diff --git a/src/eynollah/eynollah.py b/src/eynollah/eynollah.py index 18ae868..02ddf99 100644 --- a/src/eynollah/eynollah.py +++ b/src/eynollah/eynollah.py @@ -4233,571 +4233,568 @@ class Eynollah: print("all Job done in %.1fs", time.time() - t0_tot) def run_single(self): - # conditional merely for indentation (= smaller diff) - if True: - t0 = time.time() - img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) - self.logger.info("Enhancing took %.1fs ", time.time() - t0) - if self.extract_only_images: - text_regions_p_1, erosion_hurts, polygons_lines_xml, polygons_of_images, image_page, page_coord, cont_page = \ - self.get_regions_light_v_extract_only_images(img_res, is_image_enhanced, num_col_classifier) - ocr_all_textlines = None - pcgts = self.writer.build_pagexml_no_full_layout( - [], page_coord, [], [], [], [], - polygons_of_images, [], [], [], [], [], - cont_page, [], [], ocr_all_textlines) - if self.plotter: - self.plotter.write_images_into_directory(polygons_of_images, image_page) - return pcgts + t0 = time.time() + img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(self.light_version) + self.logger.info("Enhancing took %.1fs ", time.time() - t0) + if self.extract_only_images: + text_regions_p_1, erosion_hurts, polygons_lines_xml, polygons_of_images, image_page, page_coord, cont_page = \ + self.get_regions_light_v_extract_only_images(img_res, is_image_enhanced, num_col_classifier) + ocr_all_textlines = None + pcgts = self.writer.build_pagexml_no_full_layout( + [], page_coord, [], [], [], [], + polygons_of_images, [], [], [], [], [], + cont_page, [], [], ocr_all_textlines) + if self.plotter: + self.plotter.write_images_into_directory(polygons_of_images, image_page) + return pcgts - if self.skip_layout_and_reading_order: - _ ,_, _, textline_mask_tot_ea, img_bin_light = \ - self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier, - skip_layout_and_reading_order=self.skip_layout_and_reading_order) + if self.skip_layout_and_reading_order: + _ ,_, _, textline_mask_tot_ea, img_bin_light = \ + self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier, + skip_layout_and_reading_order=self.skip_layout_and_reading_order) - page_coord, image_page, textline_mask_tot_ea, img_bin_light, cont_page = \ - self.run_graphics_and_columns_without_layout(textline_mask_tot_ea, img_bin_light) + page_coord, image_page, textline_mask_tot_ea, img_bin_light, cont_page = \ + self.run_graphics_and_columns_without_layout(textline_mask_tot_ea, img_bin_light) - ##all_found_textline_polygons =self.scale_contours_new(textline_mask_tot_ea) + ##all_found_textline_polygons =self.scale_contours_new(textline_mask_tot_ea) - cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea) - all_found_textline_polygons = filter_contours_area_of_image( - textline_mask_tot_ea, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001) + cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(textline_mask_tot_ea) + all_found_textline_polygons = filter_contours_area_of_image( + textline_mask_tot_ea, cnt_clean_rot_raw, hir_on_cnt_clean_rot, max_area=1, min_area=0.00001) - all_found_textline_polygons=[ all_found_textline_polygons ] + all_found_textline_polygons=[ all_found_textline_polygons ] - all_found_textline_polygons = self.dilate_textregions_contours_textline_version( - all_found_textline_polygons) - all_found_textline_polygons = self.filter_contours_inside_a_bigger_one( - all_found_textline_polygons, textline_mask_tot_ea, type_contour="textline") + all_found_textline_polygons = self.dilate_textregions_contours_textline_version( + all_found_textline_polygons) + all_found_textline_polygons = self.filter_contours_inside_a_bigger_one( + all_found_textline_polygons, textline_mask_tot_ea, type_contour="textline") - order_text_new = [0] - slopes =[0] - id_of_texts_tot =['region_0001'] + order_text_new = [0] + slopes =[0] + id_of_texts_tot =['region_0001'] - polygons_of_images = [] - slopes_marginals = [] - polygons_of_marginals = [] - all_found_textline_polygons_marginals = [] - all_box_coord_marginals = [] - polygons_lines_xml = [] - contours_tables = [] - ocr_all_textlines = None - pcgts = self.writer.build_pagexml_no_full_layout( - cont_page, page_coord, order_text_new, id_of_texts_tot, - all_found_textline_polygons, page_coord, polygons_of_images, polygons_of_marginals, - all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, - cont_page, polygons_lines_xml, contours_tables, ocr_all_textlines) - return pcgts + polygons_of_images = [] + slopes_marginals = [] + polygons_of_marginals = [] + all_found_textline_polygons_marginals = [] + all_box_coord_marginals = [] + polygons_lines_xml = [] + contours_tables = [] + ocr_all_textlines = None + pcgts = self.writer.build_pagexml_no_full_layout( + cont_page, page_coord, order_text_new, id_of_texts_tot, + all_found_textline_polygons, page_coord, polygons_of_images, polygons_of_marginals, + all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, + cont_page, polygons_lines_xml, contours_tables, ocr_all_textlines) + return pcgts - #print("text region early -1 in %.1fs", time.time() - t0) - t1 = time.time() - if self.light_version: - text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin_light = \ - self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier) - #print("text region early -2 in %.1fs", time.time() - t0) + #print("text region early -1 in %.1fs", time.time() - t0) + t1 = time.time() + if self.light_version: + text_regions_p_1 ,erosion_hurts, polygons_lines_xml, textline_mask_tot_ea, img_bin_light = \ + self.get_regions_light_v(img_res, is_image_enhanced, num_col_classifier) + #print("text region early -2 in %.1fs", time.time() - t0) - if num_col_classifier == 1 or num_col_classifier ==2: - if num_col_classifier == 1: - img_w_new = 1000 - else: - img_w_new = 1300 - img_h_new = img_w_new * textline_mask_tot_ea.shape[0] // textline_mask_tot_ea.shape[1] + if num_col_classifier == 1 or num_col_classifier ==2: + if num_col_classifier == 1: + img_w_new = 1000 + else: + img_w_new = 1300 + img_h_new = img_w_new * textline_mask_tot_ea.shape[0] // textline_mask_tot_ea.shape[1] - textline_mask_tot_ea_deskew = resize_image(textline_mask_tot_ea,img_h_new, img_w_new ) + textline_mask_tot_ea_deskew = resize_image(textline_mask_tot_ea,img_h_new, img_w_new ) - slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea_deskew) - else: - slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) - #print("text