Compare commits

..

No commits in common. "main" and "v0.4.0" have entirely different histories.
main ... v0.4.0

7 changed files with 193 additions and 176 deletions

View file

@ -1,24 +0,0 @@
name: PyPI CD
on:
release:
types: [published]
workflow_dispatch:
jobs:
pypi-publish:
name: upload release to PyPI
runs-on: ubuntu-latest
permissions:
# IMPORTANT: this permission is mandatory for Trusted Publishing
id-token: write
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
- name: Build package
run: make build
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
verbose: true

View file

@ -5,10 +5,6 @@ Versioned according to [Semantic Versioning](http://semver.org/).
## Unreleased
Fixed:
* restoring the contour in the original image caused an error due to an empty tuple
## [0.4.0] - 2025-04-07
Fixed:

View file

@ -36,8 +36,6 @@ COPY . .
COPY ocrd-tool.json .
# prepackage ocrd-tool.json as ocrd-all-tool.json
RUN ocrd ocrd-tool ocrd-tool.json dump-tools > $(dirname $(ocrd bashlib filename))/ocrd-all-tool.json
# prepackage ocrd-all-module-dir.json
RUN ocrd ocrd-tool ocrd-tool.json dump-module-dirs > $(dirname $(ocrd bashlib filename))/ocrd-all-module-dir.json
# install everything and reduce image size
RUN make install EXTRAS=OCR && rm -rf /build/eynollah
# smoke test

View file

@ -3,9 +3,8 @@ PIP ?= pip3
EXTRAS ?=
# DOCKER_BASE_IMAGE = artefakt.dev.sbb.berlin:5000/sbb/ocrd_core:v2.68.0
DOCKER_BASE_IMAGE ?= docker.io/ocrd/core-cuda-tf2:latest
DOCKER_TAG ?= ocrd/eynollah
DOCKER ?= docker
DOCKER_BASE_IMAGE = docker.io/ocrd/core-cuda-tf2:v3.3.0
DOCKER_TAG = ocrd/eynollah
#SEG_MODEL := https://qurator-data.de/eynollah/2021-04-25/models_eynollah.tar.gz
#SEG_MODEL := https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed.tar.gz
@ -118,7 +117,7 @@ coverage:
# Build docker image
docker:
$(DOCKER) build \
docker build \
--build-arg DOCKER_BASE_IMAGE=$(DOCKER_BASE_IMAGE) \
--build-arg VCS_REF=$$(git rev-parse --short HEAD) \
--build-arg BUILD_DATE=$$(date -u +"%Y-%m-%dT%H:%M:%SZ") \

