[i + 1] - spliter_y_new[i])):
|
||||
|
||||
# org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
||||
# org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
||||
##plt.figure(figsize=(20,20))
|
||||
##plt.plot(org_img_dichte)
|
||||
##plt.show()
|
||||
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
||||
|
||||
num_col, peaks_neg_fin = find_num_col(regions_without_seperators[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=7.0)
|
||||
|
||||
# num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
||||
x_min_hor_some = matrix_new[:, 2][(matrix_new[:, 9] == 0)]
|
||||
x_max_hor_some = matrix_new[:, 3][(matrix_new[:, 9] == 0)]
|
||||
cy_hor_some = matrix_new[:, 5][(matrix_new[:, 9] == 0)]
|
||||
arg_org_hor_some = matrix_new[:, 0][(matrix_new[:, 9] == 0)]
|
||||
|
||||
peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1])
|
||||
|
||||
start_index_of_hor, newest_peaks, arg_min_hor_sort, lines_length_dels, lines_indexes_deleted = return_hor_spliter_by_index(peaks_neg_tot, x_min_hor_some, x_max_hor_some)
|
||||
|
||||
arg_org_hor_some_sort = arg_org_hor_some[arg_min_hor_sort]
|
||||
|
||||
start_index_of_hor_with_subset = [start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # start_index_of_hor[lines_length_dels>0]
|
||||
arg_min_hor_sort_with_subset = [arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
lines_indexes_deleted_with_subset = [lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
lines_length_dels_with_subset = [lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
|
||||
arg_org_hor_some_sort_subset = [arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
|
||||
# arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0]
|
||||
# lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0]
|
||||
# lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0]
|
||||
|
||||
vahid_subset = np.zeros((len(start_index_of_hor_with_subset), len(start_index_of_hor_with_subset))) - 1
|
||||
for kkk1 in range(len(start_index_of_hor_with_subset)):
|
||||
|
||||
index_del_sub = np.unique(lines_indexes_deleted_with_subset[kkk1])
|
||||
|
||||
for kkk2 in range(len(start_index_of_hor_with_subset)):
|
||||
|
||||
if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]):
|
||||
vahid_subset[kkk1, kkk2] = kkk1
|
||||
else:
|
||||
pass
|
||||
# print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0]))
|
||||
|
||||
# print(vahid_subset,'zartt222')
|
||||
|
||||
# check the len of matrix if it has no length means that there is no spliter at all
|
||||
|
||||
if len(vahid_subset > 0):
|
||||
# print('hihoo')
|
||||
|
||||
# find parenets args
|
||||
line_int = np.zeros(vahid_subset.shape[0])
|
||||
|
||||
childs_id = []
|
||||
arg_child = []
|
||||
for li in range(vahid_subset.shape[0]):
|
||||
# print(vahid_subset[:,li])
|
||||
if np.all(vahid_subset[:, li] == -1):
|
||||
line_int[li] = -1
|
||||
else:
|
||||
line_int[li] = 1
|
||||
|
||||
# childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1]
|
||||
# helpi=[]
|
||||
# for nad in range(len(childs_args_in)):
|
||||
# helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]])
|
||||
|
||||
arg_child.append(arg_min_hor_sort_with_subset[li])
|
||||
|
||||
# line_int=vahid_subset[0,:]
|
||||
|
||||
# print(arg_child,line_int[0],'zartt33333')
|
||||
arg_parent = [arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
|
||||
start_index_of_hor_parent = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
|
||||
# arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
||||
# arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
||||
|
||||
# arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
||||
start_index_of_hor_child = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] != -1]
|
||||
|
||||
cy_hor_some_sort = cy_hor_some[arg_parent]
|
||||
|
||||
# print(start_index_of_hor, lines_length_dels ,lines_indexes_deleted,'zartt')
|
||||
|
||||
# args_indexes=np.array(range(len(start_index_of_hor) ))
|
||||
|
||||
newest_y_spliter_tot = []
|
||||
|
||||
for tj in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = []
|
||||
newest_y_spliter.append(spliter_y_new[i])
|
||||
if tj in np.unique(start_index_of_hor_parent):
|
||||
##print(cy_hor_some_sort)
|
||||
cy_help = np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent) == tj]
|
||||
cy_help_sort = np.sort(cy_help)
|
||||
|
||||
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
||||
for mj in range(len(cy_help_sort)):
|
||||
newest_y_spliter.append(cy_help_sort[mj])
|
||||
newest_y_spliter.append(spliter_y_new[i + 1])
|
||||
|
||||
newest_y_spliter_tot.append(newest_y_spliter)
|
||||
|
||||
else:
|
||||
line_int = []
|
||||
newest_y_spliter_tot = []
|
||||
|
||||
for tj in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = []
|
||||
newest_y_spliter.append(spliter_y_new[i])
|
||||
|
||||
newest_y_spliter.append(spliter_y_new[i + 1])
|
||||
|
||||
newest_y_spliter_tot.append(newest_y_spliter)
|
||||
|
||||
# if line_int is all -1 means that big spliters have no child and we can easily go through
|
||||
if np.all(np.array(line_int) == -1):
|
||||
for j in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = newest_y_spliter_tot[j]
|
||||
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