region early -2,5 in %.1fs", time.time() - t0) - #self.logger.info("Textregion detection took %.1fs ", time.time() - t1t) - num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, \ - text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea, img_bin_light = \ - self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, - num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light) - #self.logger.info("run graphics %.1fs ", time.time() - t1t) - #print("text region early -3 in %.1fs", time.time() - t0) - textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea) - #print("text region early -4 in %.1fs", time.time() - t0) + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea_deskew) else: - text_regions_p_1 ,erosion_hurts, polygons_lines_xml = \ - self.get_regions_from_xy_2models(img_res, is_image_enhanced, - num_col_classifier) - self.logger.info("Textregion detection took %.1fs ", time.time() - t1) - - t1 = time.time() - num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, \ - text_regions_p_1, cont_page, table_prediction = \ - self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts) - self.logger.info("Graphics detection took %.1fs ", time.time() - t1) - #self.logger.info('cont_page %s', cont_page) - #plt.imshow(table_prediction) - #plt.show() - - if not num_col: - self.logger.info("No columns detected, outputting an empty PAGE-XML") - ocr_all_textlines = None - pcgts = self.writer.build_pagexml_no_full_layout( - [], page_coord, [], [], [], [], [], [], [], [], [], [], - cont_page, [], [], ocr_all_textlines) - return pcgts + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) + #print("text region early -2,5 in %.1fs", time.time() - t0) + #self.logger.info("Textregion detection took %.1fs ", time.time() - t1t) + num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, \ + text_regions_p_1, cont_page, table_prediction, textline_mask_tot_ea, img_bin_light = \ + self.run_graphics_and_columns_light(text_regions_p_1, textline_mask_tot_ea, + num_col_classifier, num_column_is_classified, erosion_hurts, img_bin_light) + #self.logger.info("run graphics %.1fs ", time.time() - t1t) + #print("text region early -3 in %.1fs", time.time() - t0) + textline_mask_tot_ea_org = np.copy(textline_mask_tot_ea) + #print("text region early -4 in %.1fs", time.time() - t0) + else: + text_regions_p_1 ,erosion_hurts, polygons_lines_xml = \ + self.get_regions_from_xy_2models(img_res, is_image_enhanced, + num_col_classifier) + self.logger.info("Textregion detection took %.1fs ", time.time() - t1) - #print("text region early in %.1fs", time.time() - t0) t1 = time.time() - if not self.light_version: - textline_mask_tot_ea = self.run_textline(image_page) - self.logger.info("textline detection took %.1fs", time.time() - t1) - t1 = time.time() - slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) - self.logger.info("deskewing took %.1fs", time.time() - t1) - elif num_col_classifier in (1,2): - org_h_l_m = textline_mask_tot_ea.shape[0] - org_w_l_m = textline_mask_tot_ea.shape[1] - if num_col_classifier == 1: - img_w_new = 2000 - else: - img_w_new = 2400 - img_h_new = img_w_new * textline_mask_tot_ea.shape[0] // textline_mask_tot_ea.shape[1] + num_col, num_col_classifier, img_only_regions, page_coord, image_page, mask_images, mask_lines, \ + text_regions_p_1, cont_page, table_prediction = \ + self.run_graphics_and_columns(text_regions_p_1, num_col_classifier, num_column_is_classified, erosion_hurts) + self.logger.info("Graphics detection took %.1fs ", time.time() - t1) + #self.logger.info('cont_page %s', cont_page) + #plt.imshow(table_prediction) + #plt.show() - image_page = resize_image(image_page,img_h_new, img_w_new ) - textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_h_new, img_w_new ) - mask_images = resize_image(mask_images,img_h_new, img_w_new ) - mask_lines = resize_image(mask_lines,img_h_new, img_w_new ) - text_regions_p_1 = resize_image(text_regions_p_1,img_h_new, img_w_new ) - table_prediction = resize_image(table_prediction,img_h_new, img_w_new ) - - textline_mask_tot, text_regions_p, image_page_rotated = \ - self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, - num_col_classifier, slope_deskew, text_regions_p_1, table_prediction) - - if self.light_version and num_col_classifier in (1,2): - image_page = resize_image(image_page,org_h_l_m, org_w_l_m ) - textline_mask_tot_ea = resize_image(textline_mask_tot_ea,org_h_l_m, org_w_l_m ) - text_regions_p = resize_image(text_regions_p,org_h_l_m, org_w_l_m ) - textline_mask_tot = resize_image(textline_mask_tot,org_h_l_m, org_w_l_m ) - text_regions_p_1 = resize_image(text_regions_p_1,org_h_l_m, org_w_l_m ) - table_prediction = resize_image(table_prediction,org_h_l_m, org_w_l_m ) - image_page_rotated = resize_image(image_page_rotated,org_h_l_m, org_w_l_m ) - - self.logger.info("detection of marginals took %.1fs", time.time() - t1) - #print("text region early 2 marginal in %.1fs", time.time() - t0) - ## birdan sora chock chakir + if not num_col: + self.logger.info("No columns detected, outputting an empty PAGE-XML") + ocr_all_textlines = None + pcgts = self.writer.build_pagexml_no_full_layout( + [], page_coord, [], [], [], [], [], [], [], [], [], [], + cont_page, [], [], ocr_all_textlines) + return pcgts + + #print("text region early in %.1fs", time.time() - t0) + t1 = time.time() + if not self.light_version: + textline_mask_tot_ea = self.run_textline(image_page) + self.logger.info("textline detection took %.1fs", time.time() - t1) t1 = time.time() - if not self.full_layout: - polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, \ - boxes, boxes_d, polygons_of_marginals, contours_tables = \ - self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, - num_col_classifier, table_prediction, erosion_hurts) - ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) + slope_deskew, slope_first = self.run_deskew(textline_mask_tot_ea) + self.logger.info("deskewing took %.1fs", time.time() - t1) + elif num_col_classifier in (1,2): + org_h_l_m = textline_mask_tot_ea.shape[0] + org_w_l_m = textline_mask_tot_ea.shape[1] + if num_col_classifier == 1: + img_w_new = 2000 else: - polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, \ - regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = \ - self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, - num_col_classifier, img_only_regions, table_prediction, erosion_hurts, - img_bin_light