View file

@ -3320,22 +3320,12 @@ class Eynollah:
def do_order_of_regions_with_model(self, contours_only_text_parent, contours_only_text_parent_h, text_regions_p):
y_len = text_regions_p.shape[0]
x_len = text_regions_p.shape[1]
img_poly = np.zeros((y_len,x_len), dtype='uint8')
img_poly[text_regions_p[:,:]==1] = 1
img_poly[text_regions_p[:,:]==2] = 2
img_poly[text_regions_p[:,:]==3] = 4
img_poly[text_regions_p[:,:]==6] = 5
#temp
sep_mask = (img_poly==5)*1
sep_mask = sep_mask.astype('uint8')
sep_mask = cv2.erode(sep_mask, kernel=KERNEL, iterations=2)
img_poly[img_poly==5] = 0
img_poly[sep_mask==1] = 5
#
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
if contours_only_text_parent_h:
@ -3351,13 +3341,9 @@ class Eynollah:
if not len(co_text_all):
return [], []
labels_con = np.zeros((int(y_len /6.), int(x_len/6.), len(co_text_all)), dtype=bool)
co_text_all = [(i/6).astype(int) for i in co_text_all]
labels_con = np.zeros((y_len, x_len, len(co_text_all)), dtype=bool)
for i in range(len(co_text_all)):
img = labels_con[:,:,i].astype(np.uint8)
#img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
cv2.fillPoly(img, pts=[co_text_all[i]], color=(1,))
labels_con[:,:,i] = img
@ -3373,7 +3359,6 @@ class Eynollah:
labels_con = resize_image(labels_con.astype(np.uint8), height1, width1).astype(bool)
img_header_and_sep = resize_image(img_header_and_sep, height1, width1)
img_poly = resize_image(img_poly, height3, width3)
inference_bs = 3
input_1 = np.zeros((inference_bs, height1, width1, 3))
@ -4590,6 +4575,10 @@ class Eynollah:
return pcgts
## check the ro order
#print("text region early 3 in %.1fs", time.time() - t0)
if self.light_version:
@ -4897,7 +4886,7 @@ class Eynollah_ocr:
self.model_ocr.to(self.device)
else:
self.model_ocr_dir = dir_models + "/model_step_1050000_ocr"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
self.model_ocr_dir = dir_models + "/model_step_75000_ocr"#"/model_0_ocr_cnnrnn"#"/model_23_ocr_cnnrnn"
model_ocr = load_model(self.model_ocr_dir , compile=False)
self.prediction_model = tf.keras.models.Model(
@ -4985,7 +4974,7 @@ class Eynollah_ocr:
def return_start_and_end_of_common_text_of_textline_ocr_without_common_section(self, textline_image):
width = np.shape(textline_image)[1]
height = np.shape(textline_image)[0]
common_window = int(0.22*width)
common_window = int(0.06*width)
width1 = int ( width/2. - common_window )
width2 = int ( width/2. + common_window )
@ -4995,17 +4984,13 @@ class Eynollah_ocr:
peaks_real, _ = find_peaks(sum_smoothed, height=0)
if len(peaks_real)>35:
if len(peaks_real)>70:
#peaks_real = peaks_real[(peaks_real<width2) & (peaks_real>width1)]
argsort = np.argsort(sum_smoothed[peaks_real])[::-1]
peaks_real_top_six = peaks_real[argsort[:6]]
midpoint = textline_image.shape[1] / 2.
arg_closest = np.argmin(np.abs(peaks_real_top_six - midpoint))
peaks_real = peaks_real[(peaks_real<width2) & (peaks_real>width1)]
#arg_max = np.argmax(sum_smoothed[peaks_real])
arg_max = np.argmax(sum_smoothed[peaks_real])
peaks_final = peaks_real_top_six[arg_closest]#peaks_real[arg_max]
peaks_final = peaks_real[arg_max]
return peaks_final
else:
@ -5053,19 +5038,10 @@ class Eynollah_ocr:
if width_new == 0:
width_new = img.shape[1]
##if width_new+32 >= image_width:
##width_new = width_new - 32
###patch_zero = np.zeros((32, 32, 3))#+255
###patch_zero[9:19,8:18,:] = 0
img = resize_image(img, image_height, width_new)
img_fin = np.ones((image_height, image_width, 3))*255
###img_fin[:,:32,:] = patch_zero[:,:,:]
###img_fin[:,32:32+width_new,:] = img[:,:,:]
img_fin[:,:width_new,:] = img[:,:,:]
img_fin[:,:+width_new,:] = img[:,:,:]
img_fin = img_fin / 255.
return img_fin
@ -5121,7 +5097,7 @@ class Eynollah_ocr:
img_crop = img_poly_on_img[y:y+h, x:x+w, :]
img_crop[mask_poly==0] = 255
if h2w_ratio > 0.1:
if h2w_ratio > 0.05:
cropped_lines.append(img_crop)
cropped_lines_meging_indexing.append(0)
else:
@ -5258,7 +5234,7 @@ class Eynollah_ocr:
if self.draw_texts_on_image:
total_bb_coordinates.append([x,y,w,h])
w_scaled = w * image_height/float(h)
h2w_ratio = h/float(w)
img_poly_on_img = np.copy(img)
if self.prediction_with_both_of_rgb_and_bin:
@ -5276,7 +5252,7 @@ class Eynollah_ocr:
img_crop_bin[mask_poly==0] = 255
if not self.export_textline_images_and_text:
if w_scaled < 1.5*image_width:
if h2w_ratio > 0.1:
img_fin = self.preprocess_and_resize_image_for_ocrcnn_model(img_crop, image_height, image_width)
cropped_lines.append(img_fin)
cropped_lines_meging_indexing.append(0)
@ -5358,11 +5334,11 @@ class Eynollah_ocr:
if self.prediction_with_both_of_rgb_and_bin:
preds_bin = self.prediction_model.predict(imgs_bin, verbose=0)
preds = (preds + preds_bin) / 2.
pred_texts = self.decode_batch_predictions(preds)
for ib in range(imgs.shape[0]):
pred_texts_ib = pred_texts[ib].replace("[UNK]", "")
pred_texts_ib = pred_texts[ib].strip("[UNK]")
extracted_texts.append(pred_texts_ib)
extracted_texts_merged = [extracted_texts[ind] if cropped_lines_meging_indexing[ind]==0 else extracted_texts[ind]+" "+extracted_texts[ind+1] if cropped_lines_meging_indexing[ind]==1 else None for ind in range(len(cropped_lines_meging_indexing))]
@ -5402,7 +5378,7 @@ class Eynollah_ocr:
text_by_textregion = []
for ind in unique_cropped_lines_region_indexer:
extracted_texts_merged_un = np.array(extracted_texts_merged)[np.array(cropped_lines_region_indexer)==ind]
text_by_textregion.append("".join(extracted_texts_merged_un))
text_by_textregion.append(" ".join(extracted_texts_merged_un))
indexer = 0
indexer_textregion = 0

View file

@ -230,6 +230,7 @@ def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first):
def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first, confidence_matrix):
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[contour_par], color=(1, 1, 1))
confidence_matrix_mapped_with_contour = confidence_matrix * img_copy[:,:,0]
confidence_contour = np.sum(confidence_matrix_mapped_with_contour) / float(np.sum(img_copy[:,:,0]))
@ -238,13 +239,9 @@ def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(cont_int)==0:
cont_int = []
cont_int.append(contour_par)
confidence_contour = 0
else:
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
# print(np.shape(cont_int[0]))
return cont_int[0], index_r_con, confidence_contour
def get_textregion_contours_in_org_image_light(cnts, img, slope_first, confidence_matrix, map=map):

View file

@ -102,15 +102,14 @@ def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
textline_con_fil = filter_contours_area_of_image(img_patch,
textline_con, hierarchy,
max_area=1, min_area=0.0008)
if len(np.diff(peaks_new_tot))>1:
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
else:
sigma_gaus = 12
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
# print(sigma_gaus,'sigma_gaus')
except:
sigma_gaus = 12
if sigma_gaus < 3:
sigma_gaus = 3
# print(sigma_gaus,'sigma')
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
@ -138,6 +137,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
x_d = M[0, 2]
y_d = M[1, 2]
thetha = thetha / 180. * np.pi
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
contour_text_interest_copy = contour_text_interest.copy()
@ -162,73 +162,73 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
try:
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
if 1>0:
try:
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3]
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
peaks_new=peaks_e[:]
peaks_neg_new=peaks_neg_e[:]
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
clusters_to_be_deleted=[]
if len(arg_diff_cluster)>0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
for i in range(len(arg_diff_cluster)-1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
arg_diff_cluster[i+1]+1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
if len(clusters_to_be_deleted)>0:
peaks_new_extra=[]
for m in range(len(clusters_to_be_deleted)):
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
peaks_new_tot=[]
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot=np.sort(peaks_new_tot)
else:
peaks_new_tot=peaks_e[:]
arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3]
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
textline_con,hierarchy=return_contours_of_image(img_patch)
textline_con_fil=filter_contours_area_of_image(img_patch,
textline_con, hierarchy,
max_area=1, min_area=0.0008)
peaks_new=peaks_e[:]
peaks_neg_new=peaks_neg_e[:]
if len(np.diff(peaks_new_tot))>0:
clusters_to_be_deleted=[]
if len(arg_diff_cluster)>0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
for i in range(len(arg_diff_cluster)-1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
arg_diff_cluster[i+1]+1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
if len(clusters_to_be_deleted)>0:
peaks_new_extra=[]
for m in range(len(clusters_to_be_deleted)):
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
peaks_new_tot=[]
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot=np.sort(peaks_new_tot)
else:
peaks_new_tot=peaks_e[:]
textline_con,hierarchy=return_contours_of_image(img_patch)
textline_con_fil=filter_contours_area_of_image(img_patch,
textline_con, hierarchy,
max_area=1, min_area=0.0008)
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus=int( y_diff_mean * (7./40.0) )
else:
#print(sigma_gaus,'sigma_gaus')
except:
sigma_gaus=12
except:
sigma_gaus=12
if sigma_gaus<3:
sigma_gaus=3
if sigma_gaus<3:
sigma_gaus=3
#print(sigma_gaus,'sigma')
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down=-y_padded+np.max(y_padded)
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
peaks, _ = find_peaks(y_padded_smoothed, height=0)
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
@ -239,7 +239,6 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
except:
arg_neg_must_be_deleted=[]
arg_diff_cluster=[]
@ -247,6 +246,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
peaks_new=peaks[:]
peaks_neg_new=peaks_neg[:]
clusters_to_be_deleted=[]
if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
for i in range(len(arg_diff_cluster)-1):
@ -275,6 +275,21 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
peaks_new_tot.append(i1)
peaks_new_tot=np.sort(peaks_new_tot)
##plt.plot(y_padded_up_to_down_padded)
##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
##plt.show()
##plt.plot(y_padded_up_to_down_padded)
##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
##plt.show()
##plt.plot(y_padded_smoothed)
##plt.plot(peaks,y_padded_smoothed[peaks],'*')
##plt.show()
##plt.plot(y_padded_smoothed)
##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
##plt.show()
peaks=peaks_new_tot[:]
peaks_neg=peaks_neg_new[:]
else:
@ -283,13 +298,11 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
peaks_neg=peaks_neg_new[:]
except:
pass
if len(y_padded_smoothed[peaks]) > 1:
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
else:
mean_value_of_peaks = np.nan
std_value_of_peaks = np.nan
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
peaks_values=y_padded_smoothed[peaks]
peaks_neg = peaks_neg - 20 - 20
peaks = peaks - 20
for jj in range(len(peaks_neg)):
@ -332,6 +345,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
point_down_narrow = peaks[jj] + first_nonzero + int(
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
if point_down_narrow >= img_patch.shape[0]:
point_down_narrow = img_patch.shape[0] - 2
@ -587,6 +601,7 @@ def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
[int(x_max), int(point_up)],
[int(x_max), int(point_down)],
[int(x_min), int(point_down)]]))
return peaks, textline_boxes_rot
def separate_lines_vertical(img_patch, contour_text_interest, thetha):
@ -618,7 +633,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
peaks_neg_new = peaks_neg[:]
clusters_to_be_deleted = []
if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2:
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
@ -626,7 +641,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
else:
if len(arg_neg_must_be_deleted) == 1:
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
@ -652,14 +667,9 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
peaks_new_tot = peaks[:]
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
if len(y_padded_smoothed[peaks])>1:
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
else:
mean_value_of_peaks = np.nan
std_value_of_peaks = np.nan
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
peaks_values = y_padded_smoothed[peaks]
peaks_neg = peaks_neg - 20 - 20
@ -677,6 +687,7 @@ def separate_lines_vertical(img_patch, contour_text_interest, thetha):
textline_boxes_rot = []
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
# print('11')
for jj in range(len(peaks)):
if jj == (len(peaks) - 1):
@ -983,16 +994,15 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
textline_con_fil = filter_contours_area_of_image(img_patch,
textline_con, hierarchy,
max_area=1, min_area=0.0008)
if len(np.diff(peaks_new_tot)):
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
else:
sigma_gaus = 12
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
# print(sigma_gaus,'sigma_gaus')
except:
sigma_gaus = 12
if sigma_gaus < 3:
sigma_gaus = 3
# print(sigma_gaus,'sigma')
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
@ -1016,7 +1026,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
clusters_to_be_deleted = []
if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2:
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
@ -1024,7 +1034,7 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
else:
if len(arg_neg_must_be_deleted) == 1:
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
@ -1067,14 +1077,9 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
peaks_new_tot = peaks[:]
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
if len(y_padded_smoothed[peaks]) > 1:
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
else:
mean_value_of_peaks = np.nan
std_value_of_peaks = np.nan
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
peaks_values = y_padded_smoothed[peaks]
###peaks_neg = peaks_neg - 20 - 20
@ -1084,8 +1089,10 @@ def separate_lines_new_inside_tiles2(img_patch, thetha):
if len(peaks_neg_true) > 0:
peaks_neg_true = np.array(peaks_neg_true)
peaks_neg_true = peaks_neg_true - 20 - 20
# print(peaks_neg_true)
for i in range(len(peaks_neg_true)):
img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
else:
@ -1170,11 +1177,13 @@ def separate_lines_new_inside_tiles(img_path, thetha):
if diff_peaks[i] <= cut_off:
forest.append(peaks_neg[i + 1])
if diff_peaks[i] > cut_off:
# print(forest[np.argmin(z[forest]) ] )
if not np.isnan(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
forest = []
forest.append(peaks_neg[i + 1])
if i == (len(peaks_neg) - 1):
# print(print(forest[np.argmin(z[forest]) ] ))
if not np.isnan(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
@ -1191,14 +1200,17 @@ def separate_lines_new_inside_tiles(img_path, thetha):
if diff_peaks_pos[i] <= cut_off:
forest.append(peaks[i + 1])
if diff_peaks_pos[i] > cut_off:
# print(forest[np.argmin(z[forest]) ] )
if not np.isnan(forest[np.argmax(z[forest])]):
peaks_pos_true.append(forest[np.argmax(z[forest])])
forest = []
forest.append(peaks[i + 1])
if i == (len(peaks) - 1):
# print(print(forest[np.argmin(z[forest]) ] ))
if not np.isnan(forest[np.argmax(z[forest])]):
peaks_pos_true.append(forest[np.argmax(z[forest])])
# print(len(peaks_neg_true) ,len(peaks_pos_true) ,'lensss')
if len(peaks_neg_true) > 0:
peaks_neg_true = np.array(peaks_neg_true)
@ -1224,6 +1236,7 @@ def separate_lines_new_inside_tiles(img_path, thetha):
"""
peaks_neg_true = peaks_neg_true - 20 - 20
# print(peaks_neg_true)
for i in range(len(peaks_neg_true)):
img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
@ -1265,6 +1278,7 @@ def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i
contours_imgs, hierarchy,
max_area=max_area, min_area=min_area)
cont_final = []
###print(add_boxes_coor_into_textlines,'ikki')
for i in range(len(contours_imgs)):
img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3))
img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255))
@ -1279,10 +1293,12 @@ def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_i
##0]
##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
##if add_boxes_coor_into_textlines:
##print(np.shape(contours_text_rot[0]),'sjppo')
##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0]
##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1]
cont_final.append(contours_text_rot[0])
##print(cont_final,'nadizzzz')
return None, cont_final
def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind, add_boxes_coor_into_textlines=False):
@ -1293,7 +1309,20 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, kernel)
textline_mask = cv2.erode(textline_mask, kernel, iterations=2)
# textline_mask = cv2.erode(textline_mask, kernel, iterations=1)
# print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz')
try:
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(textline_mask)
# plt.show()
# if abs(slope)>1:
# x_help=30
# y_help=2
# else:
# x_help=2
# y_help=2
x_help = 30
y_help = 2
@ -1317,12 +1346,28 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
img_contour = np.zeros((box_ind[3], box_ind[2], 3))
img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255))
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(img_contour)
# plt.show()
img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help),
img_contour.shape[1] + int(2 * x_help), 3))
img_contour_help[y_help : y_help + img_contour.shape[0],
x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
img_contour_rot = rotate_image(img_contour_help, slope)
# plt.imshow(img_contour_rot_help)
# plt.show()
# plt.imshow(dst_help)
# plt.show()
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(img_contour_rot_help)
# plt.show()
# plt.imshow(dst_help)
# plt.show()
img_contour_rot = img_contour_rot.astype(np.uint8)
# dst_help = dst_help.astype(np.uint8)
@ -1333,7 +1378,9 @@ def textline_contours_postprocessing(textline_mask, slope, contour_text_interest
len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))]
ind_big_con = np.argmax(len_con_text_rot)
# print('juzaa')
if abs(slope) > 45:
# print(add_boxes_coor_into_textlines,'avval')
_, contours_rotated_clean = separate_lines_vertical_cont(
textline_mask, contours_text_rot[ind_big_con], box_ind, slope,
add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
@ -1365,6 +1412,7 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl
length_x = int(img_path.shape[1] / float(num_patches))
# margin = int(0.04 * length_x) just recently this was changed because it break lines into 2
margin = int(0.04 * length_x)
# print(margin,'margin')
# if margin<=4:
# margin = int(0.08 * length_x)
# margin=0
@ -1404,9 +1452,11 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl
# if abs(slope_region)>70 and abs(slope_xline)<25:
# slope_xline=[slope_region][0]
slopes_tile_wise.append(slope_xline)
# print(slope_xline,'xlineeee')
img_line_rotated = rotate_image(img_xline, slope_xline)
img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1
# print(slopes_tile_wise,'slopes_tile_wise')
img_patch_ineterst = img_path[:, :] # [peaks_neg_true[14]-dis_up:peaks_neg_true[14]+dis_down ,:]
img_patch_ineterst_revised = np.zeros(img_patch_ineterst.shape)
@ -1448,6 +1498,8 @@ def separate_lines_new2(img_path, thetha, num_col, slope_region, logger=None, pl
img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin : length_x - margin]
img_patch_ineterst_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_separated_returned_true_size
# plt.imshow(img_patch_ineterst_revised)
# plt.show()
return img_patch_ineterst_revised
def do_image_rotation(angle, img, sigma_des, logger=None):
@ -1480,13 +1532,20 @@ def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
#img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:]
img_resized[ onset_y:onset_y+img_int.shape[0] , onset_x:onset_x+img_int.shape[1] ]=img_int[:,:]
#print(img_resized.shape,'img_resizedshape')
#plt.imshow(img_resized)
#plt.show()
if main_page and img_patch_org.shape[1] > img_patch_org.shape[0]:
#plt.imshow(img_resized)
#plt.show()
angles = np.array([-45, 0, 45, 90,])
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
angles = np.linspace(angle - 22.5, angle + 22.5, n_tot_angles)
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
elif main_page:
#plt.imshow(img_resized)
#plt.show()
angles = np.linspace(-12, 12, n_tot_angles)#np.array([0 , 45 , 90 , -45])
angle = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
@ -1573,12 +1632,22 @@ def do_work_of_slopes_new(
if slope_for_all == MAX_SLOPE:
slope_for_all = slope_deskew
slope = slope_for_all
mask_only_con_region = np.zeros(textline_mask_tot_ea.shape)
mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contour_par], color=(1, 1, 1))
# plt.imshow(mask_only_con_region)
# plt.show()
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w].copy()
mask_only_con_region = mask_only_con_region[y: y + h, x: x + w]
##plt.imshow(textline_mask_tot_ea)
##plt.show()
##plt.imshow(all_text_region_raw)
##plt.show()
##plt.imshow(mask_only_con_region)
##plt.show()
all_text_region_raw[mask_only_con_region == 0] = 0
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text)
@ -1639,15 +1708,20 @@ def do_work_of_slopes_new_curved(
mask_region_in_patch_region = mask_biggest[y : y + h, x : x + w]
textline_biggest_region = mask_biggest * textline_mask_tot_ea
# print(slope_for_all,'slope_for_all')
textline_rotated_separated = separate_lines_new2(textline_biggest_region[y: y+h, x: x+w], 0,
num_col, slope_for_all,
logger=logger, plotter=plotter)
# new line added
##print(np.shape(textline_rotated_separated),np.shape(mask_biggest))
textline_rotated_separated[mask_region_in_patch_region[:, :] != 1] = 0
# till here
textline_region_in_image[y : y + h, x : x + w] = textline_rotated_separated
# plt.imshow(textline_region_in_image)
# plt.show()
pixel_img = 1
cnt_textlines_in_image = return_contours_of_interested_textline(textline_region_in_image, pixel_img)
@ -1670,6 +1744,7 @@ def do_work_of_slopes_new_curved(
logger.error(why)
else:
textlines_cnt_per_region = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text, True)
# print(np.shape(textlines_cnt_per_region),'textlines_cnt_per_region')
return textlines_cnt_per_region[::-1], box_text, contour, contour_par, crop_coor, index_r_con, slope