# print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa')
|
||||
##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]])
|
||||
##plt.show()
|
||||
|
||||
# print(matrix_new[:,0][ (matrix_new[:,9]==1 )])
|
||||
for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]:
|
||||
pass
|
||||
|
||||
###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
||||
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if len(matrix_new_new[:, 9][matrix_new_new[:, 9] == 1]) > 0 and np.max(matrix_new_new[:, 8][matrix_new_new[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter[n + 1] - newest_y_spliter[n])):
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0)
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
for j in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = newest_y_spliter_tot[j]
|
||||
|
||||
if j in start_index_of_hor_parent:
|
||||
|
||||
x_min_ch = x_min_hor_some[arg_child]
|
||||
x_max_ch = x_max_hor_some[arg_child]
|
||||
cy_hor_some_sort_child = cy_hor_some[arg_child]
|
||||
cy_hor_some_sort_child = np.sort(cy_hor_some_sort_child)
|
||||
|
||||
# print(cy_hor_some_sort_child,'ychilds')
|
||||
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
|
||||
cy_child_in = cy_hor_some_sort_child[(cy_hor_some_sort_child > newest_y_spliter[n]) & (cy_hor_some_sort_child < newest_y_spliter[n + 1])]
|
||||
|
||||
if len(cy_child_in) > 0:
|
||||
num_col_ch, peaks_neg_ch = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0)
|
||||
# print(peaks_neg_ch,'mizzzz')
|
||||
# peaks_neg_ch=[]
|
||||
# for djh in range(len(peaks_neg_ch)):
|
||||
# peaks_neg_ch.append( peaks_neg_ch[djh]+newest_peaks[j] )
|
||||
|
||||
peaks_neg_ch_tot = return_points_with_boundies(peaks_neg_ch, newest_peaks[j], newest_peaks[j + 1])
|
||||
|
||||
ss_in_ch, nst_p_ch, arg_n_ch, lines_l_del_ch, lines_in_del_ch = return_hor_spliter_by_index(peaks_neg_ch_tot, x_min_ch, x_max_ch)
|
||||
|
||||
newest_y_spliter_ch_tot = []
|
||||
|
||||
for tjj in range(len(nst_p_ch) - 1):
|
||||
newest_y_spliter_new = []
|
||||
newest_y_spliter_new.append(newest_y_spliter[n])
|
||||
if tjj in np.unique(ss_in_ch):
|
||||
|
||||
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
||||
for mjj in range(len(cy_child_in)):
|
||||
newest_y_spliter_new.append(cy_child_in[mjj])
|
||||
newest_y_spliter_new.append(newest_y_spliter[n + 1])
|
||||
|
||||
newest_y_spliter_ch_tot.append(newest_y_spliter_new)
|
||||
|
||||
for jn in range(len(nst_p_ch) - 1):
|
||||
newest_y_spliter_h = newest_y_spliter_ch_tot[jn]
|
||||
|
||||
for nd in range(len(newest_y_spliter_h) - 1):
|
||||
|
||||
matrix_new_new2 = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter_h[nd]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter_h[nd + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < nst_p_ch[jn + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > nst_p_ch[jn])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if len(matrix_new_new2[:, 9][matrix_new_new2[:, 9] == 1]) > 0 and np.max(matrix_new_new2[:, 8][matrix_new_new2[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter_h[nd + 1] - newest_y_spliter_h[nd])):
|
||||
num_col_sub_ch, peaks_neg_fin_sub_ch = find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]) : int(newest_y_spliter_h[nd + 1]), nst_p_ch[jn] : nst_p_ch[jn + 1]], multiplier=5.0)
|
||||
|
||||
else:
|
||||
peaks_neg_fin_sub_ch = []
|
||||
|
||||
peaks_sub_ch = []
|
||||
peaks_sub_ch.append(nst_p_ch[jn])
|
||||
|
||||
for kjj in range(len(peaks_neg_fin_sub_ch)):
|
||||
peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj] + nst_p_ch[jn])
|
||||
|
||||
peaks_sub_ch.append(nst_p_ch[jn + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for khh in range(len(peaks_sub_ch) - 1):
|
||||
boxes.append([peaks_sub_ch[khh], peaks_sub_ch[khh + 1], newest_y_spliter_h[nd], newest_y_spliter_h[nd + 1]])
|
||||
|
||||
else:
|
||||
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if len(matrix_new_new[:, 9][matrix_new_new[:, 9] == 1]) > 0 and np.max(matrix_new_new[:, 8][matrix_new_new[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter[n + 1] - newest_y_spliter[n])):
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0)
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
|
||||
# plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
||||
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if len(matrix_new_new[:, 9][matrix_new_new[:, 9] == 1]) > 0 and np.max(matrix_new_new[:, 8][matrix_new_new[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter[n + 1] - newest_y_spliter[n])):
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0)
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]])
|
||||
|
||||
return boxes
|
||||
|
||||
def return_boxes_of_images_by_order_of_reading_without_seperators_2cols(spliter_y_new, image_p_rev, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n):
|
||||
|
||||
boxes = []
|
||||
|
||||
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
||||
# holes in the text and also finding spliter which covers more than one columns.
|
||||
for i in range(len(spliter_y_new) - 1):
|
||||
# print(spliter_y_new[i],spliter_y_new[i+1])
|
||||
matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])]