if self.light_version else None) - ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) - if self.light_version: - drop_label_in_full_layout = 4 - textline_mask_tot_ea_org[img_revised_tab==drop_label_in_full_layout] = 0 + img_w_new = 2400 + img_h_new = img_w_new * textline_mask_tot_ea.shape[0] // textline_mask_tot_ea.shape[1] + + image_page = resize_image(image_page,img_h_new, img_w_new ) + textline_mask_tot_ea = resize_image(textline_mask_tot_ea,img_h_new, img_w_new ) + mask_images = resize_image(mask_images,img_h_new, img_w_new ) + mask_lines = resize_image(mask_lines,img_h_new, img_w_new ) + text_regions_p_1 = resize_image(text_regions_p_1,img_h_new, img_w_new ) + table_prediction = resize_image(table_prediction,img_h_new, img_w_new ) + + textline_mask_tot, text_regions_p, image_page_rotated = \ + self.run_marginals(image_page, textline_mask_tot_ea, mask_images, mask_lines, + num_col_classifier, slope_deskew, text_regions_p_1, table_prediction) + + if self.light_version and num_col_classifier in (1,2): + image_page = resize_image(image_page,org_h_l_m, org_w_l_m ) + textline_mask_tot_ea = resize_image(textline_mask_tot_ea,org_h_l_m, org_w_l_m ) + text_regions_p = resize_image(text_regions_p,org_h_l_m, org_w_l_m ) + textline_mask_tot = resize_image(textline_mask_tot,org_h_l_m, org_w_l_m ) + text_regions_p_1 = resize_image(text_regions_p_1,org_h_l_m, org_w_l_m ) + table_prediction = resize_image(table_prediction,org_h_l_m, org_w_l_m ) + image_page_rotated = resize_image(image_page_rotated,org_h_l_m, org_w_l_m ) + + self.logger.info("detection of marginals took %.1fs", time.time() - t1) + #print("text region early 2 marginal in %.1fs", time.time() - t0) + ## birdan sora chock chakir + t1 = time.time() + if not self.full_layout: + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, \ + boxes, boxes_d, polygons_of_marginals, contours_tables = \ + self.run_boxes_no_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, + num_col_classifier, table_prediction, erosion_hurts) + ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) + else: + polygons_of_images, img_revised_tab, text_regions_p_1_n, textline_mask_tot_d, regions_without_separators_d, \ + regions_fully, regions_without_separators, polygons_of_marginals, contours_tables = \ + self.run_boxes_full_layout(image_page, textline_mask_tot, text_regions_p, slope_deskew, + num_col_classifier, img_only_regions, table_prediction, erosion_hurts, + img_bin_light if self.light_version else None) + ###polygons_of_marginals = self.dilate_textregions_contours(polygons_of_marginals) + if self.light_version: + drop_label_in_full_layout = 4 + textline_mask_tot_ea_org[img_revised_tab==drop_label_in_full_layout] = 0 - text_only = ((img_revised_tab[:, :] == 1)) * 1 + text_only = ((img_revised_tab[:, :] == 1)) * 1 + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 + + #print("text region early 2 in %.1fs", time.time() - t0) + ###min_con_area = 0.000005 + contours_only_text, hir_on_text = return_contours_of_image(text_only) + contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) + if len(contours_only_text_parent) > 0: + areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) + areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) + #self.logger.info('areas_cnt_text %s', areas_cnt_text) + contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] + contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) + if areas_cnt_text[jz] > MIN_AREA_REGION] + areas_cnt_text_parent = [area for area in areas_cnt_text if area > MIN_AREA_REGION] + index_con_parents = np.argsort(areas_cnt_text_parent) + + contours_only_text_parent = self.return_list_of_contours_with_desired_order( + contours_only_text_parent, index_con_parents) + + ##try: + ##contours_only_text_parent = \ + ##list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) + ##except: + ##contours_only_text_parent = \ + ##list(np.array(contours_only_text_parent,dtype=np.int32)[index_con_parents]) + ##areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) + areas_cnt_text_parent = self.return_list_of_contours_with_desired_order( + areas_cnt_text_parent, index_con_parents) + + cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) + cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 - - #print("text region early 2 in %.1fs", time.time() - t0) - ###min_con_area = 0.000005 - contours_only_text, hir_on_text = return_contours_of_image(text_only) - contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) - if len(contours_only_text_parent) > 0: - areas_cnt_text = np.array([cv2.contourArea(c) for c in contours_only_text_parent]) - areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) - #self.logger.info('areas_cnt_text %s', areas_cnt_text) - contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] - contours_only_text_parent = [c for jz, c in enumerate(contours_only_text_parent) - if areas_cnt_text[jz] > MIN_AREA_REGION] - areas_cnt_text_parent = [area for area in areas_cnt_text if area > MIN_AREA_REGION] - index_con_parents = np.argsort(areas_cnt_text_parent) - - contours_only_text_parent = self.return_list_of_contours_with_desired_order( - contours_only_text_parent, index_con_parents) - - ##try: - ##contours_only_text_parent = \ - ##list(np.array(contours_only_text_parent,dtype=object)[index_con_parents]) - ##except: - ##contours_only_text_parent = \ - ##list(np.array(contours_only_text_parent,dtype=np.int32)[index_con_parents]) - ##areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) - areas_cnt_text_parent = self.return_list_of_contours_with_desired_order( - areas_cnt_text_parent, index_con_parents) - - cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest]) - cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent) + contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) + contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) - contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) - - areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d]) - areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) - - if len(areas_cnt_text_d)>0: - contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] - index_con_parents_d = np.argsort(areas_cnt_text_d) - contours_only_text_parent_d = self.return_list_of_contours_with_desired_order( - contours_only_text_parent_d, index_con_parents_d) - #try: - #contours_only_text_parent_d = \ - #list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d]) - #except: - #contours_only_text_parent_d = \ - #list(np.array(contours_only_text_parent_d,dtype=np.int32)[index_con_parents_d]) - #areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d]) - areas_cnt_text_d = self.return_list_of_contours_with_desired_order( - areas_cnt_text_d, index_con_parents_d) - - cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) - cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) - try: - if len(cx_bigest_d) >= 5: - cx_bigest_d_last5 = cx_bigest_d[-5:] - cy_biggest_d_last5 = cy_biggest_d[-5:] - dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + - (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) - for j in range(len(cy_biggest_d_last5))] - ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d) - else: - cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):] - cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):] - dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + - (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) - for j in range(len(cy_biggest_d_last5))] - ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d) - - cx_bigest_d_big[0] = cx_bigest_d[ind_largest] - cy_biggest_d_big[0] = cy_biggest_d[ind_largest] - except Exception as why: - self.logger.error(why) - - (h, w) = text_only.shape[:2] - center = (w // 2.0, h // 2.0) - M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0) - M_22 = np.array(M)[:2, :2] - p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big]) - x_diff = p_big[0] - cx_bigest_d_big - y_diff = p_big[1] - cy_biggest_d_big - - contours_only_text_parent_d_ordered = [] - for i in range(len(contours_only_text_parent)): - p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]]) - p[0] = p[0] - x_diff[0] - p[1] = p[1] - y_diff[0] - dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + - (p[1] - cy_biggest_d[j]) ** 2) - for j in range(len(cx_bigest_d))] - contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) - # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) - # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) - # plt.imshow(img2[:,:,0]) - # plt.show() - else: - contours_only_text_parent_d_ordered = [] - contours_only_text_parent_d = [] - contours_only_text_parent = [] + areas_cnt_text_d = np.array([cv2.contourArea(c) for c in contours_only_text_parent_d]) + areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) + + if len(areas_cnt_text_d)>0: + contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] + index_con_parents_d = np.argsort(areas_cnt_text_d) + contours_only_text_parent_d = self.return_list_of_contours_with_desired_order( + contours_only_text_parent_d, index_con_parents_d) + #try: + #contours_only_text_parent_d = \ + #list(np.array(contours_only_text_parent_d,dtype=object)[index_con_parents_d]) + #except: + #contours_only_text_parent_d = \ + #list(np.array(contours_only_text_parent_d,dtype=np.int32)[index_con_parents_d]) + #areas_cnt_text_d = list(np.array(areas_cnt_text_d)[index_con_parents_d]) + areas_cnt_text_d = self.return_list_of_contours_with_desired_order( + areas_cnt_text_d, index_con_parents_d) + + cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contours([contours_biggest_d]) + cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_d) + try: + if len(cx_bigest_d) >= 5: + cx_bigest_d_last5 = cx_bigest_d[-5:] + cy_biggest_d_last5 = cy_biggest_d[-5:] + dists_d = [math.sqrt((cx_bigest_big[0] - cx_bigest_d_last5[j]) ** 2 + + (cy_biggest_big[0] - cy_biggest_d_last5[j]) ** 2) + for j in range(len(cy_biggest_d_last5))] + ind_largest = len(cx_bigest_d) -5 + np.argmin(dists_d) + else: + cx_bigest_d_last5 = cx_bigest_d[-len(cx_bigest_d):] + cy_biggest_d_last5 = cy_biggest_d[-len(cx_bigest_d):] + dists_d = [math.sqrt((cx_bigest_big[0]-cx_bigest_d_last5[j])**2 + + (cy_biggest_big[0]-cy_biggest_d_last5[j])**2) + for j in range(len(cy_biggest_d_last5))] + ind_largest = len(cx_bigest_d) - len(cx_bigest_d) + np.argmin(dists_d) + + cx_bigest_d_big[0] = cx_bigest_d[ind_largest] + cy_biggest_d_big[0] = cy_biggest_d[ind_largest] + except Exception as why: + self.logger.error(why) + + (h, w) = text_only.shape[:2] + center = (w // 2.0, h // 2.0) + M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0) + M_22 = np.array(M)[:2, :2] + p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big]) + x_diff = p_big[0] - cx_bigest_d_big + y_diff = p_big[1] - cy_biggest_d_big + contours_only_text_parent_d_ordered = [] + for i in range(len(contours_only_text_parent)): + p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]]) + p[0] = p[0] - x_diff[0] + p[1] = p[1] - y_diff[0] + dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + + (p[1] - cy_biggest_d[j]) ** 2) + for j in range(len(cx_bigest_d))] + contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) + # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) + # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) + # plt.imshow(img2[:,:,0]) + # plt.show() else: contours_only_text_parent_d_ordered = [] contours_only_text_parent_d = [] - #contours_only_text_parent = [] - if not len(contours_only_text_parent): - # stop early - empty_marginals = [[]] * len(polygons_of_marginals) - if self.full_layout: - pcgts = self.writer.build_pagexml_full_layout( - [], [], page_coord, [], [], [], [], [], [], - polygons_of_images, contours_tables, [], - polygons_of_marginals, empty_marginals, empty_marginals, [], [], [], - cont_page, polygons_lines_xml, []) - else: - pcgts = self.writer.build_pagexml_no_full_layout( - [], page_coord, [], [], [], [], - polygons_of_images, - polygons_of_marginals, empty_marginals, empty_marginals, [], [], - cont_page, polygons_lines_xml, contours_tables, []) - return pcgts + contours_only_text_parent = [] - #print("text region early 3 in %.1fs", time.time() - t0) - if self.light_version: - contours_only_text_parent = self.dilate_textregions_contours( - contours_only_text_parent) - contours_only_text_parent = self.filter_contours_inside_a_bigger_one( - contours_only_text_parent, text_only, marginal_cnts=polygons_of_marginals) - #print("text region early 3.5 in %.1fs", time.time() - t0) - txt_con_org = get_textregion_contours_in_org_image_light( - contours_only_text_parent, self.image, slope_first, map=self.executor.map) - #txt_con_org = self.dilate_textregions_contours(txt_con_org) - #contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent) else: - txt_con_org = get_textregion_contours_in_org_image( - contours_only_text_parent, self.image, slope_first) - #print("text region early 4 in %.1fs", time.time() - t0) - boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) - boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) - #print("text region early 5 in %.1fs", time.time() - t0) - ## birdan sora chock chakir - if not self.curved_line: - if self.light_version: - if self.textline_light: - all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, \ - all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_light2( - txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, - image_page_rotated, boxes_text, slope_deskew) - all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, \ - all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_light2( - polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, - image_page_rotated, boxes_marginals, slope_deskew) - - #slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con = \ - # self.delete_regions_without_textlines(slopes, all_found_textline_polygons, - # boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con) - #slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, polygons_of_marginals, polygons_of_marginals, _ = \ - # self.delete_regions_without_textlines(slopes_marginals, all_found_textline_polygons_marginals, - # boxes_marginals, polygons_of_marginals, polygons_of_marginals, np.array(range(len(polygons_of_marginals)))) - #all_found_textline_polygons = self.dilate_textlines(all_found_textline_polygons) - #####all_found_textline_polygons = self.dilate_textline_contours(all_found_textline_polygons) - all_found_textline_polygons = self.dilate_textregions_contours_textline_version( - all_found_textline_polygons) - all_found_textline_polygons = self.filter_contours_inside_a_bigger_one( - all_found_textline_polygons, textline_mask_tot_ea_org, type_contour="textline") - all_found_textline_polygons_marginals = self.dilate_textregions_contours_textline_version( - all_found_textline_polygons_marginals) - contours_only_text_parent, txt_con_org, all_found_textline_polygons, contours_only_text_parent_d_ordered, \ - index_by_text_par_con = self.filter_contours_without_textline_inside( - contours_only_text_parent, txt_con_org, all_found_textline_polygons, contours_only_text_parent_d_ordered) - else: - textline_mask_tot_ea = cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1) - all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, \ - index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_light( - txt_con_org, contours_only_text_parent, textline_mask_tot_ea, - image_page_rotated, boxes_text, slope_deskew) - all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, \ - all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_light( - polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, - image_page_rotated, boxes_marginals, slope_deskew) - #all_found_textline_polygons = self.filter_contours_inside_a_bigger_one( - # all_found_textline_polygons, textline_mask_tot_ea_org, type_contour="textline") + contours_only_text_parent_d_ordered = [] + contours_only_text_parent_d = [] + #contours_only_text_parent = [] + if not len(contours_only_text_parent): + # stop early + empty_marginals = [[]] * len(polygons_of_marginals) + if self.full_layout: + pcgts = self.writer.build_pagexml_full_layout( + [], [], page_coord, [], [], [], [], [], [], + polygons_of_images, contours_tables, [], + polygons_of_marginals, empty_marginals, empty_marginals, [], [], [], + cont_page, polygons_lines_xml, []) + else: + pcgts = self.writer.build_pagexml_no_full_layout( + [], page_coord, [], [], [], [], + polygons_of_images, + polygons_of_marginals, empty_marginals, empty_marginals, [], [], + cont_page, polygons_lines_xml, contours_tables, []) + return pcgts + + #print("text region early 3 in %.1fs", time.time() - t0) + if self.light_version: + contours_only_text_parent = self.dilate_textregions_contours( + contours_only_text_parent) + contours_only_text_parent = self.filter_contours_inside_a_bigger_one( + contours_only_text_parent, text_only, marginal_cnts=polygons_of_marginals) + #print("text region early 3.5 in %.1fs", time.time() - t0) + txt_con_org = get_textregion_contours_in_org_image_light( + contours_only_text_parent, self.image, slope_first, map=self.executor.map) + #txt_con_org = self.dilate_textregions_contours(txt_con_org) + #contours_only_text_parent = self.dilate_textregions_contours(contours_only_text_parent) + else: + txt_con_org = get_textregion_contours_in_org_image( + contours_only_text_parent, self.image, slope_first) + #print("text region early 4 in %.1fs", time.time() - t0) + boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) + boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) + #print("text region early 5 in %.1fs", time.time() - t0) + ## birdan sora chock chakir + if not self.curved_line: + if self.light_version: + if self.textline_light: + all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, \ + all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_light2( + txt_con_org, contours_only_text_parent, textline_mask_tot_ea_org, + image_page_rotated, boxes_text, slope_deskew) + all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, \ + all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_light2( + polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_org, + image_page_rotated, boxes_marginals, slope_deskew) + + #slopes, all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con = \ + # self.delete_regions_without_textlines(slopes, all_found_textline_polygons, + # boxes_text, txt_con_org, contours_only_text_parent, index_by_text_par_con) + #slopes_marginals, all_found_textline_polygons_marginals, boxes_marginals, polygons_of_marginals, polygons_of_marginals, _ = \ + # self.delete_regions_without_textlines(slopes_marginals, all_found_textline_polygons_marginals, + # boxes_marginals, polygons_of_marginals, polygons_of_marginals, np.array(range(len(polygons_of_marginals)))) + #all_found_textline_polygons = self.dilate_textlines(all_found_textline_polygons) + #####all_found_textline_polygons = self.dilate_textline_contours(all_found_textline_polygons) + all_found_textline_polygons = self.dilate_textregions_contours_textline_version( + all_found_textline_polygons) + all_found_textline_polygons = self.filter_contours_inside_a_bigger_one( + all_found_textline_polygons, textline_mask_tot_ea_org, type_contour="textline") + all_found_textline_polygons_marginals = self.dilate_textregions_contours_textline_version( + all_found_textline_polygons_marginals) + contours_only_text_parent, txt_con_org, all_found_textline_polygons, contours_only_text_parent_d_ordered, \ + index_by_text_par_con = self.filter_contours_without_textline_inside( + contours_only_text_parent, txt_con_org, all_found_textline_polygons, contours_only_text_parent_d_ordered) else: textline_mask_tot_ea = cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1) - all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, \ - all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new( + all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, \ + index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_light( txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, \ - all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new( + all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_light( polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) + #all_found_textline_polygons = self.filter_contours_inside_a_bigger_one( + # all_found_textline_polygons, textline_mask_tot_ea_org, type_contour="textline") else: - scale_param = 1 - textline_mask_tot_ea_erode = cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=2) + textline_mask_tot_ea = cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=1) all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, \ - all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved( - txt_con_org, contours_only_text_parent, textline_mask_tot_ea_erode, - image_page_rotated, boxes_text, text_only, - num_col_classifier, scale_param, slope_deskew) - all_found_textline_polygons = small_textlines_to_parent_adherence2( - all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier) + all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new( + txt_con_org, contours_only_text_parent, textline_mask_tot_ea, + image_page_rotated, boxes_text, slope_deskew) all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, \ - all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved( - polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_erode, - image_page_rotated, boxes_marginals, text_only, - num_col_classifier, scale_param, slope_deskew) - all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2( - all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) - - #print("text region early 6 in %.1fs", time.time() - t0) - if self.full_layout: - if np.abs(slope_deskew) >= SLOPE_THRESHOLD: - contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order( - contours_only_text_parent_d_ordered, index_by_text_par_con) - #try: - #contours_only_text_parent_d_ordered = \ - #list(np.array(contours_only_text_parent_d_ordered, dtype=np.int32)[index_by_text_par_con]) - #except: - #contours_only_text_parent_d_ordered = \ - #list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) - else: - #takes long timee - contours_only_text_parent_d_ordered = None - if self.light_version: - fun = check_any_text_region_in_model_one_is_main_or_header_light - else: - fun = check_any_text_region_in_model_one_is_main_or_header - text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, \ - all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, \ - contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = fun( - text_regions_p, regions_fully, contours_only_text_parent, - all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) - - if self.plotter: - self.plotter.save_plot_of_layout(text_regions_p, image_page) - self.plotter.save_plot_of_layout_all(text_regions_p, image_page) - - pixel_img = 4 - polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) - all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline( - text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, - all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, - kernel=KERNEL, curved_line=self.curved_line, textline_light=self.textline_light) - - if not self.reading_order_machine_based: - pixel_seps = 6 - if not self.headers_off: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document( - np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), - num_col_classifier, self.tables, pixel_seps, contours_only_text_parent_h) - else: - _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document( - np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), - num_col_classifier, self.tables, pixel_seps, contours_only_text_parent_h_d_ordered) - elif self.headers_off: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document( - np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), - num_col_classifier, self.tables, pixel_seps) - else: - _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document( - np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), - num_col_classifier, self.tables, pixel_seps) - - if num_col_classifier >= 3: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - regions_without_separators = regions_without_separators.astype(np.uint8) - regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6) - else: - regions_without_separators_d = regions_without_separators_d.astype(np.uint8) - regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) + all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new( + polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, + image_page_rotated, boxes_marginals, slope_deskew) + else: + scale_param = 1 + textline_mask_tot_ea_erode = cv2.erode(textline_mask_tot_ea, kernel=KERNEL, iterations=2) + all_found_textline_polygons, boxes_text, txt_con_org, contours_only_text_parent, \ + all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved( + txt_con_org, contours_only_text_parent, textline_mask_tot_ea_erode, + image_page_rotated, boxes_text, text_only, + num_col_classifier, scale_param, slope_deskew) + all_found_textline_polygons = small_textlines_to_parent_adherence2( + all_found_textline_polygons, textline_mask_tot_ea, num_col_classifier) + all_found_textline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, \ + all_box_coord_marginals, _, slopes_marginals = self.get_slopes_and_deskew_new_curved( + polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea_erode, + image_page_rotated, boxes_marginals, text_only, + num_col_classifier, scale_param, slope_deskew) + all_found_textline_polygons_marginals = small_textlines_to_parent_adherence2( + all_found_textline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) + + #print("text region early 6 in %.1fs", time.time() - t0) + if self.full_layout: + if np.abs(slope_deskew) >= SLOPE_THRESHOLD: + contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order( + contours_only_text_parent_d_ordered, index_by_text_par_con) + #try: + #contours_only_text_parent_d_ordered = \ + #list(np.array(contours_only_text_parent_d_ordered, dtype=np.int32)[index_by_text_par_con]) + #except: + #contours_only_text_parent_d_ordered = \ + #list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) + else: + #takes long timee + contours_only_text_parent_d_ordered = None + if self.light_version: + fun = check_any_text_region_in_model_one_is_main_or_header_light + else: + fun = check_any_text_region_in_model_one_is_main_or_header + text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, \ + all_found_textline_polygons, all_found_textline_polygons_h, slopes, slopes_h, \ + contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = fun( + text_regions_p, regions_fully, contours_only_text_parent, + all_box_coord, all_found_textline_polygons, slopes, contours_only_text_parent_d_ordered) + if self.plotter: + self.plotter.save_plot_of_layout(text_regions_p, image_page) + self.plotter.save_plot_of_layout_all(text_regions_p, image_page) + + pixel_img = 4 + polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) + all_found_textline_polygons = adhere_drop_capital_region_into_corresponding_textline( + text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, + all_box_coord, all_box_coord_h, all_found_textline_polygons, all_found_textline_polygons_h, + kernel=KERNEL, curved_line=self.curved_line, textline_light=self.textline_light) + + if not self.reading_order_machine_based: + pixel_seps = 6 + if not self.headers_off: if np.abs(slope_deskew) < SLOPE_THRESHOLD: - boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new( - splitter_y_new, regions_without_separators, matrix_of_lines_ch, - num_col_classifier, erosion_hurts, self.tables, self.right2left) + num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document( + np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), + num_col_classifier, self.tables, pixel_seps, contours_only_text_parent_h) else: - boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new( - splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, - num_col_classifier, erosion_hurts, self.tables, self.right2left) - - if self.plotter: - self.plotter.write_images_into_directory(polygons_of_images, image_page) - t_order = time.time() + _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document( + np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), + num_col_classifier, self.tables, pixel_seps, contours_only_text_parent_h_d_ordered) + elif self.headers_off: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + num_col, _, matrix_of_lines_ch, splitter_y_new, _ = find_number_of_columns_in_document( + np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), + num_col_classifier, self.tables, pixel_seps) + else: + _, _, matrix_of_lines_ch_d, splitter_y_new_d, _ = find_number_of_columns_in_document( + np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), + num_col_classifier, self.tables, pixel_seps) - if self.full_layout: - if self.reading_order_machine_based: - order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model( - contours_only_text_parent, contours_only_text_parent_h, text_regions_p) - else: + if num_col_classifier >= 3: if np.abs(slope_deskew) < SLOPE_THRESHOLD: - order_text_new, id_of_texts_tot = self.do_order_of_regions( - contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) + regions_without_separators = regions_without_separators.astype(np.uint8) + regions_without_separators = cv2.erode(regions_without_separators[:, :], KERNEL, iterations=6) else: - order_text_new, id_of_texts_tot = self.do_order_of_regions( - contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d) - self.logger.info("detection of reading order took %.1fs", time.time() - t_order) + regions_without_separators_d = regions_without_separators_d.astype(np.uint8) + regions_without_separators_d = cv2.erode(regions_without_separators_d[:, :], KERNEL, iterations=6) - if self.ocr: - ocr_all_textlines = [] + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + boxes, peaks_neg_tot_tables = return_boxes_of_images_by_order_of_reading_new( + splitter_y_new, regions_without_separators, matrix_of_lines_ch, + num_col_classifier, erosion_hurts, self.tables, self.right2left) else: - ocr_all_textlines = None - pcgts = self.writer.build_pagexml_full_layout( - contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, - all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, - polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, - all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, - cont_page, polygons_lines_xml, ocr_all_textlines) - return pcgts + boxes_d, peaks_neg_tot_tables_d = return_boxes_of_images_by_order_of_reading_new( + splitter_y_new_d, regions_without_separators_d, matrix_of_lines_ch_d, + num_col_classifier, erosion_hurts, self.tables, self.right2left) + + if self.plotter: + self.plotter.write_images_into_directory(polygons_of_images, image_page) + t_order = time.time() + if self.full_layout: + if self.reading_order_machine_based: + order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model( + contours_only_text_parent, contours_only_text_parent_h, text_regions_p) else: - contours_only_text_parent_h = None - if self.reading_order_machine_based: - order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model( - contours_only_text_parent, contours_only_text_parent_h, text_regions_p) + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + order_text_new, id_of_texts_tot = self.do_order_of_regions( + contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) else: - if np.abs(slope_deskew) < SLOPE_THRESHOLD: - order_text_new, id_of_texts_tot = self.do_order_of_regions( - contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) + order_text_new, id_of_texts_tot = self.do_order_of_regions( + contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d) + self.logger.info("detection of reading order took %.1fs", time.time() - t_order) + + if self.ocr: + ocr_all_textlines = [] + else: + ocr_all_textlines = None + pcgts = self.writer.build_pagexml_full_layout( + contours_only_text_parent, contours_only_text_parent_h, page_coord, order_text_new, id_of_texts_tot, + all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, + polygons_of_images, contours_tables, polygons_of_drop_capitals, polygons_of_marginals, + all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, + cont_page, polygons_lines_xml, ocr_all_textlines) + return pcgts + + contours_only_text_parent_h = None + if self.reading_order_machine_based: + order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model( + contours_only_text_parent, contours_only_text_parent_h, text_regions_p) + else: + if np.abs(slope_deskew) < SLOPE_THRESHOLD: + order_text_new, id_of_texts_tot = self.do_order_of_regions( + contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) + else: + contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order( + contours_only_text_parent_d_ordered, index_by_text_par_con) + #try: + #contours_only_text_parent_d_ordered = \ + #list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) + #except: + #contours_only_text_parent_d_ordered = \ + #list(np.array(contours_only_text_parent_d_ordered, dtype=np.int32)[index_by_text_par_con]) + order_text_new, id_of_texts_tot = self.do_order_of_regions( + contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d) + + if self.ocr: + device = cuda.get_current_device() + device.reset() + gc.collect() + model_ocr = VisionEncoderDecoderModel.from_pretrained(self.model_ocr_dir) + device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") + torch.cuda.empty_cache() + model_ocr.to(device) + + ind_tot = 0 + #cv2.imwrite('./img_out.png', image_page) + ocr_all_textlines = [] + for indexing, ind_poly_first in enumerate(all_found_textline_polygons): + ocr_textline_in_textregion = [] + for indexing2, ind_poly in enumerate(ind_poly_first): + if not (self.textline_light or self.curved_line): + ind_poly = copy.deepcopy(ind_poly) + box_ind = all_box_coord[indexing] + #print(ind_poly,np.shape(ind_poly), 'ind_poly') + #print(box_ind) + ind_poly = self.return_textline_contour_with_added_box_coordinate(ind_poly, box_ind) + #print(ind_poly_copy) + ind_poly[ind_poly<0] = 0 + x, y, w, h = cv2.boundingRect(ind_poly) + #print(ind_poly_copy, np.shape(ind_poly_copy)) + #print(x, y, w, h, h/float(w),'ratio') + h2w_ratio = h/float(w) + mask_poly = np.zeros(image_page.shape) + if not self.light_version: + img_poly_on_img = np.copy(image_page) else: - contours_only_text_parent_d_ordered = self.return_list_of_contours_with_desired_order( - contours_only_text_parent_d_ordered, index_by_text_par_con) - #try: - #contours_only_text_parent_d_ordered = \ - #list(np.array(contours_only_text_parent_d_ordered, dtype=object)[index_by_text_par_con]) - #except: - #contours_only_text_parent_d_ordered = \ - #list(np.array(contours_only_text_parent_d_ordered, dtype=np.int32)[index_by_text_par_con]) - order_text_new, id_of_texts_tot = self.do_order_of_regions( - contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d) - - if self.ocr: - device = cuda.get_current_device() - device.reset() - gc.collect() - model_ocr = VisionEncoderDecoderModel.from_pretrained(self.model_ocr_dir) - device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") - torch.cuda.empty_cache() - model_ocr.to(device) - - ind_tot = 0 - #cv2.imwrite('./img_out.png', image_page) - ocr_all_textlines = [] - for indexing, ind_poly_first in enumerate(all_found_textline_polygons): - ocr_textline_in_textregion = [] - for indexing2, ind_poly in enumerate(ind_poly_first): - if not (self.textline_light or self.curved_line): - ind_poly = copy.deepcopy(ind_poly) - box_ind = all_box_coord[indexing] - #print(ind_poly,np.shape(ind_poly), 'ind_poly') - #print(box_ind) - ind_poly = self.return_textline_contour_with_added_box_coordinate(ind_poly, box_ind) - #print(ind_poly_copy) - ind_poly[ind_poly<0] = 0 - x, y, w, h = cv2.boundingRect(ind_poly) - #print(ind_poly_copy, np.shape(ind_poly_copy)) - #print(x, y, w, h, h/float(w),'ratio') - h2w_ratio = h/float(w) - mask_poly = np.zeros(image_page.shape) - if not self.light_version: - img_poly_on_img = np.copy(image_page) - else: - img_poly_on_img = np.copy(img_bin_light) - mask_poly = cv2.fillPoly(mask_poly, pts=[ind_poly], color=(1, 1, 1)) - - if self.textline_light: - mask_poly = cv2.dilate(mask_poly, KERNEL, iterations=1) - img_poly_on_img[:,:,0][mask_poly[:,:,0] ==0] = 255 - img_poly_on_img[:,:,1][mask_poly[:,:,0] ==0] = 255 - img_poly_on_img[:,:,2][mask_poly[:,:,0] ==0] = 255 - - img_croped = img_poly_on_img[y:y+h, x:x+w, :] - #cv2.imwrite('./extracted_lines/'+str(ind_tot)+'.jpg', img_croped) - text_ocr = self.return_ocr_of_textline_without_common_section(img_croped, model_ocr, processor, device, w, h2w_ratio, ind_tot) - ocr_textline_in_textregion.append(text_ocr) - ind_tot = ind_tot +1 - ocr_all_textlines.append(ocr_textline_in_textregion) + img_poly_on_img = np.copy(img_bin_light) + mask_poly = cv2.fillPoly(mask_poly, pts=[ind_poly], color=(1, 1, 1)) - else: - ocr_all_textlines = None - #print(ocr_all_textlines) - self.logger.info("detection of reading order took %.1fs", time.time() - t_order) - pcgts = self.writer.build_pagexml_no_full_layout( - txt_con_org, page_coord, order_text_new, id_of_texts_tot, - all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, - all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, - cont_page, polygons_lines_xml, contours_tables, ocr_all_textlines) - return pcgts + if self.textline_light: + mask_poly = cv2.dilate(mask_poly, KERNEL, iterations=1) + img_poly_on_img[:,:,0][mask_poly[:,:,0] ==0] = 255 + img_poly_on_img[:,:,1][mask_poly[:,:,0] ==0] = 255 + img_poly_on_img[:,:,2][mask_poly[:,:,0] ==0] = 255 + + img_croped = img_poly_on_img[y:y+h, x:x+w, :] + #cv2.imwrite('./extracted_lines/'+str(ind_tot)+'.jpg', img_croped) + text_ocr = self.return_ocr_of_textline_without_common_section(img_croped, model_ocr, processor, device, w, h2w_ratio, ind_tot) + ocr_textline_in_textregion.append(text_ocr) + ind_tot = ind_tot +1 + ocr_all_textlines.append(ocr_textline_in_textregion) + + else: + ocr_all_textlines = None + #print(ocr_all_textlines) + self.logger.info("detection of reading order took %.1fs", time.time() - t_order) + pcgts = self.writer.build_pagexml_no_full_layout( + txt_con_org, page_coord, order_text_new, id_of_texts_tot, + all_found_textline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, + all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, + cont_page, polygons_lines_xml, contours_tables, ocr_all_textlines) + return pcgts class Eynollah_ocr: