diff --git a/.github/workflows/pypi.yml b/.github/workflows/pypi.yml new file mode 100644 index 0000000..248f4ef --- /dev/null +++ b/.github/workflows/pypi.yml @@ -0,0 +1,24 @@ +name: PyPI CD + +on: + release: + types: [published] + workflow_dispatch: + +jobs: + pypi-publish: + name: upload release to PyPI + runs-on: ubuntu-latest + permissions: + # IMPORTANT: this permission is mandatory for Trusted Publishing + id-token: write + steps: + - uses: actions/checkout@v4 + - name: Set up Python + uses: actions/setup-python@v5 + - name: Build package + run: make build + - name: Publish package distributions to PyPI + uses: pypa/gh-action-pypi-publish@release/v1 + with: + verbose: true diff --git a/CHANGELOG.md b/CHANGELOG.md index f7ce6bb..ad86fe5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -5,6 +5,10 @@ Versioned according to [Semantic Versioning](http://semver.org/). ## Unreleased +Fixed: + + * restoring the contour in the original image caused an error due to an empty tuple + ## [0.4.0] - 2025-04-07 Fixed: diff --git a/Dockerfile b/Dockerfile index 4785fc1..4ba498b 100644 --- a/Dockerfile +++ b/Dockerfile @@ -36,6 +36,8 @@ COPY . . COPY ocrd-tool.json . # prepackage ocrd-tool.json as ocrd-all-tool.json RUN ocrd ocrd-tool ocrd-tool.json dump-tools > $(dirname $(ocrd bashlib filename))/ocrd-all-tool.json +# prepackage ocrd-all-module-dir.json +RUN ocrd ocrd-tool ocrd-tool.json dump-module-dirs > $(dirname $(ocrd bashlib filename))/ocrd-all-module-dir.json # install everything and reduce image size RUN make install EXTRAS=OCR && rm -rf /build/eynollah # smoke test diff --git a/Makefile b/Makefile index 5f2bf34..73d4d34 100644 --- a/Makefile +++ b/Makefile @@ -3,8 +3,9 @@ PIP ?= pip3 EXTRAS ?= # DOCKER_BASE_IMAGE = artefakt.dev.sbb.berlin:5000/sbb/ocrd_core:v2.68.0 -DOCKER_BASE_IMAGE = docker.io/ocrd/core-cuda-tf2:v3.3.0 -DOCKER_TAG = ocrd/eynollah +DOCKER_BASE_IMAGE ?= docker.io/ocrd/core-cuda-tf2:latest +DOCKER_TAG ?= ocrd/eynollah +DOCKER ?= docker #SEG_MODEL := https://qurator-data.de/eynollah/2021-04-25/models_eynollah.tar.gz #SEG_MODEL := https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed.tar.gz @@ -117,7 +118,7 @@ coverage: # Build docker image docker: - docker build \ + $(DOCKER) build \ --build-arg DOCKER_BASE_IMAGE=$(DOCKER_BASE_IMAGE) \ --build-arg VCS_REF=$$(git rev-parse --short HEAD) \ --build-arg BUILD_DATE=$$(date -u +"%Y-%m-%dT%H:%M:%SZ") \ diff --git a/src/eynollah/eynollah.py b/src/eynollah/eynollah.py index 022cf0a..d47016b 100644 --- a/src/eynollah/eynollah.py +++ b/src/eynollah/eynollah.py @@ -3320,12 +3320,22 @@ class Eynollah: def do_order_of_regions_with_model(self, contours_only_text_parent, contours_only_text_parent_h, text_regions_p): y_len = text_regions_p.shape[0] x_len = text_regions_p.shape[1] + img_poly = np.zeros((y_len,x_len), dtype='uint8') img_poly[text_regions_p[:,:]==1] = 1 img_poly[text_regions_p[:,:]==2] = 2 img_poly[text_regions_p[:,:]==3] = 4 img_poly[text_regions_p[:,:]==6] = 5 + + + #temp + sep_mask = (img_poly==5)*1 + sep_mask = sep_mask.astype('uint8') + sep_mask = cv2.erode(sep_mask, kernel=KERNEL, iterations=2) + img_poly[img_poly==5] = 0 + img_poly[sep_mask==1] = 5 + # img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8') if contours_only_text_parent_h: @@ -3341,9 +3351,13 @@ class Eynollah: if not len(co_text_all): return [], [] - labels_con = np.zeros((y_len, x_len, len(co_text_all)), dtype=bool) + labels_con = np.zeros((int(y_len /6.), int(x_len/6.), len(co_text_all)), dtype=bool) + co_text_all = [(i/6).astype(int) for i in co_text_all] for i in range(len(co_text_all)): img = labels_con[:,:,i].astype(np.uint8) + + #img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST) + cv2.fillPoly(img, pts=[co_text_all[i]], color=(1,)) labels_con[:,:,i] = img @@ -3359,6 +3373,7 @@ class Eynollah: labels_con = resize_image(labels_con.astype(np.uint8), height1, width1).astype(bool) img_header_and_sep = resize_image(img_header_and_sep, height1, width1) img_poly = resize_image(img_poly, height3, width3) + inference_bs = 3 input_1 = np.zeros((inference_bs, height1, width1, 3)) @@ -4575,10 +4590,6 @@ class Eynollah: return pcgts - ## check the ro order - - - #print("text region early 3 in %.1fs", time.time() - t0) if self.light_version: @@ -4886,7 +4897,7 @@ class Eynollah_ocr: self.model_ocr.to(self.device) else: - self.model_ocr_dir = dir_models + "/model_step_75000_ocr"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn" + self.model_ocr_dir = dir_models + "/model_step_1050000_ocr"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn" model_ocr = load_model(self.model_ocr_dir , compile=False) self.prediction_model = tf.keras.models.Model( @@ -4974,7 +4985,7 @@ class Eynollah_ocr: def return_start_and_end_of_common_text_of_textline_ocr_without_common_section(self, textline_image): width = np.shape(textline_image)[1] height = np.shape(textline_image)[0] - common_window = int(0.06*width) + common_window = int(0.22*width) width1 = int ( width/2. - common_window ) width2 = int ( width/2. + common_window ) @@ -4984,13 +4995,17 @@ class Eynollah_ocr: peaks_real, _ = find_peaks(sum_smoothed, height=0) - if len(peaks_real)>70: + if len(peaks_real)>35: - peaks_real = peaks_real[(peaks_realwidth1)] + #peaks_real = peaks_real[(peaks_realwidth1)] + argsort = np.argsort(sum_smoothed[peaks_real])[::-1] + peaks_real_top_six = peaks_real[argsort[:6]] + midpoint = textline_image.shape[1] / 2. + arg_closest = np.argmin(np.abs(peaks_real_top_six - midpoint)) - arg_max = np.argmax(sum_smoothed[peaks_real]) + #arg_max = np.argmax(sum_smoothed[peaks_real]) - peaks_final = peaks_real[arg_max] + peaks_final = peaks_real_top_six[arg_closest]#peaks_real[arg_max] return peaks_final else: @@ -5038,10 +5053,19 @@ class Eynollah_ocr: if width_new == 0: width_new = img.shape[1] + + ##if width_new+32 >= image_width: + ##width_new = width_new - 32 + + ###patch_zero = np.zeros((32, 32, 3))#+255 + ###patch_zero[9:19,8:18,:] = 0 + img = resize_image(img, image_height, width_new) img_fin = np.ones((image_height, image_width, 3))*255 - img_fin[:,:+width_new,:] = img[:,:,:] + ###img_fin[:,:32,:] = patch_zero[:,:,:] + ###img_fin[:,32:32+width_new,:] = img[:,:,:] + img_fin[:,:width_new,:] = img[:,:,:] img_fin = img_fin / 255. return img_fin @@ -5097,7 +5121,7 @@ class Eynollah_ocr: img_crop = img_poly_on_img[y:y+h, x:x+w, :] img_crop[mask_poly==0] = 255 - if h2w_ratio > 0.05: + if h2w_ratio > 0.1: cropped_lines.append(img_crop) cropped_lines_meging_indexing.append(0) else: @@ -5234,7 +5258,7 @@ class Eynollah_ocr: if self.draw_texts_on_image: total_bb_coordinates.append([x,y,w,h]) - h2w_ratio = h/float(w) + w_scaled = w * image_height/float(h) img_poly_on_img = np.copy(img) if self.prediction_with_both_of_rgb_and_bin: @@ -5252,7 +5276,7 @@ class Eynollah_ocr: img_crop_bin[mask_poly==0] = 255 if not self.export_textline_images_and_text: - if h2w_ratio > 0.1: + if w_scaled < 1.5*image_width: img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(img_crop, image_height, image_width) cropped_lines.append(img_fin) cropped_lines_meging_indexing.append(0) @@ -5334,11 +5358,11 @@ class Eynollah_ocr: if self.prediction_with_both_of_rgb_and_bin: preds_bin = self.prediction_model.predict(imgs_bin, verbose=0) preds = (preds + preds_bin) / 2. - + pred_texts = self.decode_batch_predictions(preds) for ib in range(imgs.shape[0]): - pred_texts_ib = pred_texts[ib].strip("[UNK]") + pred_texts_ib = pred_texts[ib].replace("[UNK]", "") extracted_texts.append(pred_texts_ib) extracted_texts_merged = [extracted_texts[ind] if cropped_lines_meging_indexing[ind]==0 else extracted_texts[ind]+" "+extracted_texts[ind+1] if cropped_lines_meging_indexing[ind]==1 else None for ind in range(len(cropped_lines_meging_indexing))] @@ -5378,7 +5402,7 @@ class Eynollah_ocr: text_by_textregion = [] for ind in unique_cropped_lines_region_indexer: extracted_texts_merged_un = np.array(extracted_texts_merged)[np.array(cropped_lines_region_indexer)==ind] - text_by_textregion.append(" ".join(extracted_texts_merged_un)) + text_by_textregion.append("".join(extracted_texts_merged_un)) indexer = 0 indexer_textregion = 0 diff --git a/src/eynollah/utils/contour.py b/src/eynollah/utils/contour.py index a81ccb4..0e84153 100644 --- a/src/eynollah/utils/contour.py +++ b/src/eynollah/utils/contour.py @@ -230,7 +230,6 @@ def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first): def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first, confidence_matrix): img_copy = np.zeros(img.shape) img_copy = cv2.fillPoly(img_copy, pts=[contour_par], color=(1, 1, 1)) - confidence_matrix_mapped_with_contour = confidence_matrix * img_copy[:,:,0] confidence_contour = np.sum(confidence_matrix_mapped_with_contour) / float(np.sum(img_copy[:,:,0])) @@ -239,9 +238,13 @@ def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first ret, thresh = cv2.threshold(imgray, 0, 255, 0) cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) - cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) - cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) - # print(np.shape(cont_int[0])) + if len(cont_int)==0: + cont_int = [] + cont_int.append(contour_par) + confidence_contour = 0 + else: + cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) + cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) return cont_int[0], index_r_con, confidence_contour def get_textregion_contours_in_org_image_light(cnts, img, slope_first, confidence_matrix, map=map): diff --git a/src/eynollah/utils/separate_lines.py b/src/eynollah/utils/separate_lines.py index 3499c29..0322579 100644 --- a/src/eynollah/utils/separate_lines.py +++ b/src/eynollah/utils/separate_lines.py @@ -102,14 +102,15 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis): textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierarchy, max_area=1, min_area=0.0008) - y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil) - sigma_gaus = int(y_diff_mean * (7.0 / 40.0)) - # print(sigma_gaus,'sigma_gaus') + if len(np.diff(peaks_new_tot))>1: + y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil) + sigma_gaus = int(y_diff_mean * (7.0 / 40.0)) + else: + sigma_gaus = 12 except: sigma_gaus = 12 if sigma_gaus < 3: sigma_gaus = 3 - # print(sigma_gaus,'sigma') y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus) y_padded_up_to_down = -y_padded + np.max(y_padded) @@ -137,7 +138,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): M = cv2.getRotationMatrix2D(center, -thetha, 1.0) x_d = M[0, 2] y_d = M[1, 2] - thetha = thetha / 180. * np.pi rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]]) contour_text_interest_copy = contour_text_interest.copy() @@ -162,73 +162,73 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): x = np.array(range(len(y))) peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0) - if 1>0: - try: - y_padded_smoothed_e= gaussian_filter1d(y_padded, 2) - y_padded_up_to_down_e=-y_padded+np.max(y_padded) - y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40) - y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e - y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2) - + + try: + y_padded_smoothed_e= gaussian_filter1d(y_padded, 2) + y_padded_up_to_down_e=-y_padded+np.max(y_padded) + y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40) + y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e + y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2) + + peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0) + peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0) + neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e]) - peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0) - peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0) - neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e]) + arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3] + diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted) + + arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted))) + arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1] + peaks_new=peaks_e[:] + peaks_neg_new=peaks_neg_e[:] - arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3] - diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted) - - arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted))) - arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1] + clusters_to_be_deleted=[] + if len(arg_diff_cluster)>0: + clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1]) + for i in range(len(arg_diff_cluster)-1): + clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1: + arg_diff_cluster[i+1]+1]) + clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:]) + if len(clusters_to_be_deleted)>0: + peaks_new_extra=[] + for m in range(len(clusters_to_be_deleted)): + min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]]) + max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]]) + peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) ) + for m1 in range(len(clusters_to_be_deleted[m])): + peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]] + peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]] + peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]] + peaks_new_tot=[] + for i1 in peaks_new: + peaks_new_tot.append(i1) + for i1 in peaks_new_extra: + peaks_new_tot.append(i1) + peaks_new_tot=np.sort(peaks_new_tot) + else: + peaks_new_tot=peaks_e[:] - peaks_new=peaks_e[:] - peaks_neg_new=peaks_neg_e[:] + textline_con,hierarchy=return_contours_of_image(img_patch) + textline_con_fil=filter_contours_area_of_image(img_patch, + textline_con, hierarchy, + max_area=1, min_area=0.0008) - clusters_to_be_deleted=[] - if len(arg_diff_cluster)>0: - clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1]) - for i in range(len(arg_diff_cluster)-1): - clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1: - arg_diff_cluster[i+1]+1]) - clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:]) - if len(clusters_to_be_deleted)>0: - peaks_new_extra=[] - for m in range(len(clusters_to_be_deleted)): - min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]]) - max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]]) - peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) ) - for m1 in range(len(clusters_to_be_deleted[m])): - peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]] - peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]] - peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]] - peaks_new_tot=[] - for i1 in peaks_new: - peaks_new_tot.append(i1) - for i1 in peaks_new_extra: - peaks_new_tot.append(i1) - peaks_new_tot=np.sort(peaks_new_tot) - else: - peaks_new_tot=peaks_e[:] - - textline_con,hierarchy=return_contours_of_image(img_patch) - textline_con_fil=filter_contours_area_of_image(img_patch, - textline_con, hierarchy, - max_area=1, min_area=0.0008) + if len(np.diff(peaks_new_tot))>0: y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil) sigma_gaus=int( y_diff_mean * (7./40.0) ) - #print(sigma_gaus,'sigma_gaus') - except: + else: sigma_gaus=12 - if sigma_gaus<3: - sigma_gaus=3 - #print(sigma_gaus,'sigma') + + except: + sigma_gaus=12 + if sigma_gaus<3: + sigma_gaus=3 y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus) y_padded_up_to_down=-y_padded+np.max(y_padded) y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40) y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus) - peaks, _ = find_peaks(y_padded_smoothed, height=0) peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0) @@ -239,6 +239,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted))) arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1] + except: arg_neg_must_be_deleted=[] arg_diff_cluster=[] @@ -246,7 +247,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): peaks_new=peaks[:] peaks_neg_new=peaks_neg[:] clusters_to_be_deleted=[] - if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1]) for i in range(len(arg_diff_cluster)-1): @@ -275,21 +275,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): peaks_new_tot.append(i1) peaks_new_tot=np.sort(peaks_new_tot) - ##plt.plot(y_padded_up_to_down_padded) - ##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*') - ##plt.show() - - ##plt.plot(y_padded_up_to_down_padded) - ##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*') - ##plt.show() - - ##plt.plot(y_padded_smoothed) - ##plt.plot(peaks,y_padded_smoothed[peaks],'*') - ##plt.show() - - ##plt.plot(y_padded_smoothed) - ##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*') - ##plt.show() peaks=peaks_new_tot[:] peaks_neg=peaks_neg_new[:] else: @@ -298,11 +283,13 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): peaks_neg=peaks_neg_new[:] except: pass - - mean_value_of_peaks=np.mean(y_padded_smoothed[peaks]) - std_value_of_peaks=np.std(y_padded_smoothed[peaks]) + if len(y_padded_smoothed[peaks]) > 1: + mean_value_of_peaks=np.mean(y_padded_smoothed[peaks]) + std_value_of_peaks=np.std(y_padded_smoothed[peaks]) + else: + mean_value_of_peaks = np.nan + std_value_of_peaks = np.nan peaks_values=y_padded_smoothed[peaks] - peaks_neg = peaks_neg - 20 - 20 peaks = peaks - 20 for jj in range(len(peaks_neg)): @@ -345,7 +332,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): point_down_narrow = peaks[jj] + first_nonzero + int( 1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2) - if point_down_narrow >= img_patch.shape[0]: point_down_narrow = img_patch.shape[0] - 2 @@ -601,7 +587,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]])) - return peaks, textline_boxes_rot def separate_lines_vertical(img_patch, contour_text_interest, thetha): @@ -633,7 +618,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha): peaks_neg_new = peaks_neg[:] clusters_to_be_deleted = [] - if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0: + if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : @@ -641,7 +626,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[:]) - if len(arg_neg_must_be_deleted) == 1: + else: clusters_to_be_deleted.append(arg_neg_must_be_deleted) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] @@ -667,9 +652,14 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha): peaks_new_tot = peaks[:] peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] - - mean_value_of_peaks = np.mean(y_padded_smoothed[peaks]) - std_value_of_peaks = np.std(y_padded_smoothed[peaks]) + + if len(y_padded_smoothed[peaks])>1: + mean_value_of_peaks = np.mean(y_padded_smoothed[peaks]) + std_value_of_peaks = np.std(y_padded_smoothed[peaks]) + else: + mean_value_of_peaks = np.nan + std_value_of_peaks = np.nan + peaks_values = y_padded_smoothed[peaks] peaks_neg = peaks_neg - 20 - 20 @@ -687,7 +677,6 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha): textline_boxes_rot = [] if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3: - # print('11') for jj in range(len(peaks)): if jj == (len(peaks) - 1): @@ -994,15 +983,16 @@ def separate_lines_new_inside_tiles2(img_patch, thetha): textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierarchy, max_area=1, min_area=0.0008) - y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil) + if len(np.diff(peaks_new_tot)): + y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil) + sigma_gaus = int(y_diff_mean * (7.0 / 40.0)) + else: + sigma_gaus = 12 - sigma_gaus = int(y_diff_mean * (7.0 / 40.0)) - # print(sigma_gaus,'sigma_gaus') except: sigma_gaus = 12 if sigma_gaus < 3: sigma_gaus = 3 - # print(sigma_gaus,'sigma') y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus) y_padded_up_to_down = -y_padded + np.max(y_padded) @@ -1026,7 +1016,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha): arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1] clusters_to_be_deleted = [] - if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0: + if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : @@ -1034,7 +1024,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[:]) - if len(arg_neg_must_be_deleted) == 1: + else: clusters_to_be_deleted.append(arg_neg_must_be_deleted) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] @@ -1077,9 +1067,14 @@ def separate_lines_new_inside_tiles2(img_patch, thetha): peaks_new_tot = peaks[:] peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] - - mean_value_of_peaks = np.mean(y_padded_smoothed[peaks]) - std_value_of_peaks = np.std(y_padded_smoothed[peaks]) + + if len(y_padded_smoothed[peaks]) > 1: + mean_value_of_peaks = np.mean(y_padded_smoothed[peaks]) + std_value_of_peaks = np.std(y_padded_smoothed[peaks]) + else: + mean_value_of_peaks = np.nan + std_value_of_peaks = np.nan + peaks_values = y_padded_smoothed[peaks] ###peaks_neg = peaks_neg - 20 - 20 @@ -1089,10 +1084,8 @@ def separate_lines_new_inside_tiles2(img_patch, thetha): if len(peaks_neg_true) > 0: peaks_neg_true = np.array(peaks_neg_true) - peaks_neg_true = peaks_neg_true - 20 - 20 - # print(peaks_neg_true) for i in range(len(peaks_neg_true)): img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0 else: @@ -1177,13 +1170,11 @@ def separate_lines_new_inside_tiles(img_path, thetha): if diff_peaks[i] <= cut_off: forest.append(peaks_neg[i + 1]) if diff_peaks[i] > cut_off: - # print(forest[np.argmin(z[forest]) ] ) if not np.isnan(forest[np.argmin(z[forest])]): peaks_neg_true.append(forest[np.argmin(z[forest])]) forest = [] forest.append(peaks_neg[i + 1]) if i == (len(peaks_neg) - 1): - # print(print(forest[np.argmin(z[forest]) ] )) if not np.isnan(forest[np.argmin(z[forest])]): peaks_neg_true.append(forest[np.argmin(z[forest])]) @@ -1200,17 +1191,14 @@ def separate_lines_new_inside_tiles(img_path, thetha): if diff_peaks_pos[i] <= cut_off: forest.append(peaks[i + 1]) if diff_peaks_pos[i] > cut_off: - # print(forest[np.argmin(z[forest]) ] ) if not np.isnan(forest[np.argmax(z[forest])]): peaks_pos_true.append(forest[np.argmax(z[forest])]) forest = [] forest.append(peaks[i + 1]) if i == (len(peaks) - 1): - # print(print(forest[np.argmin(z[forest]) ] )) if not np.isnan(forest[np.argmax(z[forest])]): peaks_pos_true.append(forest[np.argmax(z[forest])]) - # print(len(peaks_neg_true) ,len(peaks_pos_true) ,'lensss') if len(peaks_neg_true) > 0: peaks_neg_true = np.array(peaks_neg_true) @@ -1236,7 +1224,6 @@ def separate_lines_new_inside_tiles(img_path, thetha): """ peaks_neg_true = peaks_neg_true - 20 - 20 - # print(peaks_neg_true) for i in range(len(peaks_neg_true)): img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0 @@ -1278,7 +1265,6 @@ def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i contours_imgs, hierarchy, max_area=max_area, min_area=min_area) cont_final = [] - ###print(add_boxes_coor_into_textlines,'ikki') for i in range(len(contours_imgs)): img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3)) img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255)) @@ -1293,12 +1279,10 @@ def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i ##0] ##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1] ##if add_boxes_coor_into_textlines: - ##print(np.shape(contours_text_rot[0]),'sjppo') ##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0] ##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1] cont_final.append(contours_text_rot[0]) - ##print(cont_final,'nadizzzz') return None, cont_final def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind, add_boxes_coor_into_textlines=False): @@ -1309,20 +1293,7 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, kernel) textline_mask = cv2.erode(textline_mask, kernel, iterations=2) # textline_mask = cv2.erode(textline_mask, kernel, iterations=1) - - # print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz') try: - # if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3: - # plt.imshow(textline_mask) - # plt.show() - - # if abs(slope)>1: - # x_help=30 - # y_help=2 - # else: - # x_help=2 - # y_help=2 - x_help = 30 y_help = 2 @@ -1346,28 +1317,12 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest img_contour = np.zeros((box_ind[3], box_ind[2], 3)) img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255)) - # if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3: - # plt.imshow(img_contour) - # plt.show() - img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help), img_contour.shape[1] + int(2 * x_help), 3)) img_contour_help[y_help : y_help + img_contour.shape[0], x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :]) img_contour_rot = rotate_image(img_contour_help, slope) - # plt.imshow(img_contour_rot_help) - # plt.show() - - # plt.imshow(dst_help) - # plt.show() - - # if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3: - # plt.imshow(img_contour_rot_help) - # plt.show() - - # plt.imshow(dst_help) - # plt.show() img_contour_rot = img_contour_rot.astype(np.uint8) # dst_help = dst_help.astype(np.uint8) @@ -1378,9 +1333,7 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))] ind_big_con = np.argmax(len_con_text_rot) - # print('juzaa') if abs(slope) > 45: - # print(add_boxes_coor_into_textlines,'avval') _, contours_rotated_clean = separate_lines_vertical_cont( textline_mask, contours_text_rot[ind_big_con], box_ind, slope, add_boxes_coor_into_textlines=add_boxes_coor_into_textlines) @@ -1412,7 +1365,6 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl length_x = int(img_path.shape[1] / float(num_patches)) # margin = int(0.04 * length_x) just recently this was changed because it break lines into 2 margin = int(0.04 * length_x) - # print(margin,'margin') # if margin<=4: # margin = int(0.08 * length_x) # margin=0 @@ -1452,11 +1404,9 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl # if abs(slope_region)>70 and abs(slope_xline)<25: # slope_xline=[slope_region][0] slopes_tile_wise.append(slope_xline) - # print(slope_xline,'xlineeee') img_line_rotated = rotate_image(img_xline, slope_xline) img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1 - - # print(slopes_tile_wise,'slopes_tile_wise') + img_patch_ineterst = img_path[:, :] # [peaks_neg_true[14]-dis_up:peaks_neg_true[14]+dis_down ,:] img_patch_ineterst_revised = np.zeros(img_patch_ineterst.shape) @@ -1498,8 +1448,6 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin : length_x - margin] img_patch_ineterst_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_separated_returned_true_size - # plt.imshow(img_patch_ineterst_revised) - # plt.show() return img_patch_ineterst_revised def do_image_rotation(angle, img, sigma_des, logger=None): @@ -1532,20 +1480,13 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100, #img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:] img_resized[ onset_y:onset_y+img_int.shape[0] , onset_x:onset_x+img_int.shape[1] ]=img_int[:,:] - #print(img_resized.shape,'img_resizedshape') - #plt.imshow(img_resized) - #plt.show() if main_page and img_patch_org.shape[1] > img_patch_org.shape[0]: - #plt.imshow(img_resized) - #plt.show() angles = np.array([-45, 0, 45, 90,]) angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter) angles = np.linspace(angle - 22.5, angle + 22.5, n_tot_angles) angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter) elif main_page: - #plt.imshow(img_resized) - #plt.show() angles = np.linspace(-12, 12, n_tot_angles)#np.array([0 , 45 , 90 , -45]) angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter) @@ -1632,22 +1573,12 @@ def do_work_of_slopes_new( if slope_for_all == MAX_SLOPE: slope_for_all = slope_deskew slope = slope_for_all - mask_only_con_region = np.zeros(textline_mask_tot_ea.shape) mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contour_par], color=(1, 1, 1)) - # plt.imshow(mask_only_con_region) - # plt.show() all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w].copy() mask_only_con_region = mask_only_con_region[y: y + h, x: x + w] - ##plt.imshow(textline_mask_tot_ea) - ##plt.show() - ##plt.imshow(all_text_region_raw) - ##plt.show() - ##plt.imshow(mask_only_con_region) - ##plt.show() - all_text_region_raw[mask_only_con_region == 0] = 0 cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text) @@ -1708,20 +1639,15 @@ def do_work_of_slopes_new_curved( mask_region_in_patch_region = mask_biggest[y : y + h, x : x + w] textline_biggest_region = mask_biggest * textline_mask_tot_ea - # print(slope_for_all,'slope_for_all') textline_rotated_separated = separate_lines_new2(textline_biggest_region[y: y+h, x: x+w], 0, num_col, slope_for_all, logger=logger, plotter=plotter) - # new line added - ##print(np.shape(textline_rotated_separated),np.shape(mask_biggest)) + textline_rotated_separated[mask_region_in_patch_region[:, :] != 1] = 0 - # till here textline_region_in_image[y : y + h, x : x + w] = textline_rotated_separated - # plt.imshow(textline_region_in_image) - # plt.show() pixel_img = 1 cnt_textlines_in_image = return_contours_of_interested_textline(textline_region_in_image, pixel_img) @@ -1744,7 +1670,6 @@ def do_work_of_slopes_new_curved( logger.error(why) else: textlines_cnt_per_region = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text, True) - # print(np.shape(textlines_cnt_per_region),'textlines_cnt_per_region') return textlines_cnt_per_region[::-1], box_text, contour, contour_par, crop_coor, index_r_con, slope