|
||||
# print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
||||
|
||||
# print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
||||
|
||||
# check to see is there any vertical seperator to find holes.
|
||||
if np.abs(spliter_y_new[i + 1] - spliter_y_new[i]) > 1.0 / 3.0 * regions_without_seperators.shape[0]: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
||||
|
||||
# org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
||||
# org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
||||
##plt.figure(figsize=(20,20))
|
||||
##plt.plot(org_img_dichte)
|
||||
##plt.show()
|
||||
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
||||
|
||||
try:
|
||||
num_col, peaks_neg_fin = find_num_col_only_image(image_p_rev[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=2.4)
|
||||
except:
|
||||
peaks_neg_fin = []
|
||||
num_col = 0
|
||||
|
||||
peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1])
|
||||
|
||||
for kh in range(len(peaks_neg_tot) - 1):
|
||||
boxes.append([peaks_neg_tot[kh], peaks_neg_tot[kh + 1], spliter_y_new[i], spliter_y_new[i + 1]])
|
||||
else:
|
||||
boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]])
|
||||
|
||||
return boxes
|
||||
|
||||
|
|
|
@ -3519,3 +3519,747 @@ def return_points_with_boundies(peaks_neg_fin, first_point, last_point):
|
|||
peaks_neg_tot.append(last_point)
|
||||
return peaks_neg_tot
|
||||
|
||||
def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind, slope_first, add_boxes_coor_into_textlines=False):
|
||||
|
||||
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
|
||||
textline_mask = textline_mask.astype(np.uint8)
|
||||
kernel = np.ones((5, 5), np.uint8)
|
||||
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_OPEN, kernel)
|
||||
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, kernel)
|
||||
textline_mask = cv2.erode(textline_mask, kernel, iterations=2)
|
||||
# textline_mask = cv2.erode(textline_mask, kernel, iterations=1)
|
||||
|
||||
# print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz')
|
||||
try:
|
||||
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
||||
# plt.imshow(textline_mask)
|
||||
# plt.show()
|
||||
|
||||
# if abs(slope)>1:
|
||||
# x_help=30
|
||||
# y_help=2
|
||||
# else:
|
||||
# x_help=2
|
||||
# y_help=2
|
||||
|
||||
x_help = 30
|
||||
y_help = 2
|
||||
|
||||
textline_mask_help = np.zeros((textline_mask.shape[0] + int(2 * y_help), textline_mask.shape[1] + int(2 * x_help), 3))
|
||||
textline_mask_help[y_help : y_help + textline_mask.shape[0], x_help : x_help + textline_mask.shape[1], :] = np.copy(textline_mask[:, :, :])
|
||||
|
||||
dst = rotate_image(textline_mask_help, slope)
|
||||
dst = dst[:, :, 0]
|
||||
dst[dst != 0] = 1
|
||||
|
||||
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
||||
# plt.imshow(dst)
|
||||
# plt.show()
|
||||
|
||||
contour_text_copy = contour_text_interest.copy()
|
||||
|
||||
contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[0]
|
||||
contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
|
||||
|
||||
img_contour = np.zeros((box_ind[3], box_ind[2], 3))
|
||||
img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255))
|
||||
|
||||
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
||||
# plt.imshow(img_contour)
|
||||
# plt.show()
|
||||
|
||||
img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help), img_contour.shape[1] + int(2 * x_help), 3))
|
||||
|
||||
img_contour_help[y_help : y_help + img_contour.shape[0], x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
|
||||
|
||||
img_contour_rot = rotate_image(img_contour_help, slope)
|
||||
|
||||
# plt.imshow(img_contour_rot_help)
|
||||
# plt.show()
|
||||
|
||||
# plt.imshow(dst_help)
|
||||
# plt.show()
|
||||
|
||||
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
||||
# plt.imshow(img_contour_rot_help)
|
||||
# plt.show()
|
||||
|
||||
# plt.imshow(dst_help)
|
||||
# plt.show()
|
||||
|
||||
img_contour_rot = img_contour_rot.astype(np.uint8)
|
||||
# dst_help = dst_help.astype(np.uint8)
|
||||
imgrayrot = cv2.cvtColor(img_contour_rot, cv2.COLOR_BGR2GRAY)
|
||||
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
|
||||
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))]
|
||||
ind_big_con = np.argmax(len_con_text_rot)
|
||||
|
||||
# print('juzaa')
|
||||
if abs(slope) > 45:
|
||||
# print(add_boxes_coor_into_textlines,'avval')
|
||||
_, contours_rotated_clean = seperate_lines_vertical_cont(textline_mask, contours_text_rot[ind_big_con], box_ind, slope, add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
|
||||
else:
|
||||
_, contours_rotated_clean = seperate_lines(dst, contours_text_rot[ind_big_con], slope, x_help, y_help)
|
||||
|
||||
except:
|
||||
|
||||
contours_rotated_clean = []
|
||||
|
||||
return contours_rotated_clean
|
||||
|
||||
def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_lines, contours_h=None):
|
||||
|
||||
seperators_closeup = ((region_pre_p[:, :, :] == pixel_lines)) * 1
|
||||
|
||||
seperators_closeup[0:110, :, :] = 0
|
||||
seperators_closeup[seperators_closeup.shape[0] - 150 :, :, :] = 0
|
||||
|
||||
kernel = np.ones((5, 5), np.uint8)
|
||||
|
||||
seperators_closeup = seperators_closeup.astype(np.uint8)
|
||||
seperators_closeup = cv2.dilate(seperators_closeup, kernel, iterations=1)
|
||||
seperators_closeup = cv2.erode(seperators_closeup, kernel, iterations=1)
|
||||
|
||||
##plt.imshow(seperators_closeup[:,:,0])
|
||||
##plt.show()
|
||||
seperators_closeup_new = np.zeros((seperators_closeup.shape[0], seperators_closeup.shape[1]))
|
||||
|
||||
##_,seperators_closeup_n=self.combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(region_pre_p[:,:,0])
|
||||
seperators_closeup_n = np.copy(seperators_closeup)
|
||||
|
||||
seperators_closeup_n = seperators_closeup_n.astype(np.uint8)
|
||||
##plt.imshow(seperators_closeup_n[:,:,0])
|
||||
##plt.show()
|
||||
|
||||
seperators_closeup_n_binary = np.zeros((seperators_closeup_n.shape[0], seperators_closeup_n.shape[1]))
|
||||
seperators_closeup_n_binary[:, :] = seperators_closeup_n[:, :, 0]
|
||||
|
||||
seperators_closeup_n_binary[:, :][seperators_closeup_n_binary[:, :] != 0] = 1
|
||||
# seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==0]=255
|
||||
# seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==-255]=0
|
||||
|
||||
# seperators_closeup_n_binary=(seperators_closeup_n_binary[:,:]==2)*1
|
||||
|
||||
# gray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# print(np.unique(seperators_closeup_n_binary))
|
||||
|
||||
##plt.imshow(seperators_closeup_n_binary)
|
||||
##plt.show()
|
||||
|
||||
# print( np.unique(gray),np.unique(seperators_closeup_n[:,:,1]) )
|
||||
|
||||
gray = cv2.bitwise_not(seperators_closeup_n_binary)
|
||||
gray = gray.astype(np.uint8)
|
||||
|
||||
##plt.imshow(gray)
|
||||
##plt.show()
|
||||
bw = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 15, -2)
|
||||
##plt.imshow(bw[:,:])
|
||||
##plt.show()
|
||||
|
||||
horizontal = np.copy(bw)
|
||||
vertical = np.copy(bw)
|
||||
|
||||
cols = horizontal.shape[1]
|
||||
horizontal_size = cols // 30
|
||||
# Create structure element for extracting horizontal lines through morphology operations
|
||||
horizontalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontal_size, 1))
|
||||
# Apply morphology operations
|
||||
horizontal = cv2.erode(horizontal, horizontalStructure)
|
||||
horizontal = cv2.dilate(horizontal, horizontalStructure)
|
||||
|
||||
kernel = np.ones((5, 5), np.uint8)
|
||||
|
||||
horizontal = cv2.dilate(horizontal, kernel, iterations=2)
|
||||
horizontal = cv2.erode(horizontal, kernel, iterations=2)
|
||||
# plt.imshow(horizontal)
|
||||
# plt.show()
|
||||
|
||||
rows = vertical.shape[0]
|
||||
verticalsize = rows // 30
|
||||
# Create structure element for extracting vertical lines through morphology operations
|
||||
verticalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, verticalsize))
|
||||
# Apply morphology operations
|
||||
vertical = cv2.erode(vertical, verticalStructure)
|
||||
vertical = cv2.dilate(vertical, verticalStructure)
|
||||
|
||||
vertical = cv2.dilate(vertical, kernel, iterations=1)
|
||||
# Show extracted vertical lines
|
||||
|
||||
horizontal, special_seperators = combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(vertical, horizontal)
|
||||
|
||||
##plt.imshow(vertical)
|
||||
##plt.show()
|
||||
# print(vertical.shape,np.unique(vertical),'verticalvertical')
|
||||
seperators_closeup_new[:, :][vertical[:, :] != 0] = 1
|
||||
seperators_closeup_new[:, :][horizontal[:, :] != 0] = 1
|
||||
|
||||
##plt.imshow(seperators_closeup_new)
|
||||
##plt.show()
|
||||
##seperators_closeup_n
|
||||
vertical = np.repeat(vertical[:, :, np.newaxis], 3, axis=2)
|
||||
vertical = vertical.astype(np.uint8)
|
||||
|
||||
##plt.plot(vertical[:,:,0].sum(axis=0))
|
||||
##plt.show()
|
||||
|
||||
# plt.plot(vertical[:,:,0].sum(axis=1))
|
||||
# plt.show()
|
||||
|
||||
imgray = cv2.cvtColor(vertical, cv2.COLOR_BGR2GRAY)
|
||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||
|
||||
contours_line_vers, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_line_vers)
|
||||
# print(slope_lines,'vertical')
|
||||
args = np.array(range(len(slope_lines)))
|
||||
args_ver = args[slope_lines == 1]
|
||||
dist_x_ver = dist_x[slope_lines == 1]
|
||||
y_min_main_ver = y_min_main[slope_lines == 1]
|
||||
y_max_main_ver = y_max_main[slope_lines == 1]
|
||||
x_min_main_ver = x_min_main[slope_lines == 1]
|
||||
x_max_main_ver = x_max_main[slope_lines == 1]
|
||||
cx_main_ver = cx_main[slope_lines == 1]
|
||||
dist_y_ver = y_max_main_ver - y_min_main_ver
|
||||
len_y = seperators_closeup.shape[0] / 3.0
|
||||
|
||||
# plt.imshow(horizontal)
|
||||
# plt.show()
|
||||
|
||||
horizontal = np.repeat(horizontal[:, :, np.newaxis], 3, axis=2)
|
||||
horizontal = horizontal.astype(np.uint8)
|
||||
imgray = cv2.cvtColor(horizontal, cv2.COLOR_BGR2GRAY)
|
||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||
|
||||
contours_line_hors, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_line_hors)
|
||||
|
||||
slope_lines_org_hor = slope_lines_org[slope_lines == 0]
|
||||
args = np.array(range(len(slope_lines)))
|
||||
len_x = seperators_closeup.shape[1] / 5.0
|
||||
|
||||
dist_y = np.abs(y_max_main - y_min_main)
|
||||
|
||||
args_hor = args[slope_lines == 0]
|
||||
dist_x_hor = dist_x[slope_lines == 0]
|
||||
y_min_main_hor = y_min_main[slope_lines == 0]
|
||||
y_max_main_hor = y_max_main[slope_lines == 0]
|
||||
x_min_main_hor = x_min_main[slope_lines == 0]
|
||||
x_max_main_hor = x_max_main[slope_lines == 0]
|
||||
dist_y_hor = dist_y[slope_lines == 0]
|
||||
cy_main_hor = cy_main[slope_lines == 0]
|
||||
|
||||
args_hor = args_hor[dist_x_hor >= len_x / 2.0]
|
||||
x_max_main_hor = x_max_main_hor[dist_x_hor >= len_x / 2.0]
|
||||
x_min_main_hor = x_min_main_hor[dist_x_hor >= len_x / 2.0]
|
||||
cy_main_hor = cy_main_hor[dist_x_hor >= len_x / 2.0]
|
||||
y_min_main_hor = y_min_main_hor[dist_x_hor >= len_x / 2.0]
|
||||
y_max_main_hor = y_max_main_hor[dist_x_hor >= len_x / 2.0]
|
||||
dist_y_hor = dist_y_hor[dist_x_hor >= len_x / 2.0]
|
||||
|
||||
slope_lines_org_hor = slope_lines_org_hor[dist_x_hor >= len_x / 2.0]
|
||||
dist_x_hor = dist_x_hor[dist_x_hor >= len_x / 2.0]
|
||||
|
||||
matrix_of_lines_ch = np.zeros((len(cy_main_hor) + len(cx_main_ver), 10))
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 0] = args_hor
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 0] = args_ver
|
||||
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 1] = cx_main_ver
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 2] = x_min_main_hor + 50 # x_min_main_hor+150
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 2] = x_min_main_ver
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 3] = x_max_main_hor - 50 # x_max_main_hor-150
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 3] = x_max_main_ver
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 4] = dist_x_hor
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 4] = dist_x_ver
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 5] = cy_main_hor
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 6] = y_min_main_hor
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 6] = y_min_main_ver
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 7] = y_max_main_hor
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 7] = y_max_main_ver
|
||||
|
||||
matrix_of_lines_ch[: len(cy_main_hor), 8] = dist_y_hor
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 8] = dist_y_ver
|
||||
|
||||
matrix_of_lines_ch[len(cy_main_hor) :, 9] = 1
|
||||
|
||||
if contours_h is not None:
|
||||
slope_lines_head, dist_x_head, x_min_main_head, x_max_main_head, cy_main_head, slope_lines_org_head, y_min_main_head, y_max_main_head, cx_main_head = find_features_of_lines(contours_h)
|
||||
matrix_l_n = np.zeros((matrix_of_lines_ch.shape[0] + len(cy_main_head), matrix_of_lines_ch.shape[1]))
|
||||
matrix_l_n[: matrix_of_lines_ch.shape[0], :] = np.copy(matrix_of_lines_ch[:, :])
|
||||
args_head = np.array(range(len(cy_main_head))) + len(cy_main_hor)
|
||||
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 0] = args_head
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 2] = x_min_main_head + 30
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 3] = x_max_main_head - 30
|
||||
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 4] = dist_x_head
|
||||
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 5] = y_min_main_head - 3 - 8
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 6] = y_min_main_head - 5 - 8
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 7] = y_min_main_head + 1 - 8
|
||||
matrix_l_n[matrix_of_lines_ch.shape[0] :, 8] = 4
|
||||
|
||||
matrix_of_lines_ch = np.copy(matrix_l_n)
|
||||
|
||||
# print(matrix_of_lines_ch)
|
||||
|
||||
"""
|
||||
|
||||
|
||||
|
||||
seperators_closeup=seperators_closeup.astype(np.uint8)
|
||||
imgray = cv2.cvtColor(seperators_closeup, cv2.COLOR_BGR2GRAY)
|
||||
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
||||
|
||||
contours_lines,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_lines)
|
||||
|
||||
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
||||
args=np.array( range(len(slope_lines) ))
|
||||
len_x=seperators_closeup.shape[1]/4.0
|
||||
|
||||
args_hor=args[slope_lines==0]
|
||||
dist_x_hor=dist_x[slope_lines==0]
|
||||
x_min_main_hor=x_min_main[slope_lines==0]
|
||||
x_max_main_hor=x_max_main[slope_lines==0]
|
||||
cy_main_hor=cy_main[slope_lines==0]
|
||||
|
||||
args_hor=args_hor[dist_x_hor>=len_x/2.0]
|
||||
x_max_main_hor=x_max_main_hor[dist_x_hor>=len_x/2.0]
|
||||
x_min_main_hor=x_min_main_hor[dist_x_hor>=len_x/2.0]
|
||||
cy_main_hor=cy_main_hor[dist_x_hor>=len_x/2.0]
|
||||
slope_lines_org_hor=slope_lines_org_hor[dist_x_hor>=len_x/2.0]
|
||||
|
||||
|
||||
slope_lines_org_hor=slope_lines_org_hor[np.abs(slope_lines_org_hor)<1.2]
|
||||
slope_mean_hor=np.mean(slope_lines_org_hor)
|
||||
|
||||
|
||||
|
||||
args_ver=args[slope_lines==1]
|
||||
y_min_main_ver=y_min_main[slope_lines==1]
|
||||
y_max_main_ver=y_max_main[slope_lines==1]
|
||||
x_min_main_ver=x_min_main[slope_lines==1]
|
||||
x_max_main_ver=x_max_main[slope_lines==1]
|
||||
cx_main_ver=cx_main[slope_lines==1]
|
||||
dist_y_ver=y_max_main_ver-y_min_main_ver
|
||||
len_y=seperators_closeup.shape[0]/3.0
|
||||
|
||||
|
||||
|
||||
print(matrix_of_lines_ch[:,8][matrix_of_lines_ch[:,9]==0],'khatlarrrr')
|
||||
args_main_spliters=matrix_of_lines_ch[:,0][ (matrix_of_lines_ch[:,9]==0) & ((matrix_of_lines_ch[:,8]<=290)) & ((matrix_of_lines_ch[:,2]<=.16*region_pre_p.shape[1])) & ((matrix_of_lines_ch[:,3]>=.84*region_pre_p.shape[1]))]
|
||||
|
||||
cy_main_spliters=matrix_of_lines_ch[:,5][ (matrix_of_lines_ch[:,9]==0) & ((matrix_of_lines_ch[:,8]<=290)) & ((matrix_of_lines_ch[:,2]<=.16*region_pre_p.shape[1])) & ((matrix_of_lines_ch[:,3]>=.84*region_pre_p.shape[1]))]
|
||||
"""
|
||||
|
||||
cy_main_spliters = cy_main_hor[(x_min_main_hor <= 0.16 * region_pre_p.shape[1]) & (x_max_main_hor >= 0.84 * region_pre_p.shape[1])]
|
||||
|
||||
cy_main_spliters = np.array(list(cy_main_spliters) + list(special_seperators))
|
||||
|
||||
if contours_h is not None:
|
||||
try:
|
||||
cy_main_spliters_head = cy_main_head[(x_min_main_head <= 0.16 * region_pre_p.shape[1]) & (x_max_main_head >= 0.84 * region_pre_p.shape[1])]
|
||||
cy_main_spliters = np.array(list(cy_main_spliters) + list(cy_main_spliters_head))
|
||||
except:
|
||||
pass
|
||||
args_cy_spliter = np.argsort(cy_main_spliters)
|
||||
|
||||
cy_main_spliters_sort = cy_main_spliters[args_cy_spliter]
|
||||
|
||||
spliter_y_new = []
|
||||
spliter_y_new.append(0)
|
||||
for i in range(len(cy_main_spliters_sort)):
|
||||
spliter_y_new.append(cy_main_spliters_sort[i])
|
||||
|
||||
spliter_y_new.append(region_pre_p.shape[0])
|
||||
|
||||
spliter_y_new_diff = np.diff(spliter_y_new) / float(region_pre_p.shape[0]) * 100
|
||||
|
||||
args_big_parts = np.array(range(len(spliter_y_new_diff)))[spliter_y_new_diff > 22]
|
||||
|
||||
regions_without_seperators = return_regions_without_seperators(region_pre_p)
|
||||
|
||||
##print(args_big_parts,'args_big_parts')
|
||||
# image_page_otsu=otsu_copy(image_page_deskewd)
|
||||
# print(np.unique(image_page_otsu[:,:,0]))
|
||||
# image_page_background_zero=self.image_change_background_pixels_to_zero(image_page_otsu)
|
||||
|
||||
length_y_threshold = regions_without_seperators.shape[0] / 4.0
|
||||
|
||||
num_col_fin = 0
|
||||
peaks_neg_fin_fin = []
|
||||
|
||||
for iteils in args_big_parts:
|
||||
|
||||
regions_without_seperators_teil = regions_without_seperators[int(spliter_y_new[iteils]) : int(spliter_y_new[iteils + 1]), :, 0]
|
||||
# image_page_background_zero_teil=image_page_background_zero[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:]
|
||||
|
||||
# print(regions_without_seperators_teil.shape)
|
||||
##plt.imshow(regions_without_seperators_teil)
|
||||
##plt.show()
|
||||
|
||||
# num_col, peaks_neg_fin=find_num_col(regions_without_seperators_teil,multiplier=6.0)
|
||||
|
||||
# regions_without_seperators_teil=cv2.erode(regions_without_seperators_teil,kernel,iterations = 3)
|
||||
#
|
||||
num_col, peaks_neg_fin = find_num_col(regions_without_seperators_teil, multiplier=7.0)
|
||||
|
||||
if num_col > num_col_fin:
|
||||
num_col_fin = num_col
|
||||
peaks_neg_fin_fin = peaks_neg_fin
|
||||
"""
|
||||
#print(length_y_vertical_lines,length_y_threshold,'x_center_of_ver_linesx_center_of_ver_linesx_center_of_ver_lines')
|
||||
if len(cx_main_ver)>0 and len( dist_y_ver[dist_y_ver>=length_y_threshold] ) >=1:
|
||||
num_col, peaks_neg_fin=find_num_col(regions_without_seperators_teil,multiplier=6.0)
|
||||
else:
|
||||
#plt.imshow(image_page_background_zero_teil)
|
||||
#plt.show()
|
||||
#num_col, peaks_neg_fin=find_num_col_only_image(image_page_background_zero,multiplier=2.4)#2.3)
|
||||
num_col, peaks_neg_fin=find_num_col_only_image(image_page_background_zero_teil,multiplier=3.4)#2.3)
|
||||
|
||||
print(num_col,'birda')
|
||||
if num_col>0:
|
||||
pass
|
||||
elif num_col==0:
|
||||
print(num_col,'birda2222')
|
||||
num_col_regions, peaks_neg_fin_regions=find_num_col(regions_without_seperators_teil,multiplier=10.0)
|
||||
if num_col_regions==0:
|
||||
pass
|
||||
else:
|
||||
|
||||
num_col=num_col_regions
|
||||
peaks_neg_fin=peaks_neg_fin_regions[:]
|
||||
"""
|
||||
|
||||
# print(num_col+1,'num colmsssssssss')
|
||||
|
||||
if len(args_big_parts) == 1 and (len(peaks_neg_fin_fin) + 1) < num_col_classifier:
|
||||
peaks_neg_fin = find_num_col_by_vertical_lines(vertical)
|
||||
peaks_neg_fin = peaks_neg_fin[peaks_neg_fin >= 500]
|
||||
peaks_neg_fin = peaks_neg_fin[peaks_neg_fin <= (vertical.shape[1] - 500)]
|
||||
peaks_neg_fin_fin = peaks_neg_fin[:]
|
||||
|
||||
# print(peaks_neg_fin_fin,'peaks_neg_fin_fintaza')
|
||||
|
||||
return num_col_fin, peaks_neg_fin_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n
|
||||
|
||||
def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch):
|
||||
boxes = []
|
||||
|
||||
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
||||
# holes in the text and also finding spliter which covers more than one columns.
|
||||
for i in range(len(spliter_y_new) - 1):
|
||||
# print(spliter_y_new[i],spliter_y_new[i+1])
|
||||
matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])]
|
||||
# print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
||||
|
||||
# print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
||||
|
||||
# check to see is there any vertical seperator to find holes.
|
||||
if 1 > 0: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
||||
|
||||
# org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
||||
# org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
||||
##plt.figure(figsize=(20,20))
|
||||
##plt.plot(org_img_dichte)
|
||||
##plt.show()
|
||||
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
||||
|
||||
# print(int(spliter_y_new[i]),int(spliter_y_new[i+1]),'firssst')
|
||||
|
||||
# plt.imshow(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:])
|
||||
# plt.show()
|
||||
try:
|
||||
num_col, peaks_neg_fin = find_num_col(regions_without_seperators[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=7.0)
|
||||
except:
|
||||
peaks_neg_fin = []
|
||||
|
||||
# print(peaks_neg_fin,'peaks_neg_fin')
|
||||
# num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
||||
x_min_hor_some = matrix_new[:, 2][(matrix_new[:, 9] == 0)]
|
||||
x_max_hor_some = matrix_new[:, 3][(matrix_new[:, 9] == 0)]
|
||||
cy_hor_some = matrix_new[:, 5][(matrix_new[:, 9] == 0)]
|
||||
arg_org_hor_some = matrix_new[:, 0][(matrix_new[:, 9] == 0)]
|
||||
|
||||
peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, regions_without_seperators[:, :].shape[1])
|
||||
|
||||
start_index_of_hor, newest_peaks, arg_min_hor_sort, lines_length_dels, lines_indexes_deleted = return_hor_spliter_by_index_for_without_verticals(peaks_neg_tot, x_min_hor_some, x_max_hor_some)
|
||||
|
||||
arg_org_hor_some_sort = arg_org_hor_some[arg_min_hor_sort]
|
||||
|
||||
start_index_of_hor_with_subset = [start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # start_index_of_hor[lines_length_dels>0]
|
||||
arg_min_hor_sort_with_subset = [arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
lines_indexes_deleted_with_subset = [lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
lines_length_dels_with_subset = [lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
|
||||
arg_org_hor_some_sort_subset = [arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
|
||||
|
||||
# arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0]
|
||||
# lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0]
|
||||
# lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0]
|
||||
|
||||
vahid_subset = np.zeros((len(start_index_of_hor_with_subset), len(start_index_of_hor_with_subset))) - 1
|
||||
for kkk1 in range(len(start_index_of_hor_with_subset)):
|
||||
|
||||
index_del_sub = np.unique(lines_indexes_deleted_with_subset[kkk1])
|
||||
|
||||
for kkk2 in range(len(start_index_of_hor_with_subset)):
|
||||
|
||||
if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]):
|
||||
vahid_subset[kkk1, kkk2] = kkk1
|
||||
else:
|
||||
pass
|
||||
# print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0]))
|
||||
|
||||
# check the len of matrix if it has no length means that there is no spliter at all
|
||||
|
||||
if len(vahid_subset > 0):
|
||||
# print('hihoo')
|
||||
|
||||
# find parenets args
|
||||
line_int = np.zeros(vahid_subset.shape[0])
|
||||
|
||||
childs_id = []
|
||||
arg_child = []
|
||||
for li in range(vahid_subset.shape[0]):
|
||||
# print(vahid_subset[:,li])
|
||||
if np.all(vahid_subset[:, li] == -1):
|
||||
line_int[li] = -1
|
||||
else:
|
||||
line_int[li] = 1
|
||||
|
||||
# childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1]
|
||||
# helpi=[]
|
||||
# for nad in range(len(childs_args_in)):
|
||||
# helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]])
|
||||
|
||||
arg_child.append(arg_min_hor_sort_with_subset[li])
|
||||
|
||||
# line_int=vahid_subset[0,:]
|
||||
|
||||
arg_parent = [arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
|
||||
start_index_of_hor_parent = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
|
||||
# arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
||||
# arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
||||
|
||||
# arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
||||
start_index_of_hor_child = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] != -1]
|
||||
|
||||
cy_hor_some_sort = cy_hor_some[arg_parent]
|
||||
|
||||
# print(start_index_of_hor, lines_length_dels ,lines_indexes_deleted,'zartt')
|
||||
|
||||
# args_indexes=np.array(range(len(start_index_of_hor) ))
|
||||
|
||||
newest_y_spliter_tot = []
|
||||
|
||||
for tj in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = []
|
||||
newest_y_spliter.append(spliter_y_new[i])
|
||||
if tj in np.unique(start_index_of_hor_parent):
|
||||
# print(cy_hor_some_sort)
|
||||
cy_help = np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent) == tj]
|
||||
cy_help_sort = np.sort(cy_help)
|
||||
|
||||
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
||||
for mj in range(len(cy_help_sort)):
|
||||
newest_y_spliter.append(cy_help_sort[mj])
|
||||
newest_y_spliter.append(spliter_y_new[i + 1])
|
||||
|
||||
newest_y_spliter_tot.append(newest_y_spliter)
|
||||
|
||||
else:
|
||||
line_int = []
|
||||
newest_y_spliter_tot = []
|
||||
|
||||
for tj in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = []
|
||||
newest_y_spliter.append(spliter_y_new[i])
|
||||
|
||||
newest_y_spliter.append(spliter_y_new[i + 1])
|
||||
|
||||
newest_y_spliter_tot.append(newest_y_spliter)
|
||||
|
||||
# if line_int is all -1 means that big spliters have no child and we can easily go through
|
||||
if np.all(np.array(line_int) == -1):
|
||||
for j in range(len(newest_peaks) - 1):
|
||||
newest_y_spliter = newest_y_spliter_tot[j]
|
||||
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
# print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa')
|
||||
##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]])
|
||||
##plt.show()
|
||||
|
||||
# print(matrix_new[:,0][ (matrix_new[:,9]==1 )])
|
||||
for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]:
|
||||
pass
|
||||
|
||||
###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
||||
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
||||
# print( int(newest_y_spliter[n]),int(newest_y_spliter[n+1]),newest_peaks[j],newest_peaks[j+1] )
|
||||
try:
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=7.0)
|
||||
except:
|
||||
peaks_neg_fin_sub = []
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
for j in range(len(newest_peaks) - 1):
|
||||
|
||||
newest_y_spliter = newest_y_spliter_tot[j]
|
||||
|
||||
if j in start_index_of_hor_parent:
|
||||
|
||||
x_min_ch = x_min_hor_some[arg_child]
|
||||
x_max_ch = x_max_hor_some[arg_child]
|
||||
cy_hor_some_sort_child = cy_hor_some[arg_child]
|
||||
cy_hor_some_sort_child = np.sort(cy_hor_some_sort_child)
|
||||
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
|
||||
cy_child_in = cy_hor_some_sort_child[(cy_hor_some_sort_child > newest_y_spliter[n]) & (cy_hor_some_sort_child < newest_y_spliter[n + 1])]
|
||||
|
||||
if len(cy_child_in) > 0:
|
||||
try:
|
||||
num_col_ch, peaks_neg_ch = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=7.0)
|
||||
except:
|
||||
peaks_neg_ch = []
|
||||
# print(peaks_neg_ch,'mizzzz')
|
||||
# peaks_neg_ch=[]
|
||||
# for djh in range(len(peaks_neg_ch)):
|
||||
# peaks_neg_ch.append( peaks_neg_ch[djh]+newest_peaks[j] )
|
||||
|
||||
peaks_neg_ch_tot = return_points_with_boundies(peaks_neg_ch, newest_peaks[j], newest_peaks[j + 1])
|
||||
|
||||
ss_in_ch, nst_p_ch, arg_n_ch, lines_l_del_ch, lines_in_del_ch = return_hor_spliter_by_index_for_without_verticals(peaks_neg_ch_tot, x_min_ch, x_max_ch)
|
||||
|
||||
newest_y_spliter_ch_tot = []
|
||||
|
||||
for tjj in range(len(nst_p_ch) - 1):
|
||||
newest_y_spliter_new = []
|
||||
newest_y_spliter_new.append(newest_y_spliter[n])
|
||||
if tjj in np.unique(ss_in_ch):
|
||||
|
||||
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
||||
for mjj in range(len(cy_child_in)):
|
||||
newest_y_spliter_new.append(cy_child_in[mjj])
|
||||
newest_y_spliter_new.append(newest_y_spliter[n + 1])
|
||||
|
||||
newest_y_spliter_ch_tot.append(newest_y_spliter_new)
|
||||
|
||||
for jn in range(len(nst_p_ch) - 1):
|
||||
newest_y_spliter_h = newest_y_spliter_ch_tot[jn]
|
||||
|
||||
for nd in range(len(newest_y_spliter_h) - 1):
|
||||
|
||||
matrix_new_new2 = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter_h[nd]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter_h[nd + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < nst_p_ch[jn + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > nst_p_ch[jn])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new2[:,9][matrix_new_new2[:,9]==1] )>0 and np.max(matrix_new_new2[:,8][matrix_new_new2[:,9]==1])>=0.2*(np.abs(newest_y_spliter_h[nd+1]-newest_y_spliter_h[nd] )):
|
||||
try:
|
||||
num_col_sub_ch, peaks_neg_fin_sub_ch = find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]) : int(newest_y_spliter_h[nd + 1]), nst_p_ch[jn] : nst_p_ch[jn + 1]], multiplier=7.0)
|
||||
except:
|
||||
peaks_neg_fin_sub_ch = []
|
||||
|
||||
else:
|
||||
peaks_neg_fin_sub_ch = []
|
||||
|
||||
peaks_sub_ch = []
|
||||
peaks_sub_ch.append(nst_p_ch[jn])
|
||||
|
||||
for kjj in range(len(peaks_neg_fin_sub_ch)):
|
||||
peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj] + nst_p_ch[jn])
|
||||
|
||||
peaks_sub_ch.append(nst_p_ch[jn + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for khh in range(len(peaks_sub_ch) - 1):
|
||||
boxes.append([peaks_sub_ch[khh], peaks_sub_ch[khh + 1], newest_y_spliter_h[nd], newest_y_spliter_h[nd + 1]])
|
||||
|
||||
else:
|
||||
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
||||
try:
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=7.0)
|
||||
except:
|
||||
peaks_neg_fin_sub = []
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
for n in range(len(newest_y_spliter) - 1):
|
||||
|
||||
# plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
||||
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
||||
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
|
||||
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
||||
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
||||
try:
|
||||
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0)
|
||||
except:
|
||||
peaks_neg_fin_sub = []
|
||||
else:
|
||||
peaks_neg_fin_sub = []
|
||||
|
||||
peaks_sub = []
|
||||
peaks_sub.append(newest_peaks[j])
|
||||
|
||||
for kj in range(len(peaks_neg_fin_sub)):
|
||||
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
|
||||
|
||||
peaks_sub.append(newest_peaks[j + 1])
|
||||
|
||||
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
||||
|
||||
for kh in range(len(peaks_sub) - 1):
|
||||
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
|
||||
|
||||
else:
|
||||
boxes.append([0, regions_without_seperators[:, :].shape[1], spliter_y_new[i], spliter_y_new[i + 1]])
|
||||
|
||||
return boxes
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue