Compare commits

..

No commits in common. "main" and "v0.4.0" have entirely different histories.
main ... v0.4.0

57 changed files with 3553 additions and 16568 deletions

View file

@ -2,7 +2,7 @@ name: CD
on:
push:
branches: [ "main" ]
branches: [ "master" ]
workflow_dispatch: # run manually
jobs:

View file

@ -1,24 +0,0 @@
name: PyPI CD
on:
release:
types: [published]
workflow_dispatch:
jobs:
pypi-publish:
name: upload release to PyPI
runs-on: ubuntu-latest
permissions:
# IMPORTANT: this permission is mandatory for Trusted Publishing
id-token: write
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
- name: Build package
run: make build
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
verbose: true

View file

@ -24,39 +24,19 @@ jobs:
sudo rm -rf "$AGENT_TOOLSDIRECTORY"
df -h
- uses: actions/checkout@v4
- uses: actions/cache/restore@v4
- uses: actions/cache@v4
id: seg_model_cache
with:
path: models_layout_v0_5_0
key: seg-models
- uses: actions/cache/restore@v4
id: ocr_model_cache
with:
path: models_ocr_v0_5_1
key: ocr-models
- uses: actions/cache/restore@v4
path: models_eynollah
key: ${{ runner.os }}-models
- uses: actions/cache@v4
id: bin_model_cache
with:
path: default-2021-03-09
key: bin-models
key: ${{ runner.os }}-modelbin
- name: Download models
if: steps.seg_model_cache.outputs.cache-hit != 'true' || steps.bin_model_cache.outputs.cache-hit != 'true' || steps.ocr_model_cache.outputs.cache-hit != true
if: steps.seg_model_cache.outputs.cache-hit != 'true' || steps.bin_model_cache.outputs.cache-hit != 'true'
run: make models
- uses: actions/cache/save@v4
if: steps.seg_model_cache.outputs.cache-hit != 'true'
with:
path: models_layout_v0_5_0
key: seg-models
- uses: actions/cache/save@v4
if: steps.ocr_model_cache.outputs.cache-hit != 'true'
with:
path: models_ocr_v0_5_1
key: ocr-models
- uses: actions/cache/save@v4
if: steps.bin_model_cache.outputs.cache-hit != 'true'
with:
path: default-2021-03-09
key: bin-models
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
@ -65,12 +45,7 @@ jobs:
run: |
python -m pip install --upgrade pip
make install-dev EXTRAS=OCR,plotting
make deps-test EXTRAS=OCR,plotting
ls -l models_*
- name: Lint with ruff
uses: astral-sh/ruff-action@v3
with:
src: "./src"
make deps-test
- name: Test with pytest
run: make coverage PYTEST_ARGS="-vv --junitxml=pytest.xml"
- name: Get coverage results

6
.gitignore vendored
View file

@ -2,12 +2,6 @@
__pycache__
sbb_newspapers_org_image/pylint.log
models_eynollah*
models_ocr*
models_layout*
default-2021-03-09
output.html
/build
/dist
*.tif
*.sw?
TAGS

View file

@ -5,136 +5,12 @@ Versioned according to [Semantic Versioning](http://semver.org/).
## Unreleased
## [0.6.0] - 2025-10-17
Added:
* `eynollah-training` CLI and docs for training the models, #187, #193, https://github.com/qurator-spk/sbb_pixelwise_segmentation/tree/unifying-training-models
Fixed:
* `join_polygons` always returning Polygon, not MultiPolygon, #203
## [0.6.0rc2] - 2025-10-14
Fixed:
* Prevent OOM GPU error by avoiding loading the `region_fl` model, #199
* XML output: encoding should be `utf-8`, not `utf8`, #196, #197
## [0.6.0rc1] - 2025-10-10
Fixed:
* continue processing when no columns detected but text regions exist
* convert marginalia to main text if no main text is present
* reset deskewing angle to 0° when text covers <30% image area and detected angle >45°
* :fire: polygons: avoid invalid paths (use `Polygon.buffer()` instead of dilation etc.)
* `return_boxes_of_images_by_order_of_reading_new`: avoid Numpy.dtype mismatch, simplify
* `return_boxes_of_images_by_order_of_reading_new`: log any exceptions instead of ignoring
* `filter_contours_without_textline_inside`: avoid removing from duplicate lists twice
* `get_marginals`: exit early if no peaks found to avoid spurious overlap mask
* `get_smallest_skew`: after shifting search range of rotation angle, use overall best result
* Dockerfile: fix CUDA installation (cuDNN contested between Torch and TF due to extra OCR)
* OCR: re-instate missing methods and fix `utils_ocr` function calls
* mbreorder/enhancement CLIs: missing imports
* :fire: writer: `SeparatorRegion` needs `SeparatorRegionType` (not `ImageRegionType`), f458e3e
* tests: switch from `pytest-subtests` to `parametrize` so we can use `pytest-isolate`
(so CUDA memory gets freed between tests if running on GPU)
Added:
* :fire: `layout` CLI: new option `--model_version` to override default choices
* test coverage for OCR options in `layout`
* test coverage for table detection in `layout`
* CI linting with ruff
Changed:
* polygons: slightly widen for regions and lines, increase for separators
* various refactorings, some code style and identifier improvements
* deskewing/multiprocessing: switch back to ProcessPoolExecutor (faster),
but use shared memory if necessary, and switch back from `loky` to stdlib,
and shutdown in `del()` instead of `atexit`
* :fire: OCR: switch CNN-RNN model to `20250930` version compatible with TF 2.12 on CPU, too
* OCR: allow running `-tr` without `-fl`, too
* :fire: writer: use `@type='heading'` instead of `'header'` for headings
* :fire: performance gains via refactoring (simplification, less copy-code, vectorization,
avoiding unused calculations, avoiding unnecessary 3-channel image operations)
* :fire: heuristic reading order detection: many improvements
- contour vs splitter box matching:
* contour must be contained in box exactly instead of heuristics
* make fallback center matching, center must be contained in box
- original vs deskewed contour matching:
* same min-area filter on both sides
* similar area score in addition to center proximity
* avoid duplicate and missing mappings by allowing N:M
matches and splitting+joining where necessary
* CI: update+improve model caching
## [0.5.0] - 2025-09-26
Fixed:
* restoring the contour in the original image caused an error due to an empty tuple, #154
* removed NumPy warnings calculating sigma, mean, (fixed issue #158)
* fixed bug in `separate_lines.py`, #124
* Drop capitals are now handled separately from their corresponding textline
* Marginals are now divided into left and right. Their reading order is written first for left marginals, then for right marginals, and within each side from top to bottom
* Added a new page extraction model. Instead of bounding boxes, it outputs page contours in the XML file, improving results for skewed pages
* Improved reading order for cases where a textline is segmented into multiple smaller textlines
Changed
* CLIs: read only allowed filename suffixes (image or XML) with `--dir_in`
* CLIs: make all output option required, and `-i` / `-di` required but mutually exclusive
* ocr CLI: drop redundant `-brb` in favour of just `-dib`
* APIs: move all input/output path options from class (kwarg and attribute) ro `run` kwarg
* layout textlines: polygonal also without `-cl`
Added:
* `eynollah machine-based-reading-order` CLI to run reading order detection, #175
* `eynollah enhancement` CLI to run image enhancement, #175
* Improved models for page extraction and reading order detection, #175
* For the lightweight version (layout and textline detection), thresholds are now assigned to the artificial class. Users can apply these thresholds to improve detection of isolated textlines and regions. To counteract the drawback of thresholding, the skeleton of the artificial class is used to keep lines as thin as possible (resolved issues #163 and #161)
* Added and integrated a trained CNN-RNN OCR models
* Added and integrated a trained TrOCR model
* Improved OCR detection to support vertical and curved textlines
* Introduced a new machine-based reading order model with rotation augmentation
* Optimized reading order speed by clustering text regions that belong to the same block, maintaining top-to-bottom order
* Implemented text merging across textlines based on hyphenation when a line ends with a hyphen
* Integrated image enhancement as a separate use case
* Added reading order functionality on the layout level as a separate use case
* CNN-RNN OCR models provide confidence scores for predictions
* Added OCR visualization: predicted OCR can be overlaid on an image of the same size as the input
* Introduced a threshold value for CNN-RNN OCR models, allowing users to filter out low-confidence textline predictions
* For OCR, users can specify a single model by name instead of always using the default model
* Under the OCR use case, if Ground Truth XMLs and images are available, textline image and corresponding text extraction can now be performed
Merged PRs:
* better machine based reading order + layout and textline + ocr by @vahidrezanezhad in https://github.com/qurator-spk/eynollah/pull/175
* CI: pypi by @kba in https://github.com/qurator-spk/eynollah/pull/154
* CI: Use most recent actions/setup-python@v5 by @kba in https://github.com/qurator-spk/eynollah/pull/157
* update docker by @bertsky in https://github.com/qurator-spk/eynollah/pull/159
* Ocrd fixes by @kba in https://github.com/qurator-spk/eynollah/pull/167
* Updating readme for eynollah use cases cli by @kba in https://github.com/qurator-spk/eynollah/pull/166
* OCR-D processor: expose reading_order_machine_based by @bertsky in https://github.com/qurator-spk/eynollah/pull/171
* prepare release v0.5.0: fix logging by @bertsky in https://github.com/qurator-spk/eynollah/pull/180
* mb_ro_on_layout: remove copy-pasta code not actually used by @kba in https://github.com/qurator-spk/eynollah/pull/181
* prepare release v0.5.0: improve CLI docstring, refactor I/O path options from class to run kwargs, increase test coverage @bertsky in #182
* prepare release v0.5.0: fix for OCR doit subtest by @bertsky in https://github.com/qurator-spk/eynollah/pull/183
* Prepare release v0.5.0 by @kba in https://github.com/qurator-spk/eynollah/pull/178
* updating eynollah README, how to use it for use cases by @vahidrezanezhad in https://github.com/qurator-spk/eynollah/pull/156
* add feedback to command line interface by @michalbubula in https://github.com/qurator-spk/eynollah/pull/170
## [0.4.0] - 2025-04-07
Fixed:
* allow empty imports for optional dependencies
* avoid Numpy warnings (empty slices etc.)
* avoid Numpy warnings (empty slices etc)
* remove deprecated Numpy types
* binarization CLI: make `dir_in` usable again
@ -307,11 +183,6 @@ Fixed:
Initial release
<!-- link-labels -->
[0.6.0]: ../../compare/v0.6.0...v0.6.0rc2
[0.6.0rc2]: ../../compare/v0.6.0rc2...v0.6.0rc1
[0.6.0rc1]: ../../compare/v0.6.0rc1...v0.5.0
[0.5.0]: ../../compare/v0.5.0...v0.4.0
[0.4.0]: ../../compare/v0.4.0...v0.3.1
[0.3.1]: ../../compare/v0.3.1...v0.3.0
[0.3.0]: ../../compare/v0.3.0...v0.2.0
[0.2.0]: ../../compare/v0.2.0...v0.1.0

View file

@ -36,12 +36,8 @@ COPY . .
COPY ocrd-tool.json .
# prepackage ocrd-tool.json as ocrd-all-tool.json
RUN ocrd ocrd-tool ocrd-tool.json dump-tools > $(dirname $(ocrd bashlib filename))/ocrd-all-tool.json
# prepackage ocrd-all-module-dir.json
RUN ocrd ocrd-tool ocrd-tool.json dump-module-dirs > $(dirname $(ocrd bashlib filename))/ocrd-all-module-dir.json
# install everything and reduce image size
RUN make install EXTRAS=OCR && rm -rf /build/eynollah
# fixup for broken cuDNN installation (Torch pulls in 8.5.0, which is incompatible with Tensorflow)
RUN pip install nvidia-cudnn-cu11==8.6.0.163
# smoke test
RUN eynollah --help

View file

@ -3,28 +3,18 @@ PIP ?= pip3
EXTRAS ?=
# DOCKER_BASE_IMAGE = artefakt.dev.sbb.berlin:5000/sbb/ocrd_core:v2.68.0
DOCKER_BASE_IMAGE ?= docker.io/ocrd/core-cuda-tf2:latest
DOCKER_TAG ?= ocrd/eynollah
DOCKER ?= docker
DOCKER_BASE_IMAGE = docker.io/ocrd/core-cuda-tf2:v3.3.0
DOCKER_TAG = ocrd/eynollah
#SEG_MODEL := https://qurator-data.de/eynollah/2021-04-25/models_eynollah.tar.gz
#SEG_MODEL := https://qurator-data.de/eynollah/2022-04-05/models_eynollah_renamed.tar.gz
# SEG_MODEL := https://qurator-data.de/eynollah/2022-04-05/models_eynollah.tar.gz
SEG_MODEL := https://qurator-data.de/eynollah/2022-04-05/models_eynollah.tar.gz
#SEG_MODEL := https://github.com/qurator-spk/eynollah/releases/download/v0.3.0/models_eynollah.tar.gz
#SEG_MODEL := https://github.com/qurator-spk/eynollah/releases/download/v0.3.1/models_eynollah.tar.gz
SEG_MODEL := https://zenodo.org/records/17194824/files/models_layout_v0_5_0.tar.gz?download=1
SEG_MODELFILE = $(notdir $(patsubst %?download=1,%,$(SEG_MODEL)))
SEG_MODELNAME = $(SEG_MODELFILE:%.tar.gz=%)
BIN_MODEL := https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip
BIN_MODELFILE = $(notdir $(BIN_MODEL))
BIN_MODELNAME := default-2021-03-09
OCR_MODEL := https://zenodo.org/records/17236998/files/models_ocr_v0_5_1.tar.gz?download=1
OCR_MODELFILE = $(notdir $(patsubst %?download=1,%,$(OCR_MODEL)))
OCR_MODELNAME = $(OCR_MODELFILE:%.tar.gz=%)
PYTEST_ARGS ?= -vv --isolate
PYTEST_ARGS ?= -vv
# BEGIN-EVAL makefile-parser --make-help Makefile
@ -37,8 +27,7 @@ help:
@echo " install Install package with pip"
@echo " install-dev Install editable with pip"
@echo " deps-test Install test dependencies with pip"
@echo " models Download and extract models to $(CURDIR):"
@echo " $(BIN_MODELNAME) $(SEG_MODELNAME) $(OCR_MODELNAME)"
@echo " models Download and extract models to $(CURDIR)/models_eynollah"
@echo " smoke-test Run simple CLI check"
@echo " ocrd-test Run OCR-D CLI check"
@echo " test Run unit tests"
@ -49,32 +38,27 @@ help:
@echo " PYTEST_ARGS pytest args for 'test' (Set to '-s' to see log output during test execution, '-vv' to see individual tests. [$(PYTEST_ARGS)]"
@echo " SEG_MODEL URL of 'models' archive to download for segmentation 'test' [$(SEG_MODEL)]"
@echo " BIN_MODEL URL of 'models' archive to download for binarization 'test' [$(BIN_MODEL)]"
@echo " OCR_MODEL URL of 'models' archive to download for binarization 'test' [$(OCR_MODEL)]"
@echo ""
# END-EVAL
# Download and extract models to $(PWD)/models_layout_v0_5_0
models: $(BIN_MODELNAME) $(SEG_MODELNAME) $(OCR_MODELNAME)
# Download and extract models to $(PWD)/models_eynollah
models: models_eynollah default-2021-03-09
# do not download these files if we already have the directories
.INTERMEDIATE: $(BIN_MODELFILE) $(SEG_MODELFILE) $(OCR_MODELFILE)
models_eynollah: models_eynollah.tar.gz
tar zxf models_eynollah.tar.gz
$(BIN_MODELFILE):
wget -O $@ $(BIN_MODEL)
$(SEG_MODELFILE):
wget -O $@ $(SEG_MODEL)
$(OCR_MODELFILE):
wget -O $@ $(OCR_MODEL)
models_eynollah.tar.gz:
wget $(SEG_MODEL)
$(BIN_MODELNAME): $(BIN_MODELFILE)
default-2021-03-09: $(notdir $(BIN_MODEL))
unzip $(notdir $(BIN_MODEL))
mkdir $@
unzip -d $@ $<
$(SEG_MODELNAME): $(SEG_MODELFILE)
tar zxf $<
$(OCR_MODELNAME): $(OCR_MODELFILE)
tar zxf $<
mv $(basename $(notdir $(BIN_MODEL))) $@
$(notdir $(BIN_MODEL)):
wget $(BIN_MODEL)
build:
$(PIP) install build
@ -88,34 +72,20 @@ install:
install-dev:
$(PIP) install -e .$(and $(EXTRAS),[$(EXTRAS)])
ifeq (OCR,$(findstring OCR, $(EXTRAS)))
deps-test: $(OCR_MODELNAME)
endif
deps-test: $(BIN_MODELNAME) $(SEG_MODELNAME)
deps-test: models_eynollah
$(PIP) install -r requirements-test.txt
ifeq (OCR,$(findstring OCR, $(EXTRAS)))
ln -rs $(OCR_MODELNAME)/* $(SEG_MODELNAME)/
endif
smoke-test: TMPDIR != mktemp -d
smoke-test: tests/resources/kant_aufklaerung_1784_0020.tif
# layout analysis:
eynollah layout -i $< -o $(TMPDIR) -m $(CURDIR)/$(SEG_MODELNAME)
eynollah layout -i $< -o $(TMPDIR) -m $(CURDIR)/models_eynollah
fgrep -q http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15 $(TMPDIR)/$(basename $(<F)).xml
fgrep -c -e TextRegion -e ImageRegion -e SeparatorRegion $(TMPDIR)/$(basename $(<F)).xml
# layout, directory mode (skip one, add one):
eynollah layout -di $(<D) -o $(TMPDIR) -m $(CURDIR)/$(SEG_MODELNAME)
# directory mode (skip one, add one):
eynollah layout -di $(<D) -o $(TMPDIR) -m $(CURDIR)/models_eynollah
test -s $(TMPDIR)/euler_rechenkunst01_1738_0025.xml
# mbreorder, directory mode (overwrite):
eynollah machine-based-reading-order -di $(<D) -o $(TMPDIR) -m $(CURDIR)/$(SEG_MODELNAME)
fgrep -q http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15 $(TMPDIR)/$(basename $(<F)).xml
fgrep -c -e RegionRefIndexed $(TMPDIR)/$(basename $(<F)).xml
# binarize:
eynollah binarization -m $(CURDIR)/$(BIN_MODELNAME) -i $< -o $(TMPDIR)/$(<F)
test -s $(TMPDIR)/$(<F)
@set -x; test "$$(identify -format '%w %h' $<)" = "$$(identify -format '%w %h' $(TMPDIR)/$(<F))"
# enhance:
eynollah enhancement -m $(CURDIR)/$(SEG_MODELNAME) -sos -i $< -o $(TMPDIR) -O
eynollah binarization -m $(CURDIR)/default-2021-03-09 $< $(TMPDIR)/$(<F)
test -s $(TMPDIR)/$(<F)
@set -x; test "$$(identify -format '%w %h' $<)" = "$$(identify -format '%w %h' $(TMPDIR)/$(<F))"
$(RM) -r $(TMPDIR)
@ -126,18 +96,17 @@ ocrd-test: tests/resources/kant_aufklaerung_1784_0020.tif
cp $< $(TMPDIR)
ocrd workspace -d $(TMPDIR) init
ocrd workspace -d $(TMPDIR) add -G OCR-D-IMG -g PHYS_0020 -i OCR-D-IMG_0020 $(<F)
ocrd-eynollah-segment -w $(TMPDIR) -I OCR-D-IMG -O OCR-D-SEG -P models $(CURDIR)/$(SEG_MODELNAME)
ocrd-eynollah-segment -w $(TMPDIR) -I OCR-D-IMG -O OCR-D-SEG -P models $(CURDIR)/models_eynollah
result=$$(ocrd workspace -d $(TMPDIR) find -G OCR-D-SEG); \
fgrep -q http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15 $(TMPDIR)/$$result && \
fgrep -c -e TextRegion -e ImageRegion -e SeparatorRegion $(TMPDIR)/$$result
ocrd-sbb-binarize -w $(TMPDIR) -I OCR-D-IMG -O OCR-D-BIN -P model $(CURDIR)/$(BIN_MODELNAME)
ocrd-sbb-binarize -w $(TMPDIR) -I OCR-D-SEG -O OCR-D-SEG-BIN -P model $(CURDIR)/$(BIN_MODELNAME) -P operation_level region
ocrd-sbb-binarize -w $(TMPDIR) -I OCR-D-IMG -O OCR-D-BIN -P model $(CURDIR)/default-2021-03-09
ocrd-sbb-binarize -w $(TMPDIR) -I OCR-D-SEG -O OCR-D-SEG-BIN -P model $(CURDIR)/default-2021-03-09 -P operation_level region
$(RM) -r $(TMPDIR)
# Run unit tests
test: export MODELS_LAYOUT=$(CURDIR)/$(SEG_MODELNAME)
test: export MODELS_OCR=$(CURDIR)/$(OCR_MODELNAME)
test: export MODELS_BIN=$(CURDIR)/$(BIN_MODELNAME)
test: export EYNOLLAH_MODELS=$(CURDIR)/models_eynollah
test: export SBBBIN_MODELS=$(CURDIR)/default-2021-03-09
test:
$(PYTHON) -m pytest tests --durations=0 --continue-on-collection-errors $(PYTEST_ARGS)
@ -148,7 +117,7 @@ coverage:
# Build docker image
docker:
$(DOCKER) build \
docker build \
--build-arg DOCKER_BASE_IMAGE=$(DOCKER_BASE_IMAGE) \
--build-arg VCS_REF=$$(git rev-parse --short HEAD) \
--build-arg BUILD_DATE=$$(date -u +"%Y-%m-%dT%H:%M:%SZ") \

114
README.md
View file

@ -1,6 +1,5 @@
# Eynollah
> Document Layout Analysis, Binarization and OCR with Deep Learning and Heuristics
> Document Layout Analysis with Deep Learning and Heuristics
[![PyPI Version](https://img.shields.io/pypi/v/eynollah)](https://pypi.org/project/eynollah/)
[![GH Actions Test](https://github.com/qurator-spk/eynollah/actions/workflows/test-eynollah.yml/badge.svg)](https://github.com/qurator-spk/eynollah/actions/workflows/test-eynollah.yml)
@ -11,24 +10,21 @@
![](https://user-images.githubusercontent.com/952378/102350683-8a74db80-3fa5-11eb-8c7e-f743f7d6eae2.jpg)
## Features
* Support for 10 distinct segmentation classes:
* Support for up to 10 segmentation classes:
* background, [page border](https://ocr-d.de/en/gt-guidelines/trans/lyRand.html), [text region](https://ocr-d.de/en/gt-guidelines/trans/lytextregion.html#textregionen__textregion_), [text line](https://ocr-d.de/en/gt-guidelines/pagexml/pagecontent_xsd_Complex_Type_pc_TextLineType.html), [header](https://ocr-d.de/en/gt-guidelines/trans/lyUeberschrift.html), [image](https://ocr-d.de/en/gt-guidelines/trans/lyBildbereiche.html), [separator](https://ocr-d.de/en/gt-guidelines/trans/lySeparatoren.html), [marginalia](https://ocr-d.de/en/gt-guidelines/trans/lyMarginalie.html), [initial](https://ocr-d.de/en/gt-guidelines/trans/lyInitiale.html), [table](https://ocr-d.de/en/gt-guidelines/trans/lyTabellen.html)
* Support for various image optimization operations:
* cropping (border detection), binarization, deskewing, dewarping, scaling, enhancing, resizing
* Textline segmentation to bounding boxes or polygons (contours) including for curved lines and vertical text
* Text recognition (OCR) using either CNN-RNN or Transformer models
* Detection of reading order (left-to-right or right-to-left) using either heuristics or trainable models
* Text line segmentation to bounding boxes or polygons (contours) including for curved lines and vertical text
* Detection of reading order (left-to-right or right-to-left)
* Output in [PAGE-XML](https://github.com/PRImA-Research-Lab/PAGE-XML)
* [OCR-D](https://github.com/qurator-spk/eynollah#use-as-ocr-d-processor) interface
:warning: Development is focused on achieving the best quality of results for a wide variety of historical
documents and therefore processing can be very slow. We aim to improve this, but contributions are welcome.
:warning: Development is currently focused on achieving the best possible quality of results for a wide variety of historical documents and therefore processing can be very slow. We aim to improve this, but contributions are welcome.
## Installation
Python `3.8-3.11` with Tensorflow `<2.13` on Linux are currently supported.
For (limited) GPU support the CUDA toolkit needs to be installed. A known working config is CUDA `11` with cuDNN `8.6`.
For (limited) GPU support the CUDA toolkit needs to be installed.
You can either install from PyPI
@ -45,44 +41,19 @@ cd eynollah; pip install -e .
Alternatively, you can run `make install` or `make install-dev` for editable installation.
To also install the dependencies for the OCR engines:
```
pip install "eynollah[OCR]"
# or
make install EXTRAS=OCR
```
## Models
Pre-trained models can be downloaded from [qurator-data.de](https://qurator-data.de/eynollah/) or [huggingface](https://huggingface.co/SBB?search_models=eynollah).
Pretrained models can be downloaded from [zenodo](https://zenodo.org/records/17194824) or [huggingface](https://huggingface.co/SBB?search_models=eynollah).
For documentation on methods and models, have a look at [`models.md`](https://github.com/qurator-spk/eynollah/tree/main/docs/models.md).
For documentation on models, have a look at [`models.md`](https://github.com/qurator-spk/eynollah/tree/main/docs/models.md).
Model cards are also provided for our trained models.
## Training
In case you want to train your own model with Eynollah, see the
documentation in [`train.md`](https://github.com/qurator-spk/eynollah/tree/main/docs/train.md) and use the
tools in the [`train` folder](https://github.com/qurator-spk/eynollah/tree/main/train).
## Train
In case you want to train your own model with Eynollah, have a look at [`train.md`](https://github.com/qurator-spk/eynollah/tree/main/docs/train.md).
## Usage
Eynollah supports five use cases: layout analysis (segmentation), binarization,
image enhancement, text recognition (OCR), and reading order detection.
### Layout Analysis
The layout analysis module is responsible for detecting layout elements, identifying text lines, and determining reading
order using either heuristic methods or a [pretrained reading order detection model](https://github.com/qurator-spk/eynollah#machine-based-reading-order).
Reading order detection can be performed either as part of layout analysis based on image input, or, currently under
development, based on pre-existing layout analysis results in PAGE-XML format as input.
The command-line interface for layout analysis can be called like this:
The command-line interface can be called like this:
```sh
eynollah layout \
eynollah \
-i <single image file> | -di <directory containing image files> \
-o <output directory> \
-m <directory containing model files> \
@ -95,7 +66,6 @@ The following options can be used to further configure the processing:
|-------------------|:-------------------------------------------------------------------------------|
| `-fl` | full layout analysis including all steps and segmentation classes |
| `-light` | lighter and faster but simpler method for main region detection and deskewing |
| `-tll` | this indicates the light textline and should be passed with light version |
| `-tab` | apply table detection |
| `-ae` | apply enhancement (the resulting image is saved to the output directory) |
| `-as` | apply scaling |
@ -110,50 +80,8 @@ The following options can be used to further configure the processing:
| `-sp <directory>` | save cropped page image to this directory |
| `-sa <directory>` | save all (plot, enhanced/binary image, layout) to this directory |
If no further option is set, the tool performs layout detection of main regions (background, text, images, separators
and marginals).
The best output quality is achieved when RGB images are used as input rather than greyscale or binarized images.
### Binarization
The binarization module performs document image binarization using pretrained pixelwise segmentation models.
The command-line interface for binarization can be called like this:
```sh
eynollah binarization \
-i <single image file> | -di <directory containing image files> \
-o <output directory> \
-m <directory containing model files> \
```
### OCR
The OCR module performs text recognition using either a CNN-RNN model or a Transformer model.
The command-line interface for OCR can be called like this:
```sh
eynollah ocr \
-i <single image file> | -di <directory containing image files> \
-dx <directory of xmls> \
-o <output directory> \
-m <directory containing model files> | --model_name <path to specific model> \
```
### Machine-based-reading-order
The machine-based reading-order module employs a pretrained model to identify the reading order from layouts represented in PAGE-XML files.
The command-line interface for machine based reading order can be called like this:
```sh
eynollah machine-based-reading-order \
-i <single image file> | -di <directory containing image files> \
-xml <xml file name> | -dx <directory containing xml files> \
-m <path to directory containing model files> \
-o <output directory>
```
If no option is set, the tool performs layout detection of main regions (background, text, images, separators and marginals).
The best output quality is produced when RGB images are used as input rather than greyscale or binarized images.
#### Use as OCR-D processor
@ -162,7 +90,8 @@ formally described in [`ocrd-tool.json`](https://github.com/qurator-spk/eynollah
In this case, the source image file group with (preferably) RGB images should be used as input like this:
ocrd-eynollah-segment -I OCR-D-IMG -O OCR-D-SEG -P models eynollah_layout_v0_5_0
ocrd-eynollah-segment -I OCR-D-IMG -O OCR-D-SEG -P models 2022-04-05
If the input file group is PAGE-XML (from a previous OCR-D workflow step), Eynollah behaves as follows:
- existing regions are kept and ignored (i.e. in effect they might overlap segments from Eynollah results)
@ -174,19 +103,16 @@ If the input file group is PAGE-XML (from a previous OCR-D workflow step), Eynol
(because some other preprocessing step was in effect like `denoised`), then
the output PAGE-XML will be based on that as new top-level (`@imageFilename`)
ocrd-eynollah-segment -I OCR-D-XYZ -O OCR-D-SEG -P models eynollah_layout_v0_5_0
In general, it makes more sense to add other workflow steps **after** Eynollah.
ocrd-eynollah-segment -I OCR-D-XYZ -O OCR-D-SEG -P models 2022-04-05
There is also an OCR-D processor for binarization:
ocrd-sbb-binarize -I OCR-D-IMG -O OCR-D-BIN -P models default-2021-03-09
Still, in general, it makes more sense to add other workflow steps **after** Eynollah.
#### Additional documentation
Additional documentation is available in the [docs](https://github.com/qurator-spk/eynollah/tree/main/docs) directory.
Please check the [wiki](https://github.com/qurator-spk/eynollah/wiki).
## How to cite
If you find this tool useful in your work, please consider citing our paper:
```bibtex
@inproceedings{hip23rezanezhad,

View file

@ -1,6 +1,5 @@
# Models documentation
This suite of 15 models presents a document layout analysis (DLA) system for historical documents implemented by
This suite of 14 models presents a document layout analysis (DLA) system for historical documents implemented by
pixel-wise segmentation using a combination of a ResNet50 encoder with various U-Net decoders. In addition, heuristic
methods are applied to detect marginals and to determine the reading order of text regions.
@ -24,7 +23,6 @@ See the flowchart below for the different stages and how they interact:
## Models
### Image enhancement
Model card: [Image Enhancement](https://huggingface.co/SBB/eynollah-enhancement)
This model addresses image resolution, specifically targeting documents with suboptimal resolution. In instances where
@ -32,14 +30,12 @@ the detection of document layout exhibits inadequate performance, the proposed e
the quality and clarity of the images, thus facilitating enhanced visual interpretation and analysis.
### Page extraction / border detection
Model card: [Page Extraction/Border Detection](https://huggingface.co/SBB/eynollah-page-extraction)
A problem that can negatively affect OCR are black margins around a page caused by document scanning. A deep learning
model helps to crop to the page borders by using a pixel-wise segmentation method.
### Column classification
Model card: [Column Classification](https://huggingface.co/SBB/eynollah-column-classifier)
This model is a trained classifier that recognizes the number of columns in a document by use of a training set with
@ -47,7 +43,6 @@ manual classification of all documents into six classes with either one, two, th
respectively.
### Binarization
Model card: [Binarization](https://huggingface.co/SBB/eynollah-binarization)
This model is designed to tackle the intricate task of document image binarization, which involves segmentation of the
@ -57,7 +52,6 @@ capability of the model enables improved accuracy and reliability in subsequent
enhanced document understanding and interpretation.
### Main region detection
Model card: [Main Region Detection](https://huggingface.co/SBB/eynollah-main-regions)
This model has employed a different set of labels, including an artificial class specifically designed to encompass the
@ -67,7 +61,6 @@ during the inference phase. By incorporating this methodology, improved efficien
model's ability to accurately identify and classify text regions within documents.
### Main region detection (with scaling augmentation)
Model card: [Main Region Detection (with scaling augmentation)](https://huggingface.co/SBB/eynollah-main-regions-aug-scaling)
Utilizing scaling augmentation, this model leverages the capability to effectively segment elements of extremely high or
@ -76,14 +69,12 @@ categorizing and isolating such elements, thereby enhancing its overall performa
documents with varying scale characteristics.
### Main region detection (with rotation augmentation)
Model card: [Main Region Detection (with rotation augmentation)](https://huggingface.co/SBB/eynollah-main-regions-aug-rotation)
This model takes advantage of rotation augmentation. This helps the tool to segment the vertical text regions in a
robust way.
### Main region detection (ensembled)
Model card: [Main Region Detection (ensembled)](https://huggingface.co/SBB/eynollah-main-regions-ensembled)
The robustness of this model is attained through an ensembling technique that combines the weights from various epochs.
@ -91,19 +82,16 @@ By employing this approach, the model achieves a high level of resilience and st
strengths of multiple epochs to enhance its overall performance and deliver consistent and reliable results.
### Full region detection (1,2-column documents)
Model card: [Full Region Detection (1,2-column documents)](https://huggingface.co/SBB/eynollah-full-regions-1column)
This model deals with documents comprising of one and two columns.
### Full region detection (3,n-column documents)
Model card: [Full Region Detection (3,n-column documents)](https://huggingface.co/SBB/eynollah-full-regions-3pluscolumn)
This model is responsible for detecting headers and drop capitals in documents with three or more columns.
### Textline detection
Model card: [Textline Detection](https://huggingface.co/SBB/eynollah-textline)
The method for textline detection combines deep learning and heuristics. In the deep learning part, an image-to-image
@ -118,7 +106,6 @@ segmentation is first deskewed and then the textlines are separated with the sam
textline bounding boxes. Later, the strap is rotated back into its original orientation.
### Textline detection (light)
Model card: [Textline Detection Light (simpler but faster method)](https://huggingface.co/SBB/eynollah-textline_light)
The method for textline detection combines deep learning and heuristics. In the deep learning part, an image-to-image
@ -132,7 +119,6 @@ enhancing the model's ability to accurately identify and delineate individual te
eliminates the need for additional heuristics in extracting textline contours.
### Table detection
Model card: [Table Detection](https://huggingface.co/SBB/eynollah-tables)
The objective of this model is to perform table segmentation in historical document images. Due to the pixel-wise
@ -142,21 +128,17 @@ effectively identify and delineate tables within the historical document images,
enabling subsequent analysis and interpretation.
### Image detection
Model card: [Image Detection](https://huggingface.co/SBB/eynollah-image-extraction)
This model is used for the task of illustration detection only.
### Reading order detection
Model card: [Reading Order Detection]()
TODO
## Heuristic methods
Additionally, some heuristic methods are employed to further improve the model predictions:
* After border detection, the largest contour is determined by a bounding box, and the image cropped to these coordinates.
* For text region detection, the image is scaled up to make it easier for the model to detect background space between text regions.
* A minimum area is defined for text regions in relation to the overall image dimensions, so that very small regions that are noise can be filtered out.

View file

@ -1,55 +1,38 @@
# Training documentation
This aims to assist users in preparing training datasets, training models, and performing inference with trained models.
We cover various use cases including pixel-wise segmentation, image classification, image enhancement, and machine-based
reading order detection. For each use case, we provide guidance on how to generate the corresponding training dataset.
This document aims to assist users in preparing training datasets, training models, and
performing inference with trained models. We cover various use cases including
pixel-wise segmentation, image classification, image enhancement, and
machine-based reading order detection. For each use case, we provide guidance
on how to generate the corresponding training dataset.
The following three tasks can all be accomplished using the code in the
[`train`](https://github.com/qurator-spk/eynollah/tree/main/train) directory:
The following three tasks can all be accomplished using the code in the
[`train`](https://github.com/qurator-spk/sbb_pixelwise_segmentation/tree/unifying-training-models) directory:
* generate training dataset
* train a model
* inference with the trained model
## Training, evaluation and output
The train and evaluation folders should contain subfolders of `images` and `labels`.
The output folder should be an empty folder where the output model will be written to.
## Generate training dataset
The script `generate_gt_for_training.py` is used for generating training datasets. As the results of the following
command demonstrates, the dataset generator provides three different commands:
The script `generate_gt_for_training.py` is used for generating training datasets. As the results of the following
command demonstrates, the dataset generator provides several subcommands:
`python generate_gt_for_training.py --help`
```sh
eynollah-training generate-gt --help
```
The three most important subcommands are:
These three commands are:
* image-enhancement
* machine-based-reading-order
* pagexml2label
### image-enhancement
Generating a training dataset for image enhancement is quite straightforward. All that is needed is a set of
Generating a training dataset for image enhancement is quite straightforward. All that is needed is a set of
high-resolution images. The training dataset can then be generated using the following command:
```sh
eynollah-training image-enhancement \
-dis "dir of high resolution images" \
-dois "dir where degraded images will be written" \
-dols "dir where the corresponding high resolution image will be written as label" \
-scs "degrading scales json file"
```
`python generate_gt_for_training.py image-enhancement -dis "dir of high resolution images" -dois "dir where degraded
images will be written" -dols "dir where the corresponding high resolution image will be written as label" -scs
"degrading scales json file"`
The scales JSON file is a dictionary with a key named `scales` and values representing scales smaller than 1. Images are
downscaled based on these scales and then upscaled again to their original size. This process causes the images to lose
resolution at different scales. The degraded images are used as input images, and the original high-resolution images
The scales JSON file is a dictionary with a key named 'scales' and values representing scales smaller than 1. Images are
downscaled based on these scales and then upscaled again to their original size. This process causes the images to lose
resolution at different scales. The degraded images are used as input images, and the original high-resolution images
serve as labels. The enhancement model can be trained with this generated dataset. The scales JSON file looks like this:
```yaml
@ -59,40 +42,31 @@ serve as labels. The enhancement model can be trained with this generated datase
```
### machine-based-reading-order
For machine-based reading order, we aim to determine the reading priority between two sets of text regions. The model's
input is a three-channel image: the first and last channels contain information about each of the two text regions,
while the middle channel encodes prominent layout elements necessary for reading order, such as separators and headers.
To generate the training dataset, our script requires a page XML file that specifies the image layout with the correct
For machine-based reading order, we aim to determine the reading priority between two sets of text regions. The model's
input is a three-channel image: the first and last channels contain information about each of the two text regions,
while the middle channel encodes prominent layout elements necessary for reading order, such as separators and headers.
To generate the training dataset, our script requires a page XML file that specifies the image layout with the correct
reading order.
For output images, it is necessary to specify the width and height. Additionally, a minimum text region size can be set
to filter out regions smaller than this minimum size. This minimum size is defined as the ratio of the text region area
For output images, it is necessary to specify the width and height. Additionally, a minimum text region size can be set
to filter out regions smaller than this minimum size. This minimum size is defined as the ratio of the text region area
to the image area, with a default value of zero. To run the dataset generator, use the following command:
```shell
eynollah-training generate-gt machine-based-reading-order \
-dx "dir of GT xml files" \
-domi "dir where output images will be written" \
"" -docl "dir where the labels will be written" \
-ih "height" \
-iw "width" \
-min "min area ratio"
```
`python generate_gt_for_training.py machine-based-reading-order -dx "dir of GT xml files" -domi "dir where output images
will be written" -docl "dir where the labels will be written" -ih "height" -iw "width" -min "min area ratio"`
### pagexml2label
pagexml2label is designed to generate labels from GT page XML files for various pixel-wise segmentation use cases,
including 'layout,' 'textline,' 'printspace,' 'glyph,' and 'word' segmentation.
To train a pixel-wise segmentation model, we require images along with their corresponding labels. Our training script
expects a PNG image where each pixel corresponds to a label, represented by an integer. The background is always labeled
as zero, while other elements are assigned different integers. For instance, if we have ground truth data with four
To train a pixel-wise segmentation model, we require images along with their corresponding labels. Our training script
expects a PNG image where each pixel corresponds to a label, represented by an integer. The background is always labeled
as zero, while other elements are assigned different integers. For instance, if we have ground truth data with four
elements including the background, the classes would be labeled as 0, 1, 2, and 3 respectively.
In binary segmentation scenarios such as textline or page extraction, the background is encoded as 0, and the desired
In binary segmentation scenarios such as textline or page extraction, the background is encoded as 0, and the desired
element is automatically encoded as 1 in the PNG label.
To specify the desired use case and the elements to be extracted in the PNG labels, a custom JSON file can be passed.
To specify the desired use case and the elements to be extracted in the PNG labels, a custom JSON file can be passed.
For example, in the case of 'textline' detection, the JSON file would resemble this:
```yaml
@ -126,35 +100,31 @@ A possible custom config json file for layout segmentation where the "printspace
}
```
For the layout use case, it is beneficial to first understand the structure of the page XML file and its elements.
In a given image, the annotations of elements are recorded in a page XML file, including their contours and classes.
For an image document, the known regions are 'textregion', 'separatorregion', 'imageregion', 'graphicregion',
For the layout use case, it is beneficial to first understand the structure of the page XML file and its elements.
In a given image, the annotations of elements are recorded in a page XML file, including their contours and classes.
For an image document, the known regions are 'textregion', 'separatorregion', 'imageregion', 'graphicregion',
'noiseregion', and 'tableregion'.
Text regions and graphic regions also have their own specific types. The known types for text regions are 'paragraph',
'header', 'heading', 'marginalia', 'drop-capital', 'footnote', 'footnote-continued', 'signature-mark', 'page-number',
and 'catch-word'. The known types for graphic regions are 'handwritten-annotation', 'decoration', 'stamp', and
Text regions and graphic regions also have their own specific types. The known types for text regions are 'paragraph',
'header', 'heading', 'marginalia', 'drop-capital', 'footnote', 'footnote-continued', 'signature-mark', 'page-number',
and 'catch-word'. The known types for graphic regions are 'handwritten-annotation', 'decoration', 'stamp', and
'signature'.
Since we don't know all types of text and graphic regions, unknown cases can arise. To handle these, we have defined
two additional types, "rest_as_paragraph" and "rest_as_decoration", to ensure that no unknown types are missed.
Since we don't know all types of text and graphic regions, unknown cases can arise. To handle these, we have defined
two additional types, "rest_as_paragraph" and "rest_as_decoration", to ensure that no unknown types are missed.
This way, users can extract all known types from the labels and be confident that no unknown types are overlooked.
In the custom JSON file shown above, "header" and "heading" are extracted as the same class, while "marginalia" is shown
as a different class. All other text region types, including "drop-capital," are grouped into the same class. For the
graphic region, "stamp" has its own class, while all other types are classified together. "Image region" and "separator
region" are also present in the label. However, other regions like "noise region" and "table region" will not be
In the custom JSON file shown above, "header" and "heading" are extracted as the same class, while "marginalia" is shown
as a different class. All other text region types, including "drop-capital," are grouped into the same class. For the
graphic region, "stamp" has its own class, while all other types are classified together. "Image region" and "separator
region" are also present in the label. However, other regions like "noise region" and "table region" will not be
included in the label PNG file, even if they have information in the page XML files, as we chose not to include them.
```sh
eynollah-training generate-gt pagexml2label \
-dx "dir of GT xml files" \
-do "dir where output label png files will be written" \
-cfg "custom config json file" \
-to "output type which has 2d and 3d. 2d is used for training and 3d is just to visualise the labels"
```
`python generate_gt_for_training.py pagexml2label -dx "dir of GT xml files" -do "dir where output label png files will
be written" -cfg "custom config json file" -to "output type which has 2d and 3d. 2d is used for training and 3d is just
to visualise the labels" "`
We have also defined an artificial class that can be added to the boundary of text region types or text lines. This key
is called "artificial_class_on_boundary." If users want to apply this to certain text regions in the layout use case,
We have also defined an artificial class that can be added to the boundary of text region types or text lines. This key
is called "artificial_class_on_boundary." If users want to apply this to certain text regions in the layout use case,
the example JSON config file should look like this:
```yaml
@ -177,13 +147,13 @@ the example JSON config file should look like this:
}
```
This implies that the artificial class label, denoted by 7, will be present on PNG files and will only be added to the
This implies that the artificial class label, denoted by 7, will be present on PNG files and will only be added to the
elements labeled as "paragraph," "header," "heading," and "marginalia."
For "textline", "word", and "glyph", the artificial class on the boundaries will be activated only if the
"artificial_class_label" key is specified in the config file. Its value should be set as 2 since these elements
represent binary cases. For example, if the background and textline are denoted as 0 and 1 respectively, then the
artificial class should be assigned the value 2. The example JSON config file should look like this for "textline" use
For "textline", "word", and "glyph", the artificial class on the boundaries will be activated only if the
"artificial_class_label" key is specified in the config file. Its value should be set as 2 since these elements
represent binary cases. For example, if the background and textline are denoted as 0 and 1 respectively, then the
artificial class should be assigned the value 2. The example JSON config file should look like this for "textline" use
case:
```yaml
@ -193,32 +163,25 @@ case:
}
```
If the coordinates of "PrintSpace" or "Border" are present in the page XML ground truth files, and the user wishes to
crop only the print space area, this can be achieved by activating the "-ps" argument. However, it should be noted that
in this scenario, since cropping will be applied to the label files, the directory of the original images must be
provided to ensure that they are cropped in sync with the labels. This ensures that the correct images and labels
If the coordinates of "PrintSpace" or "Border" are present in the page XML ground truth files, and the user wishes to
crop only the print space area, this can be achieved by activating the "-ps" argument. However, it should be noted that
in this scenario, since cropping will be applied to the label files, the directory of the original images must be
provided to ensure that they are cropped in sync with the labels. This ensures that the correct images and labels
required for training are obtained. The command should resemble the following:
```sh
eynollah-training generate-gt pagexml2label \
-dx "dir of GT xml files" \
-do "dir where output label png files will be written" \
-cfg "custom config json file" \
-to "output type which has 2d and 3d. 2d is used for training and 3d is just to visualise the labels" \
-ps \
-di "dir where the org images are located" \
-doi "dir where the cropped output images will be written"
```
`python generate_gt_for_training.py pagexml2label -dx "dir of GT xml files" -do "dir where output label png files will
be written" -cfg "custom config json file" -to "output type which has 2d and 3d. 2d is used for training and 3d is just
to visualise the labels" -ps -di "dir where the org images are located" -doi "dir where the cropped output images will
be written" `
## Train a model
### classification
For the classification use case, we haven't provided a ground truth generator, as it's unnecessary. For classification,
all we require is a training directory with subdirectories, each containing images of its respective classes. We need
separate directories for training and evaluation, and the class names (subdirectories) must be consistent across both
directories. Additionally, the class names should be specified in the config JSON file, as shown in the following
example. If, for instance, we aim to classify "apple" and "orange," with a total of 2 classes, the
For the classification use case, we haven't provided a ground truth generator, as it's unnecessary. For classification,
all we require is a training directory with subdirectories, each containing images of its respective classes. We need
separate directories for training and evaluation, and the class names (subdirectories) must be consistent across both
directories. Additionally, the class names should be specified in the config JSON file, as shown in the following
example. If, for instance, we aim to classify "apple" and "orange," with a total of 2 classes, the
"classification_classes_name" key in the config file should appear as follows:
```yaml
@ -243,7 +206,7 @@ example. If, for instance, we aim to classify "apple" and "orange," with a total
The "dir_train" should be like this:
```
```
.
└── train # train directory
├── apple # directory of images for apple class
@ -252,7 +215,7 @@ The "dir_train" should be like this:
And the "dir_eval" the same structure as train directory:
```
```
.
└── eval # evaluation directory
├── apple # directory of images for apple class
@ -262,13 +225,11 @@ And the "dir_eval" the same structure as train directory:
The classification model can be trained using the following command line:
```sh
eynollah-training train with config_classification.json
```
`python train.py with config_classification.json`
As evident in the example JSON file above, for classification, we utilize a "f1_threshold_classification" parameter.
This parameter is employed to gather all models with an evaluation f1 score surpassing this threshold. Subsequently,
an ensemble of these model weights is executed, and a model is saved in the output directory as "model_ens_avg".
As evident in the example JSON file above, for classification, we utilize a "f1_threshold_classification" parameter.
This parameter is employed to gather all models with an evaluation f1 score surpassing this threshold. Subsequently,
an ensemble of these model weights is executed, and a model is saved in the output directory as "model_ens_avg".
Additionally, the weight of the best model based on the evaluation f1 score is saved as "model_best".
### reading order
@ -315,64 +276,58 @@ The classification model can be trained like the classification case command lin
### Segmentation (Textline, Binarization, Page extraction and layout) and enhancement
#### Parameter configuration for segmentation or enhancement usecases
The following parameter configuration can be applied to all segmentation use cases and enhancements. The augmentation,
its sub-parameters, and continued training are defined only for segmentation use cases and enhancements, not for
The following parameter configuration can be applied to all segmentation use cases and enhancements. The augmentation,
its sub-parameters, and continued training are defined only for segmentation use cases and enhancements, not for
classification and machine-based reading order, as you can see in their example config files.
* `backbone_type`: For segmentation tasks (such as text line, binarization, and layout detection) and enhancement, we
offer two backbone options: a "nontransformer" and a "transformer" backbone. For the "transformer" backbone, we first
apply a CNN followed by a transformer. In contrast, the "nontransformer" backbone utilizes only a CNN ResNet-50.
* `task`: The task parameter can have values such as "segmentation", "enhancement", "classification", and "reading_order".
* `patches`: If you want to break input images into smaller patches (input size of the model) you need to set this
* parameter to `true`. In the case that the model should see the image once, like page extraction, patches should be
set to ``false``.
* `n_batch`: Number of batches at each iteration.
* `n_classes`: Number of classes. In the case of binary classification this should be 2. In the case of reading_order it
should set to 1. And for the case of layout detection just the unique number of classes should be given.
* `n_epochs`: Number of epochs.
* `input_height`: This indicates the height of model's input.
* `input_width`: This indicates the width of model's input.
* `weight_decay`: Weight decay of l2 regularization of model layers.
* `pretraining`: Set to `true` to load pretrained weights of ResNet50 encoder. The downloaded weights should be saved
in a folder named "pretrained_model" in the same directory of "train.py" script.
* `augmentation`: If you want to apply any kind of augmentation this parameter should first set to `true`.
* `flip_aug`: If `true`, different types of filp will be applied on image. Type of flips is given with "flip_index" parameter.
* `blur_aug`: If `true`, different types of blurring will be applied on image. Type of blurrings is given with "blur_k" parameter.
* `scaling`: If `true`, scaling will be applied on image. Scale of scaling is given with "scales" parameter.
* `degrading`: If `true`, degrading will be applied to the image. The amount of degrading is defined with "degrade_scales" parameter.
* `brightening`: If `true`, brightening will be applied to the image. The amount of brightening is defined with "brightness" parameter.
* `rotation_not_90`: If `true`, rotation (not 90 degree) will be applied on image. Rotation angles are given with "thetha" parameter.
* `rotation`: If `true`, 90 degree rotation will be applied on image.
* `binarization`: If `true`,Otsu thresholding will be applied to augment the input data with binarized images.
* `scaling_bluring`: If `true`, combination of scaling and blurring will be applied on image.
* `scaling_binarization`: If `true`, combination of scaling and binarization will be applied on image.
* `scaling_flip`: If `true`, combination of scaling and flip will be applied on image.
* `flip_index`: Type of flips.
* `blur_k`: Type of blurrings.
* `scales`: Scales of scaling.
* `brightness`: The amount of brightenings.
* `thetha`: Rotation angles.
* `degrade_scales`: The amount of degradings.
* `continue_training`: If `true`, it means that you have already trained a model and you would like to continue the
training. So it is needed to providethe dir of trained model with "dir_of_start_model" and index for naming
themodels. For example if you have already trained for 3 epochs then your lastindex is 2 and if you want to continue
from model_1.h5, you can set `index_start` to 3 to start naming model with index 3.
* `weighted_loss`: If `true`, this means that you want to apply weighted categorical_crossentropy as loss fucntion. Be carefull if you set to `true`the parameter "is_loss_soft_dice" should be ``false``
* `data_is_provided`: If you have already provided the input data you can set this to `true`. Be sure that the train
and eval data are in"dir_output".Since when once we provide training data we resize and augmentthem and then wewrite
them in sub-directories train and eval in "dir_output".
* `dir_train`: This is the directory of "images" and "labels" (dir_train should include two subdirectories with names of images and labels ) for raw images and labels. Namely they are not prepared (not resized and not augmented) yet for training the model. When we run this tool these raw data will be transformed to suitable size needed for the model and they will be written in "dir_output" in train and eval directories. Each of train and eval include "images" and "labels" sub-directories.
* `index_start`: Starting index for saved models in the case that "continue_training" is `true`.
* `dir_of_start_model`: Directory containing pretrained model to continue training the model in the case that "continue_training" is `true`.
* `transformer_num_patches_xy`: Number of patches for vision transformer in x and y direction respectively.
* `transformer_patchsize_x`: Patch size of vision transformer patches in x direction.
* `transformer_patchsize_y`: Patch size of vision transformer patches in y direction.
* `transformer_projection_dim`: Transformer projection dimension. Default value is 64.
* `transformer_mlp_head_units`: Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64].
* `transformer_layers`: transformer layers. Default value is 8.
* `transformer_num_heads`: Transformer number of heads. Default value is 4.
* `transformer_cnn_first`: We have two types of vision transformers. In one type, a CNN is applied first, followed by a transformer. In the other type, this order is reversed. If transformer_cnn_first is true, it means the CNN will be applied before the transformer. Default value is true.
* backbone_type: For segmentation tasks (such as text line, binarization, and layout detection) and enhancement, we
* offer two backbone options: a "nontransformer" and a "transformer" backbone. For the "transformer" backbone, we first
* apply a CNN followed by a transformer. In contrast, the "nontransformer" backbone utilizes only a CNN ResNet-50.
* task : The task parameter can have values such as "segmentation", "enhancement", "classification", and "reading_order".
* patches: If you want to break input images into smaller patches (input size of the model) you need to set this
* parameter to ``true``. In the case that the model should see the image once, like page extraction, patches should be
* set to ``false``.
* n_batch: Number of batches at each iteration.
* n_classes: Number of classes. In the case of binary classification this should be 2. In the case of reading_order it
* should set to 1. And for the case of layout detection just the unique number of classes should be given.
* n_epochs: Number of epochs.
* input_height: This indicates the height of model's input.
* input_width: This indicates the width of model's input.
* weight_decay: Weight decay of l2 regularization of model layers.
* pretraining: Set to ``true`` to load pretrained weights of ResNet50 encoder. The downloaded weights should be saved
* in a folder named "pretrained_model" in the same directory of "train.py" script.
* augmentation: If you want to apply any kind of augmentation this parameter should first set to ``true``.
* flip_aug: If ``true``, different types of filp will be applied on image. Type of flips is given with "flip_index" parameter.
* blur_aug: If ``true``, different types of blurring will be applied on image. Type of blurrings is given with "blur_k" parameter.
* scaling: If ``true``, scaling will be applied on image. Scale of scaling is given with "scales" parameter.
* degrading: If ``true``, degrading will be applied to the image. The amount of degrading is defined with "degrade_scales" parameter.
* brightening: If ``true``, brightening will be applied to the image. The amount of brightening is defined with "brightness" parameter.
* rotation_not_90: If ``true``, rotation (not 90 degree) will be applied on image. Rotation angles are given with "thetha" parameter.
* rotation: If ``true``, 90 degree rotation will be applied on image.
* binarization: If ``true``,Otsu thresholding will be applied to augment the input data with binarized images.
* scaling_bluring: If ``true``, combination of scaling and blurring will be applied on image.
* scaling_binarization: If ``true``, combination of scaling and binarization will be applied on image.
* scaling_flip: If ``true``, combination of scaling and flip will be applied on image.
* flip_index: Type of flips.
* blur_k: Type of blurrings.
* scales: Scales of scaling.
* brightness: The amount of brightenings.
* thetha: Rotation angles.
* degrade_scales: The amount of degradings.
* continue_training: If ``true``, it means that you have already trained a model and you would like to continue the training. So it is needed to provide the dir of trained model with "dir_of_start_model" and index for naming the models. For example if you have already trained for 3 epochs then your last index is 2 and if you want to continue from model_1.h5, you can set ``index_start`` to 3 to start naming model with index 3.
* weighted_loss: If ``true``, this means that you want to apply weighted categorical_crossentropy as loss fucntion. Be carefull if you set to ``true``the parameter "is_loss_soft_dice" should be ``false``
* data_is_provided: If you have already provided the input data you can set this to ``true``. Be sure that the train and eval data are in "dir_output". Since when once we provide training data we resize and augment them and then we write them in sub-directories train and eval in "dir_output".
* dir_train: This is the directory of "images" and "labels" (dir_train should include two subdirectories with names of images and labels ) for raw images and labels. Namely they are not prepared (not resized and not augmented) yet for training the model. When we run this tool these raw data will be transformed to suitable size needed for the model and they will be written in "dir_output" in train and eval directories. Each of train and eval include "images" and "labels" sub-directories.
* index_start: Starting index for saved models in the case that "continue_training" is ``true``.
* dir_of_start_model: Directory containing pretrained model to continue training the model in the case that "continue_training" is ``true``.
* transformer_num_patches_xy: Number of patches for vision transformer in x and y direction respectively.
* transformer_patchsize_x: Patch size of vision transformer patches in x direction.
* transformer_patchsize_y: Patch size of vision transformer patches in y direction.
* transformer_projection_dim: Transformer projection dimension. Default value is 64.
* transformer_mlp_head_units: Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64].
* transformer_layers: transformer layers. Default value is 8.
* transformer_num_heads: Transformer number of heads. Default value is 4.
* transformer_cnn_first: We have two types of vision transformers. In one type, a CNN is applied first, followed by a transformer. In the other type, this order is reversed. If transformer_cnn_first is true, it means the CNN will be applied before the transformer. Default value is true.
In the case of segmentation and enhancement the train and evaluation directory should be as following.
@ -394,39 +349,12 @@ And the "dir_eval" the same structure as train directory:
└── labels # directory of labels
```
After configuring the JSON file for segmentation or enhancement, training can be initiated by running the following
After configuring the JSON file for segmentation or enhancement, training can be initiated by running the following
command, similar to the process for classification and reading order:
```
eynollah-training train with config_classification.json`
```
`python train.py with config_classification.json`
#### Binarization
### Ground truth format
Lables for each pixel are identified by a number. So if you have a
binary case, ``n_classes`` should be set to ``2`` and labels should
be ``0`` and ``1`` for each class and pixel.
In the case of multiclass, just set ``n_classes`` to the number of classes
you have and the try to produce the labels by pixels set from ``0 , 1 ,2 .., n_classes-1``.
The labels format should be png.
Our lables are 3 channel png images but only information of first channel is used.
If you have an image label with height and width of 10, for a binary case the first channel should look like this:
Label: [ [1, 0, 0, 1, 1, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...,
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
This means that you have an image by `10*10*3` and `pixel[0,0]` belongs
to class `1` and `pixel[0,1]` belongs to class `0`.
A small sample of training data for binarization experiment can be found here, [Training data sample](https://qurator-data.de/~vahid.rezanezhad/binarization_training_data_sample/), which contains images and lables folders.
An example config json file for binarization can be like this:
```yaml
@ -470,7 +398,7 @@ An example config json file for binarization can be like this:
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
@ -515,7 +443,7 @@ An example config json file for binarization can be like this:
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
@ -560,7 +488,7 @@ An example config json file for binarization can be like this:
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
@ -570,7 +498,7 @@ An example config json file for binarization can be like this:
}
```
It's important to mention that the value of n_classes for enhancement should be 3, as the model's output is a 3-channel
It's important to mention that the value of n_classes for enhancement should be 3, as the model's output is a 3-channel
image.
#### Page extraction
@ -608,7 +536,7 @@ image.
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
@ -618,11 +546,10 @@ image.
}
```
For page segmentation (or print space or border segmentation), the model needs to view the input image in its
entirety,hence the patches parameter should be set to false.
For page segmentation (or printspace or border segmentation), the model needs to view the input image in its entirety,
hence the patches parameter should be set to false.
#### layout segmentation
An example config json file for layout segmentation with 5 classes (including background) can be like this:
```yaml
@ -666,7 +593,7 @@ An example config json file for layout segmentation with 5 classes (including ba
"thetha" : [10, -10],
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
@ -678,42 +605,28 @@ An example config json file for layout segmentation with 5 classes (including ba
## Inference with the trained model
### classification
For conducting inference with a trained model, you simply need to execute the following command line, specifying the
For conducting inference with a trained model, you simply need to execute the following command line, specifying the
directory of the model and the image on which to perform inference:
```sh
eynollah-training inference -m "model dir" -i "image"
```
`python inference.py -m "model dir" -i "image" `
This will straightforwardly return the class of the image.
### machine based reading order
To infer the reading order using a reading order model, we need a page XML file containing layout information but
without the reading order. We simply need to provide the model directory, the XML file, and the output directory.
The new XML file with the added reading order will be written to the output directory with the same name.
We need to run:
To infer the reading order using a reading order model, we need a page XML file containing layout information but
without the reading order. We simply need to provide the model directory, the XML file, and the output directory. The
new XML file with the added reading order will be written to the output directory with the same name. We need to run:
```sh
eynollah-training inference \
-m "model dir" \
-xml "page xml file" \
-o "output dir to write new xml with reading order"
```
`python inference.py -m "model dir" -xml "page xml file" -o "output dir to write new xml with reading order" `
### Segmentation (Textline, Binarization, Page extraction and layout) and enhancement
For conducting inference with a trained model for segmentation and enhancement you need to run the following command
line:
For conducting inference with a trained model for segmentation and enhancement you need to run the following command line:
```sh
eynollah-training inference \
-m "model dir" \
-i "image" \
-p \
-s "output image"
```
`python inference.py -m "model dir" -i "image" -p -s "output image" `
Note that in the case of page extraction the -p flag is not needed.
For segmentation or binarization tasks, if a ground truth (GT) label is available, the IoU evaluation metric can be
For segmentation or binarization tasks, if a ground truth (GT) label is available, the IoU evaluation metric can be
calculated for the output. To do this, you need to provide the GT label using the argument -gt.

View file

@ -13,11 +13,7 @@ license.file = "LICENSE"
requires-python = ">=3.8"
keywords = ["document layout analysis", "image segmentation"]
dynamic = [
"dependencies",
"optional-dependencies",
"version"
]
dynamic = ["dependencies", "version"]
classifiers = [
"Development Status :: 4 - Beta",
@ -29,9 +25,12 @@ classifiers = [
"Topic :: Scientific/Engineering :: Image Processing",
]
[project.optional-dependencies]
OCR = ["torch <= 2.0.1", "transformers <= 4.30.2"]
plotting = ["matplotlib"]
[project.scripts]
eynollah = "eynollah.cli:main"
eynollah-training = "eynollah.training.cli:main"
ocrd-eynollah-segment = "eynollah.ocrd_cli:main"
ocrd-sbb-binarize = "eynollah.ocrd_cli_binarization:main"
@ -42,37 +41,13 @@ Repository = "https://github.com/qurator-spk/eynollah.git"
[tool.setuptools.dynamic]
dependencies = {file = ["requirements.txt"]}
optional-dependencies.test = {file = ["requirements-test.txt"]}
optional-dependencies.OCR = {file = ["requirements-ocr.txt"]}
optional-dependencies.plotting = {file = ["requirements-plotting.txt"]}
optional-dependencies.training = {file = ["requirements-training.txt"]}
[tool.setuptools.packages.find]
where = ["src"]
[tool.setuptools.package-data]
"*" = ["*.json", '*.yml', '*.xml', '*.xsd', '*.ttf']
"*" = ["*.json", '*.yml', '*.xml', '*.xsd']
[tool.coverage.run]
branch = true
source = ["eynollah"]
[tool.ruff]
line-length = 120
# TODO: Reenable and fix after release v0.6.0
exclude = ['src/eynollah/training']
[tool.ruff.lint]
ignore = [
# disable unused imports
"F401",
# disable import order
"E402",
# disable unused variables
"F841",
# disable bare except
"E722",
]
[tool.ruff.format]
quote-style = "preserve"

View file

@ -1,2 +0,0 @@
torch <= 2.0.1
transformers <= 4.30.2

View file

@ -1 +0,0 @@
matplotlib

View file

@ -1,4 +1,4 @@
pytest
pytest-isolate
pytest-subtests
coverage[toml]
black

View file

@ -1 +0,0 @@
train/requirements.txt

View file

@ -4,5 +4,4 @@ numpy <1.24.0
scikit-learn >= 0.23.2
tensorflow < 2.13
numba <= 0.58.1
scikit-image
biopython
loky

Binary file not shown.

View file

@ -1,11 +1,8 @@
import sys
import click
import logging
from ocrd_utils import initLogging, getLevelName, getLogger
from eynollah.eynollah import Eynollah, Eynollah_ocr
from eynollah.sbb_binarize import SbbBinarizer
from eynollah.image_enhancer import Enhancer
from eynollah.mb_ro_on_layout import machine_based_reading_order_on_layout
@click.group()
def main():
@ -13,98 +10,79 @@ def main():
@main.command()
@click.option(
"--input",
"-i",
help="PAGE-XML input filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_in",
"-di",
help="directory of PAGE-XML input files (instead of --input)",
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--out",
"-o",
help="directory for output images",
"--dir_out_modal_image",
"-domi",
help="directory where ground truth images would be written",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--model",
"-m",
help="directory of models",
"--dir_out_classes",
"-docl",
help="directory where ground truth classes would be written",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--log_level",
"-l",
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
help="Override log level globally to this",
"--input_height",
"-ih",
help="input height",
)
def machine_based_reading_order(input, dir_in, out, model, log_level):
assert bool(input) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
orderer = machine_based_reading_order_on_layout(model)
if log_level:
orderer.logger.setLevel(getLevelName(log_level))
orderer.run(xml_filename=input,
dir_in=dir_in,
dir_out=out,
)
@click.option(
"--input_width",
"-iw",
help="input width",
)
@click.option(
"--min_area_size",
"-min",
help="min area size of regions considered for reading order training.",
)
def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width, min_area_size):
xml_files_ind = os.listdir(dir_xml)
@main.command()
@click.option('--patches/--no-patches', default=True, help='by enabling this parameter you let the model to see the image in patches.')
@click.option('--model_dir', '-m', type=click.Path(exists=True, file_okay=False), required=True, help='directory containing models for prediction')
@click.option(
"--input-image", "--image",
"-i",
help="input image filename",
type=click.Path(exists=True, dir_okay=False)
)
@click.argument('input_image', required=False)
@click.argument('output_image', required=False)
@click.option(
"--dir_in",
"-di",
help="directory of input images (instead of --image)",
help="directory of input images",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--output",
"-o",
help="output image (if using -i) or output image directory (if using -di)",
type=click.Path(file_okay=True, dir_okay=True),
required=True,
"--dir_out",
"-do",
help="directory for output images",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--log_level",
"-l",
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
help="Override log level globally to this",
)
def binarization(patches, model_dir, input_image, dir_in, output, log_level):
assert bool(input_image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
binarizer = SbbBinarizer(model_dir)
if log_level:
binarizer.log.setLevel(getLevelName(log_level))
binarizer.run(image_path=input_image, use_patches=patches, output=output, dir_in=dir_in)
def binarization(patches, model_dir, input_image, output_image, dir_in, dir_out):
assert (dir_out is None) == (dir_in is None), "Options -di and -do are mutually dependent"
assert (input_image is None) == (output_image is None), "INPUT_IMAGE and OUTPUT_IMAGE are mutually dependent"
assert (dir_in is None) != (input_image is None), "Specify either -di and -do options, or INPUT_IMAGE and OUTPUT_IMAGE"
SbbBinarizer(model_dir).run(image_path=input_image, use_patches=patches, save=output_image, dir_in=dir_in, dir_out=dir_out)
@main.command()
@click.option(
"--image",
"-i",
help="input image filename",
help="image filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--out",
"-o",
help="directory for output PAGE-XML files",
help="directory to write output xml data",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@ -117,7 +95,7 @@ def binarization(patches, model_dir, input_image, dir_in, output, log_level):
@click.option(
"--dir_in",
"-di",
help="directory of input images (instead of --image)",
help="directory of images",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
@ -127,88 +105,6 @@ def binarization(patches, model_dir, input_image, dir_in, output, log_level):
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--num_col_upper",
"-ncu",
help="lower limit of columns in document image",
)
@click.option(
"--num_col_lower",
"-ncl",
help="upper limit of columns in document image",
)
@click.option(
"--save_org_scale/--no_save_org_scale",
"-sos/-nosos",
is_flag=True,
help="if this parameter set to true, this tool will save the enhanced image in org scale.",
)
@click.option(
"--log_level",
"-l",
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
help="Override log level globally to this",
)
def enhancement(image, out, overwrite, dir_in, model, num_col_upper, num_col_lower, save_org_scale, log_level):
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
initLogging()
enhancer = Enhancer(
model,
num_col_upper=num_col_upper,
num_col_lower=num_col_lower,
save_org_scale=save_org_scale,
)
if log_level:
enhancer.logger.setLevel(getLevelName(log_level))
enhancer.run(overwrite=overwrite,
dir_in=dir_in,
image_filename=image,
dir_out=out,
)
@main.command()
@click.option(
"--image",
"-i",
help="input image filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--out",
"-o",
help="directory for output PAGE-XML files",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--overwrite",
"-O",
help="overwrite (instead of skipping) if output xml exists",
is_flag=True,
)
@click.option(
"--dir_in",
"-di",
help="directory of input images (instead of --image)",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--model",
"-m",
help="directory of models",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--model_version",
"-mv",
help="override default versions of model categories",
type=(str, str),
multiple=True,
)
@click.option(
"--save_images",
"-si",
@ -329,17 +225,6 @@ def enhancement(image, out, overwrite, dir_in, model, num_col_upper, num_col_low
is_flag=True,
help="if this parameter set to true, this tool will try to do ocr",
)
@click.option(
"--transformer_ocr",
"-tr/-notr",
is_flag=True,
help="if this parameter set to true, this tool will apply transformer ocr",
)
@click.option(
"--batch_size_ocr",
"-bs_ocr",
help="number of inference batch size of ocr model. Default b_s for trocr and cnn_rnn models are 2 and 8 respectively",
)
@click.option(
"--num_col_upper",
"-ncu",
@ -350,46 +235,23 @@ def enhancement(image, out, overwrite, dir_in, model, num_col_upper, num_col_low
"-ncl",
help="upper limit of columns in document image",
)
@click.option(
"--threshold_art_class_layout",
"-tharl",
help="threshold of artifical class in the case of layout detection. The default value is 0.1",
)
@click.option(
"--threshold_art_class_textline",
"-thart",
help="threshold of artifical class in the case of textline detection. The default value is 0.1",
)
@click.option(
"--skip_layout_and_reading_order",
"-slro/-noslro",
is_flag=True,
help="if this parameter set to true, this tool will ignore layout detection and reading order. It means that textline detection will be done within printspace and contours of textline will be written in xml output file.",
)
# TODO move to top-level CLI context
@click.option(
"--log_level",
"-l",
type=click.Choice(['OFF', 'DEBUG', 'INFO', 'WARN', 'ERROR']),
help="Override 'eynollah' log level globally to this",
)
#
@click.option(
"--setup-logging",
is_flag=True,
help="Setup a basic console logger",
help="Override log level globally to this",
)
def layout(image, out, overwrite, dir_in, model, model_version, save_images, save_layout, save_deskewed, save_all, extract_only_images, save_page, enable_plotting, allow_enhancement, curved_line, textline_light, full_layout, tables, right2left, input_binary, allow_scaling, headers_off, light_version, reading_order_machine_based, do_ocr, transformer_ocr, batch_size_ocr, num_col_upper, num_col_lower, threshold_art_class_textline, threshold_art_class_layout, skip_layout_and_reading_order, ignore_page_extraction, log_level, setup_logging):
if setup_logging:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(message)s')
console_handler.setFormatter(formatter)
getLogger('eynollah').addHandler(console_handler)
getLogger('eynollah').setLevel(logging.INFO)
else:
initLogging()
def layout(image, out, overwrite, dir_in, model, save_images, save_layout, save_deskewed, save_all, extract_only_images, save_page, enable_plotting, allow_enhancement, curved_line, textline_light, full_layout, tables, right2left, input_binary, allow_scaling, headers_off, light_version, reading_order_machine_based, do_ocr, num_col_upper, num_col_lower, skip_layout_and_reading_order, ignore_page_extraction, log_level):
initLogging()
if log_level:
getLogger('eynollah').setLevel(getLevelName(log_level))
assert enable_plotting or not save_layout, "Plotting with -sl also requires -ep"
assert enable_plotting or not save_deskewed, "Plotting with -sd also requires -ep"
assert enable_plotting or not save_all, "Plotting with -sa also requires -ep"
@ -408,11 +270,17 @@ def layout(image, out, overwrite, dir_in, model, model_version, save_images, sav
assert not extract_only_images or not tables, "Image extraction -eoi can not be set alongside tables -tab"
assert not extract_only_images or not right2left, "Image extraction -eoi can not be set alongside right2left -r2l"
assert not extract_only_images or not headers_off, "Image extraction -eoi can not be set alongside headers_off -ho"
assert bool(image) != bool(dir_in), "Either -i (single input) or -di (directory) must be provided, but not both."
assert image or dir_in, "Either a single image -i or a dir_in -di is required"
eynollah = Eynollah(
model,
model_versions=model_version,
logger=getLogger('eynollah'),
dir_out=out,
dir_of_cropped_images=save_images,
extract_only_images=extract_only_images,
dir_of_layout=save_layout,
dir_of_deskewed=save_deskewed,
dir_of_all=save_all,
dir_save_page=save_page,
enable_plotting=enable_plotting,
allow_enhancement=allow_enhancement,
curved_line=curved_line,
@ -427,82 +295,54 @@ def layout(image, out, overwrite, dir_in, model, model_version, save_images, sav
ignore_page_extraction=ignore_page_extraction,
reading_order_machine_based=reading_order_machine_based,
do_ocr=do_ocr,
transformer_ocr=transformer_ocr,
batch_size_ocr=batch_size_ocr,
num_col_upper=num_col_upper,
num_col_lower=num_col_lower,
skip_layout_and_reading_order=skip_layout_and_reading_order,
threshold_art_class_textline=threshold_art_class_textline,
threshold_art_class_layout=threshold_art_class_layout,
)
if log_level:
eynollah.logger.setLevel(getLevelName(log_level))
eynollah.run(overwrite=overwrite,
image_filename=image,
dir_in=dir_in,
dir_out=out,
dir_of_cropped_images=save_images,
dir_of_layout=save_layout,
dir_of_deskewed=save_deskewed,
dir_of_all=save_all,
dir_save_page=save_page,
)
if dir_in:
eynollah.run(dir_in=dir_in, overwrite=overwrite)
else:
eynollah.run(image_filename=image, overwrite=overwrite)
@main.command()
@click.option(
"--image",
"-i",
help="input image filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_in",
"-di",
help="directory of input images (instead of --image)",
help="directory of images",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_in_bin",
"-dib",
help="directory of binarized images (in addition to --dir_in for RGB images; filename stems must match the RGB image files, with '.png' suffix).\nPerform prediction using both RGB and binary images. (This does not necessarily improve results, however it may be beneficial for certain document images.)",
help="directory of binarized images. This should be given if you want to do prediction based on both rgb and bin images. And all bin images are png files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_xmls",
"-dx",
help="directory of input PAGE-XML files (in addition to --dir_in; filename stems must match the image files, with '.xml' suffix).",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--out",
"-o",
help="directory for output PAGE-XML files",
help="directory to write output xml data",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--dir_out_image_text",
"-doit",
help="directory for output images, newly rendered with predicted text",
"--dir_xmls",
"-dx",
help="directory of xmls",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--overwrite",
"-O",
help="overwrite (instead of skipping) if output xml exists",
is_flag=True,
"--dir_out_image_text",
"-doit",
help="directory of images with predicted text",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--model",
"-m",
help="directory of models",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--model_name",
help="Specific model file path to use for OCR",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--tr_ocr",
@ -523,19 +363,16 @@ def layout(image, out, overwrite, dir_in, model, model_version, save_images, sav
help="if this parameter set to true, cropped textline images will not be masked with textline contour.",
)
@click.option(
"--batch_size",
"-bs",
help="number of inference batch size. Default b_s for trocr and cnn_rnn models are 2 and 8 respectively",
"--draw_texts_on_image",
"-dtoi/-ndtoi",
is_flag=True,
help="if this parameter set to true, the predicted texts will be displayed on an image.",
)
@click.option(
"--dataset_abbrevation",
"-ds_pref",
help="in the case of extracting textline and text from a xml GT file user can add an abbrevation of dataset name to generated dataset",
)
@click.option(
"--min_conf_value_of_textline_text",
"-min_conf",
help="minimum OCR confidence value. Text lines with a confidence value lower than this threshold will not be included in the output XML file.",
"--prediction_with_both_of_rgb_and_bin",
"-brb/-nbrb",
is_flag=True,
help="If this parameter is set to True, the prediction will be performed using both RGB and binary images. However, this does not necessarily improve results; it may be beneficial for certain document images.",
)
@click.option(
"--log_level",
@ -544,36 +381,24 @@ def layout(image, out, overwrite, dir_in, model, model_version, save_images, sav
help="Override log level globally to this",
)
def ocr(image, dir_in, dir_in_bin, dir_xmls, out, dir_out_image_text, overwrite, model, model_name, tr_ocr, export_textline_images_and_text, do_not_mask_with_textline_contour, batch_size, dataset_abbrevation, min_conf_value_of_textline_text, log_level):
def ocr(dir_in, dir_in_bin, out, dir_xmls, dir_out_image_text, model, tr_ocr, export_textline_images_and_text, do_not_mask_with_textline_contour, draw_texts_on_image, prediction_with_both_of_rgb_and_bin, log_level):
initLogging()
assert bool(model) != bool(model_name), "Either -m (model directory) or --model_name (specific model name) must be provided."
assert not export_textline_images_and_text or not tr_ocr, "Exporting textline and text -etit can not be set alongside transformer ocr -tr_ocr"
assert not export_textline_images_and_text or not model, "Exporting textline and text -etit can not be set alongside model -m"
assert not export_textline_images_and_text or not batch_size, "Exporting textline and text -etit can not be set alongside batch size -bs"
assert not export_textline_images_and_text or not dir_in_bin, "Exporting textline and text -etit can not be set alongside directory of bin images -dib"
assert not export_textline_images_and_text or not dir_out_image_text, "Exporting textline and text -etit can not be set alongside directory of images with predicted text -doit"
assert bool(image) != bool(dir_in), "Either -i (single image) or -di (directory) must be provided, but not both."
if log_level:
getLogger('eynollah').setLevel(getLevelName(log_level))
eynollah_ocr = Eynollah_ocr(
dir_xmls=dir_xmls,
dir_out_image_text=dir_out_image_text,
dir_in=dir_in,
dir_in_bin=dir_in_bin,
dir_out=out,
dir_models=model,
model_name=model_name,
tr_ocr=tr_ocr,
export_textline_images_and_text=export_textline_images_and_text,
do_not_mask_with_textline_contour=do_not_mask_with_textline_contour,
batch_size=batch_size,
pref_of_dataset=dataset_abbrevation,
min_conf_value_of_textline_text=min_conf_value_of_textline_text,
)
if log_level:
eynollah_ocr.logger.setLevel(getLevelName(log_level))
eynollah_ocr.run(overwrite=overwrite,
dir_in=dir_in,
dir_in_bin=dir_in_bin,
image_filename=image,
dir_xmls=dir_xmls,
dir_out_image_text=dir_out_image_text,
dir_out=out,
draw_texts_on_image=draw_texts_on_image,
prediction_with_both_of_rgb_and_bin=prediction_with_both_of_rgb_and_bin,
)
eynollah_ocr.run()
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load diff

View file

@ -1,731 +0,0 @@
"""
Image enhancer. The output can be written as same scale of input or in new predicted scale.
"""
from logging import Logger
import os
import time
from typing import Optional
from pathlib import Path
import gc
import cv2
import numpy as np
from ocrd_utils import getLogger, tf_disable_interactive_logs
import tensorflow as tf
from skimage.morphology import skeletonize
from tensorflow.keras.models import load_model
from .utils.resize import resize_image
from .utils.pil_cv2 import pil2cv
from .utils import (
is_image_filename,
crop_image_inside_box
)
from .eynollah import PatchEncoder, Patches
DPI_THRESHOLD = 298
KERNEL = np.ones((5, 5), np.uint8)
class Enhancer:
def __init__(
self,
dir_models : str,
num_col_upper : Optional[int] = None,
num_col_lower : Optional[int] = None,
save_org_scale : bool = False,
logger : Optional[Logger] = None,
):
self.input_binary = False
self.light_version = False
self.save_org_scale = save_org_scale
if num_col_upper:
self.num_col_upper = int(num_col_upper)
else:
self.num_col_upper = num_col_upper
if num_col_lower:
self.num_col_lower = int(num_col_lower)
else:
self.num_col_lower = num_col_lower
self.logger = logger if logger else getLogger('enhancement')
self.dir_models = dir_models
self.model_dir_of_binarization = dir_models + "/eynollah-binarization_20210425"
self.model_dir_of_enhancement = dir_models + "/eynollah-enhancement_20210425"
self.model_dir_of_col_classifier = dir_models + "/eynollah-column-classifier_20210425"
self.model_page_dir = dir_models + "/model_eynollah_page_extraction_20250915"
try:
for device in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(device, True)
except:
self.logger.warning("no GPU device available")
self.model_page = self.our_load_model(self.model_page_dir)
self.model_classifier = self.our_load_model(self.model_dir_of_col_classifier)
self.model_enhancement = self.our_load_model(self.model_dir_of_enhancement)
self.model_bin = self.our_load_model(self.model_dir_of_binarization)
def cache_images(self, image_filename=None, image_pil=None, dpi=None):
ret = {}
if image_filename:
ret['img'] = cv2.imread(image_filename)
if self.light_version:
self.dpi = 100
else:
self.dpi = 0#check_dpi(image_filename)
else:
ret['img'] = pil2cv(image_pil)
if self.light_version:
self.dpi = 100
else:
self.dpi = 0#check_dpi(image_pil)
ret['img_grayscale'] = cv2.cvtColor(ret['img'], cv2.COLOR_BGR2GRAY)
for prefix in ('', '_grayscale'):
ret[f'img{prefix}_uint8'] = ret[f'img{prefix}'].astype(np.uint8)
self._imgs = ret
if dpi is not None:
self.dpi = dpi
def reset_file_name_dir(self, image_filename, dir_out):
self.cache_images(image_filename=image_filename)
self.output_filename = os.path.join(dir_out, Path(image_filename).stem +'.png')
def imread(self, grayscale=False, uint8=True):
key = 'img'
if grayscale:
key += '_grayscale'
if uint8:
key += '_uint8'
return self._imgs[key].copy()
def isNaN(self, num):
return num != num
@staticmethod
def our_load_model(model_file):
if model_file.endswith('.h5') and Path(model_file[:-3]).exists():
# prefer SavedModel over HDF5 format if it exists
model_file = model_file[:-3]
try:
model = load_model(model_file, compile=False)
except:
model = load_model(model_file, compile=False, custom_objects={
"PatchEncoder": PatchEncoder, "Patches": Patches})
return model
def predict_enhancement(self, img):
self.logger.debug("enter predict_enhancement")
img_height_model = self.model_enhancement.layers[-1].output_shape[1]
img_width_model = self.model_enhancement.layers[-1].output_shape[2]
if img.shape[0] < img_height_model:
img = cv2.resize(img, (img.shape[1], img_width_model), interpolation=cv2.INTER_NEAREST)
if img.shape[1] < img_width_model:
img = cv2.resize(img, (img_height_model, img.shape[0]), interpolation=cv2.INTER_NEAREST)
margin = int(0.1 * img_width_model)
width_mid = img_width_model - 2 * margin
height_mid = img_height_model - 2 * margin
img = img / 255.
img_h = img.shape[0]
img_w = img.shape[1]
prediction_true = np.zeros((img_h, img_w, 3))
nxf = img_w / float(width_mid)
nyf = img_h / float(height_mid)
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
for i in range(nxf):
for j in range(nyf):
if i == 0:
index_x_d = i * width_mid
index_x_u = index_x_d + img_width_model
else:
index_x_d = i * width_mid
index_x_u = index_x_d + img_width_model
if j == 0:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
else:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - img_width_model
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - img_height_model
img_patch = img[np.newaxis, index_y_d:index_y_u, index_x_d:index_x_u, :]
label_p_pred = self.model_enhancement.predict(img_patch, verbose=0)
seg = label_p_pred[0, :, :, :] * 255
if i == 0 and j == 0:
prediction_true[index_y_d + 0:index_y_u - margin,
index_x_d + 0:index_x_u - margin] = \
seg[0:-margin or None,
0:-margin or None]
elif i == nxf - 1 and j == nyf - 1:
prediction_true[index_y_d + margin:index_y_u - 0,
index_x_d + margin:index_x_u - 0] = \
seg[margin:,
margin:]
elif i == 0 and j == nyf - 1:
prediction_true[index_y_d + margin:index_y_u - 0,
index_x_d + 0:index_x_u - margin] = \
seg[margin:,
0:-margin or None]
elif i == nxf - 1 and j == 0:
prediction_true[index_y_d + 0:index_y_u - margin,
index_x_d + margin:index_x_u - 0] = \
seg[0:-margin or None,
margin:]
elif i == 0 and j != 0 and j != nyf - 1:
prediction_true[index_y_d + margin:index_y_u - margin,
index_x_d + 0:index_x_u - margin] = \
seg[margin:-margin or None,
0:-margin or None]
elif i == nxf - 1 and j != 0 and j != nyf - 1:
prediction_true[index_y_d + margin:index_y_u - margin,
index_x_d + margin:index_x_u - 0] = \
seg[margin:-margin or None,
margin:]
elif i != 0 and i != nxf - 1 and j == 0:
prediction_true[index_y_d + 0:index_y_u - margin,
index_x_d + margin:index_x_u - margin] = \
seg[0:-margin or None,
margin:-margin or None]
elif i != 0 and i != nxf - 1 and j == nyf - 1:
prediction_true[index_y_d + margin:index_y_u - 0,
index_x_d + margin:index_x_u - margin] = \
seg[margin:,
margin:-margin or None]
else:
prediction_true[index_y_d + margin:index_y_u - margin,
index_x_d + margin:index_x_u - margin] = \
seg[margin:-margin or None,
margin:-margin or None]
prediction_true = prediction_true.astype(int)
return prediction_true
def calculate_width_height_by_columns(self, img, num_col, width_early, label_p_pred):
self.logger.debug("enter calculate_width_height_by_columns")
if num_col == 1:
img_w_new = 2000
elif num_col == 2:
img_w_new = 2400
elif num_col == 3:
img_w_new = 3000
elif num_col == 4:
img_w_new = 4000
elif num_col == 5:
img_w_new = 5000
elif num_col == 6:
img_w_new = 6500
else:
img_w_new = width_early
img_h_new = img_w_new * img.shape[0] // img.shape[1]
if img_h_new >= 8000:
img_new = np.copy(img)
num_column_is_classified = False
else:
img_new = resize_image(img, img_h_new, img_w_new)
num_column_is_classified = True
return img_new, num_column_is_classified
def early_page_for_num_of_column_classification(self,img_bin):
self.logger.debug("enter early_page_for_num_of_column_classification")
if self.input_binary:
img = np.copy(img_bin).astype(np.uint8)
else:
img = self.imread()
img = cv2.GaussianBlur(img, (5, 5), 0)
img_page_prediction = self.do_prediction(False, img, self.model_page)
imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(imgray, 0, 255, 0)
thresh = cv2.dilate(thresh, KERNEL, iterations=3)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(contours)>0:
cnt_size = np.array([cv2.contourArea(contours[j])
for j in range(len(contours))])
cnt = contours[np.argmax(cnt_size)]
box = cv2.boundingRect(cnt)
else:
box = [0, 0, img.shape[1], img.shape[0]]
cropped_page, page_coord = crop_image_inside_box(box, img)
self.logger.debug("exit early_page_for_num_of_column_classification")
return cropped_page, page_coord
def calculate_width_height_by_columns_1_2(self, img, num_col, width_early, label_p_pred):
self.logger.debug("enter calculate_width_height_by_columns")
if num_col == 1:
img_w_new = 1000
else:
img_w_new = 1300
img_h_new = img_w_new * img.shape[0] // img.shape[1]
if label_p_pred[0][int(num_col - 1)] < 0.9 and img_w_new < width_early:
img_new = np.copy(img)
num_column_is_classified = False
#elif label_p_pred[0][int(num_col - 1)] < 0.8 and img_h_new >= 8000:
elif img_h_new >= 8000:
img_new = np.copy(img)
num_column_is_classified = False
else:
img_new = resize_image(img, img_h_new, img_w_new)
num_column_is_classified = True
return img_new, num_column_is_classified
def resize_and_enhance_image_with_column_classifier(self, light_version):
self.logger.debug("enter resize_and_enhance_image_with_column_classifier")
dpi = 0#self.dpi
self.logger.info("Detected %s DPI", dpi)
if self.input_binary:
img = self.imread()
prediction_bin = self.do_prediction(True, img, self.model_bin, n_batch_inference=5)
prediction_bin = 255 * (prediction_bin[:,:,0]==0)
prediction_bin = np.repeat(prediction_bin[:, :, np.newaxis], 3, axis=2).astype(np.uint8)
img= np.copy(prediction_bin)
img_bin = prediction_bin
else:
img = self.imread()
self.h_org, self.w_org = img.shape[:2]
img_bin = None
width_early = img.shape[1]
t1 = time.time()
_, page_coord = self.early_page_for_num_of_column_classification(img_bin)
self.image_page_org_size = img[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3], :]
self.page_coord = page_coord
if self.num_col_upper and not self.num_col_lower:
num_col = self.num_col_upper
label_p_pred = [np.ones(6)]
elif self.num_col_lower and not self.num_col_upper:
num_col = self.num_col_lower
label_p_pred = [np.ones(6)]
elif not self.num_col_upper and not self.num_col_lower:
if self.input_binary:
img_in = np.copy(img)
img_in = img_in / 255.0
img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST)
img_in = img_in.reshape(1, 448, 448, 3)
else:
img_1ch = self.imread(grayscale=True)
width_early = img_1ch.shape[1]
img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
img_1ch = img_1ch / 255.0
img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
img_in[0, :, :, 0] = img_1ch[:, :]
img_in[0, :, :, 1] = img_1ch[:, :]
img_in[0, :, :, 2] = img_1ch[:, :]
label_p_pred = self.model_classifier.predict(img_in, verbose=0)
num_col = np.argmax(label_p_pred[0]) + 1
elif (self.num_col_upper and self.num_col_lower) and (self.num_col_upper!=self.num_col_lower):
if self.input_binary:
img_in = np.copy(img)
img_in = img_in / 255.0
img_in = cv2.resize(img_in, (448, 448), interpolation=cv2.INTER_NEAREST)
img_in = img_in.reshape(1, 448, 448, 3)
else:
img_1ch = self.imread(grayscale=True)
width_early = img_1ch.shape[1]
img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]]
img_1ch = img_1ch / 255.0
img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
img_in[0, :, :, 0] = img_1ch[:, :]
img_in[0, :, :, 1] = img_1ch[:, :]
img_in[0, :, :, 2] = img_1ch[:, :]
label_p_pred = self.model_classifier.predict(img_in, verbose=0)
num_col = np.argmax(label_p_pred[0]) + 1
if num_col > self.num_col_upper:
num_col = self.num_col_upper
label_p_pred = [np.ones(6)]
if num_col < self.num_col_lower:
num_col = self.num_col_lower
label_p_pred = [np.ones(6)]
else:
num_col = self.num_col_upper
label_p_pred = [np.ones(6)]
self.logger.info("Found %d columns (%s)", num_col, np.around(label_p_pred, decimals=5))
if dpi < DPI_THRESHOLD:
if light_version and num_col in (1,2):
img_new, num_column_is_classified = self.calculate_width_height_by_columns_1_2(
img, num_col, width_early, label_p_pred)
else:
img_new, num_column_is_classified = self.calculate_width_height_by_columns(
img, num_col, width_early, label_p_pred)
if light_version:
image_res = np.copy(img_new)
else:
image_res = self.predict_enhancement(img_new)
is_image_enhanced = True
else:
num_column_is_classified = True
image_res = np.copy(img)
is_image_enhanced = False
self.logger.debug("exit resize_and_enhance_image_with_column_classifier")
return is_image_enhanced, img, image_res, num_col, num_column_is_classified, img_bin
def do_prediction(
self, patches, img, model,
n_batch_inference=1, marginal_of_patch_percent=0.1,
thresholding_for_some_classes_in_light_version=False,
thresholding_for_artificial_class_in_light_version=False, thresholding_for_fl_light_version=False, threshold_art_class_textline=0.1):
self.logger.debug("enter do_prediction")
img_height_model = model.layers[-1].output_shape[1]
img_width_model = model.layers[-1].output_shape[2]
if not patches:
img_h_page = img.shape[0]
img_w_page = img.shape[1]
img = img / float(255.0)
img = resize_image(img, img_height_model, img_width_model)
label_p_pred = model.predict(img[np.newaxis], verbose=0)
seg = np.argmax(label_p_pred, axis=3)[0]
if thresholding_for_artificial_class_in_light_version:
seg_art = label_p_pred[0,:,:,2]
seg_art[seg_art<threshold_art_class_textline] = 0
seg_art[seg_art>0] =1
skeleton_art = skeletonize(seg_art)
skeleton_art = skeleton_art*1
seg[skeleton_art==1]=2
if thresholding_for_fl_light_version:
seg_header = label_p_pred[0,:,:,2]
seg_header[seg_header<0.2] = 0
seg_header[seg_header>0] =1
seg[seg_header==1]=2
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
prediction_true = resize_image(seg_color, img_h_page, img_w_page).astype(np.uint8)
return prediction_true
if img.shape[0] < img_height_model:
img = resize_image(img, img_height_model, img.shape[1])
if img.shape[1] < img_width_model:
img = resize_image(img, img.shape[0], img_width_model)
self.logger.debug("Patch size: %sx%s", img_height_model, img_width_model)
margin = int(marginal_of_patch_percent * img_height_model)
width_mid = img_width_model - 2 * margin
height_mid = img_height_model - 2 * margin
img = img / 255.
#img = img.astype(np.float16)
img_h = img.shape[0]
img_w = img.shape[1]
prediction_true = np.zeros((img_h, img_w, 3))
mask_true = np.zeros((img_h, img_w))
nxf = img_w / float(width_mid)
nyf = img_h / float(height_mid)
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch = np.zeros((n_batch_inference, img_height_model, img_width_model, 3))
for i in range(nxf):
for j in range(nyf):
if i == 0:
index_x_d = i * width_mid
index_x_u = index_x_d + img_width_model
else:
index_x_d = i * width_mid
index_x_u = index_x_d + img_width_model
if j == 0:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
else:
index_y_d = j * height_mid
index_y_u = index_y_d + img_height_model
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - img_width_model
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - img_height_model
list_i_s.append(i)
list_j_s.append(j)
list_x_u.append(index_x_u)
list_x_d.append(index_x_d)
list_y_d.append(index_y_d)
list_y_u.append(index_y_u)
img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
batch_indexer += 1
if (batch_indexer == n_batch_inference or
# last batch
i == nxf - 1 and j == nyf - 1):
self.logger.debug("predicting patches on %s", str(img_patch.shape))
label_p_pred = model.predict(img_patch, verbose=0)
seg = np.argmax(label_p_pred, axis=3)
if thresholding_for_some_classes_in_light_version:
seg_not_base = label_p_pred[:,:,:,4]
seg_not_base[seg_not_base>0.03] =1
seg_not_base[seg_not_base<1] =0
seg_line = label_p_pred[:,:,:,3]
seg_line[seg_line>0.1] =1
seg_line[seg_line<1] =0
seg_background = label_p_pred[:,:,:,0]
seg_background[seg_background>0.25] =1
seg_background[seg_background<1] =0
seg[seg_not_base==1]=4
seg[seg_background==1]=0
seg[(seg_line==1) & (seg==0)]=3
if thresholding_for_artificial_class_in_light_version:
seg_art = label_p_pred[:,:,:,2]
seg_art[seg_art<threshold_art_class_textline] = 0
seg_art[seg_art>0] =1
##seg[seg_art==1]=2
indexer_inside_batch = 0
for i_batch, j_batch in zip(list_i_s, list_j_s):
seg_in = seg[indexer_inside_batch]
if thresholding_for_artificial_class_in_light_version:
seg_in_art = seg_art[indexer_inside_batch]
index_y_u_in = list_y_u[indexer_inside_batch]
index_y_d_in = list_y_d[indexer_inside_batch]
index_x_u_in = list_x_u[indexer_inside_batch]
index_x_d_in = list_x_d[indexer_inside_batch]
if i_batch == 0 and j_batch == 0:
prediction_true[index_y_d_in + 0:index_y_u_in - margin,
index_x_d_in + 0:index_x_u_in - margin] = \
seg_in[0:-margin or None,
0:-margin or None,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + 0:index_y_u_in - margin,
index_x_d_in + 0:index_x_u_in - margin, 1] = \
seg_in_art[0:-margin or None,
0:-margin or None]
elif i_batch == nxf - 1 and j_batch == nyf - 1:
prediction_true[index_y_d_in + margin:index_y_u_in - 0,
index_x_d_in + margin:index_x_u_in - 0] = \
seg_in[margin:,
margin:,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + margin:index_y_u_in - 0,
index_x_d_in + margin:index_x_u_in - 0, 1] = \
seg_in_art[margin:,
margin:]
elif i_batch == 0 and j_batch == nyf - 1:
prediction_true[index_y_d_in + margin:index_y_u_in - 0,
index_x_d_in + 0:index_x_u_in - margin] = \
seg_in[margin:,
0:-margin or None,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + margin:index_y_u_in - 0,
index_x_d_in + 0:index_x_u_in - margin, 1] = \
seg_in_art[margin:,
0:-margin or None]
elif i_batch == nxf - 1 and j_batch == 0:
prediction_true[index_y_d_in + 0:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - 0] = \
seg_in[0:-margin or None,
margin:,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + 0:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - 0, 1] = \
seg_in_art[0:-margin or None,
margin:]
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
prediction_true[index_y_d_in + margin:index_y_u_in - margin,
index_x_d_in + 0:index_x_u_in - margin] = \
seg_in[margin:-margin or None,
0:-margin or None,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + margin:index_y_u_in - margin,
index_x_d_in + 0:index_x_u_in - margin, 1] = \
seg_in_art[margin:-margin or None,
0:-margin or None]
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
prediction_true[index_y_d_in + margin:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - 0] = \
seg_in[margin:-margin or None,
margin:,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + margin:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - 0, 1] = \
seg_in_art[margin:-margin or None,
margin:]
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
prediction_true[index_y_d_in + 0:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - margin] = \
seg_in[0:-margin or None,
margin:-margin or None,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + 0:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - margin, 1] = \
seg_in_art[0:-margin or None,
margin:-margin or None]
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
prediction_true[index_y_d_in + margin:index_y_u_in - 0,
index_x_d_in + margin:index_x_u_in - margin] = \
seg_in[margin:,
margin:-margin or None,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + margin:index_y_u_in - 0,
index_x_d_in + margin:index_x_u_in - margin, 1] = \
seg_in_art[margin:,
margin:-margin or None]
else:
prediction_true[index_y_d_in + margin:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - margin] = \
seg_in[margin:-margin or None,
margin:-margin or None,
np.newaxis]
if thresholding_for_artificial_class_in_light_version:
prediction_true[index_y_d_in + margin:index_y_u_in - margin,
index_x_d_in + margin:index_x_u_in - margin, 1] = \
seg_in_art[margin:-margin or None,
margin:-margin or None]
indexer_inside_batch += 1
list_i_s = []
list_j_s = []
list_x_u = []
list_x_d = []
list_y_u = []
list_y_d = []
batch_indexer = 0
img_patch[:] = 0
prediction_true = prediction_true.astype(np.uint8)
if thresholding_for_artificial_class_in_light_version:
kernel_min = np.ones((3, 3), np.uint8)
prediction_true[:,:,0][prediction_true[:,:,0]==2] = 0
skeleton_art = skeletonize(prediction_true[:,:,1])
skeleton_art = skeleton_art*1
skeleton_art = skeleton_art.astype('uint8')
skeleton_art = cv2.dilate(skeleton_art, kernel_min, iterations=1)
prediction_true[:,:,0][skeleton_art==1]=2
#del model
gc.collect()
return prediction_true
def run_enhancement(self, light_version):
t_in = time.time()
self.logger.info("Resizing and enhancing image...")
is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified, img_bin = \
self.resize_and_enhance_image_with_column_classifier(light_version)
self.logger.info("Image was %senhanced.", '' if is_image_enhanced else 'not ')
return img_res, is_image_enhanced, num_col_classifier, num_column_is_classified
def run_single(self):
t0 = time.time()
img_res, is_image_enhanced, num_col_classifier, num_column_is_classified = self.run_enhancement(light_version=False)
return img_res
def run(self,
overwrite: bool = False,
image_filename: Optional[str] = None,
dir_in: Optional[str] = None,
dir_out: Optional[str] = None,
):
"""
Get image and scales, then extract the page of scanned image
"""
self.logger.debug("enter run")
t0_tot = time.time()
if dir_in:
ls_imgs = [os.path.join(dir_in, image_filename)
for image_filename in filter(is_image_filename,
os.listdir(dir_in))]
elif image_filename:
ls_imgs = [image_filename]
else:
raise ValueError("run requires either a single image filename or a directory")
for img_filename in ls_imgs:
self.logger.info(img_filename)
t0 = time.time()
self.reset_file_name_dir(img_filename, dir_out)
#print("text region early -11 in %.1fs", time.time() - t0)
if os.path.exists(self.output_filename):
if overwrite:
self.logger.warning("will overwrite existing output file '%s'", self.output_filename)
else:
self.logger.warning("will skip input for existing output file '%s'", self.output_filename)
continue
image_enhanced = self.run_single()
if self.save_org_scale:
image_enhanced = resize_image(image_enhanced, self.h_org, self.w_org)
cv2.imwrite(self.output_filename, image_enhanced)

View file

@ -1,812 +0,0 @@
"""
Image enhancer. The output can be written as same scale of input or in new predicted scale.
"""
from logging import Logger
import os
import time
from typing import Optional
from pathlib import Path
import xml.etree.ElementTree as ET
import cv2
import numpy as np
from ocrd_utils import getLogger
import statistics
import tensorflow as tf
from tensorflow.keras.models import load_model
from .utils.resize import resize_image
from .utils.contour import (
find_new_features_of_contours,
return_contours_of_image,
return_parent_contours,
)
from .utils import is_xml_filename
from .eynollah import PatchEncoder, Patches
DPI_THRESHOLD = 298
KERNEL = np.ones((5, 5), np.uint8)
class machine_based_reading_order_on_layout:
def __init__(
self,
dir_models : str,
logger : Optional[Logger] = None,
):
self.logger = logger if logger else getLogger('mbreorder')
self.dir_models = dir_models
self.model_reading_order_dir = dir_models + "/model_eynollah_reading_order_20250824"
try:
for device in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(device, True)
except:
self.logger.warning("no GPU device available")
self.model_reading_order = self.our_load_model(self.model_reading_order_dir)
self.light_version = True
@staticmethod
def our_load_model(model_file):
if model_file.endswith('.h5') and Path(model_file[:-3]).exists():
# prefer SavedModel over HDF5 format if it exists
model_file = model_file[:-3]
try:
model = load_model(model_file, compile=False)
except:
model = load_model(model_file, compile=False, custom_objects={
"PatchEncoder": PatchEncoder, "Patches": Patches})
return model
def read_xml(self, xml_file):
tree1 = ET.parse(xml_file, parser = ET.XMLParser(encoding='utf-8'))
root1=tree1.getroot()
alltags=[elem.tag for elem in root1.iter()]
link=alltags[0].split('}')[0]+'}'
index_tot_regions = []
tot_region_ref = []
for jj in root1.iter(link+'Page'):
y_len=int(jj.attrib['imageHeight'])
x_len=int(jj.attrib['imageWidth'])
for jj in root1.iter(link+'RegionRefIndexed'):
index_tot_regions.append(jj.attrib['index'])
tot_region_ref.append(jj.attrib['regionRef'])
if (link+'PrintSpace' in alltags) or (link+'Border' in alltags):
co_printspace = []
if link+'PrintSpace' in alltags:
region_tags_printspace = np.unique([x for x in alltags if x.endswith('PrintSpace')])
elif link+'Border' in alltags:
region_tags_printspace = np.unique([x for x in alltags if x.endswith('Border')])
for tag in region_tags_printspace:
if link+'PrintSpace' in alltags:
tag_endings_printspace = ['}PrintSpace','}printspace']
elif link+'Border' in alltags:
tag_endings_printspace = ['}Border','}border']
if tag.endswith(tag_endings_printspace[0]) or tag.endswith(tag_endings_printspace[1]):
for nn in root1.iter(tag):
c_t_in = []
sumi = 0
for vv in nn.iter():
# check the format of coords
if vv.tag == link + 'Coords':
coords = bool(vv.attrib)
if coords:
p_h = vv.attrib['points'].split(' ')
c_t_in.append(
np.array([[int(x.split(',')[0]), int(x.split(',')[1])] for x in p_h]))
break
else:
pass
if vv.tag == link + 'Point':
c_t_in.append([int(float(vv.attrib['x'])), int(float(vv.attrib['y']))])
sumi += 1
elif vv.tag != link + 'Point' and sumi >= 1:
break
co_printspace.append(np.array(c_t_in))
img_printspace = np.zeros( (y_len,x_len,3) )
img_printspace=cv2.fillPoly(img_printspace, pts =co_printspace, color=(1,1,1))
img_printspace = img_printspace.astype(np.uint8)
imgray = cv2.cvtColor(img_printspace, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(imgray, 0, 255, 0)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
cnt = contours[np.argmax(cnt_size)]
x, y, w, h = cv2.boundingRect(cnt)
bb_coord_printspace = [x, y, w, h]
else:
bb_coord_printspace = None
region_tags=np.unique([x for x in alltags if x.endswith('Region')])
co_text_paragraph=[]
co_text_drop=[]
co_text_heading=[]
co_text_header=[]
co_text_marginalia=[]
co_text_catch=[]
co_text_page_number=[]
co_text_signature_mark=[]
co_sep=[]
co_img=[]
co_table=[]
co_graphic=[]
co_graphic_text_annotation=[]
co_graphic_decoration=[]
co_noise=[]
co_text_paragraph_text=[]
co_text_drop_text=[]
co_text_heading_text=[]
co_text_header_text=[]
co_text_marginalia_text=[]
co_text_catch_text=[]
co_text_page_number_text=[]
co_text_signature_mark_text=[]
co_sep_text=[]
co_img_text=[]
co_table_text=[]
co_graphic_text=[]
co_graphic_text_annotation_text=[]
co_graphic_decoration_text=[]
co_noise_text=[]
id_paragraph = []
id_header = []
id_heading = []
id_marginalia = []
for tag in region_tags:
if tag.endswith('}TextRegion') or tag.endswith('}Textregion'):
for nn in root1.iter(tag):
for child2 in nn:
tag2 = child2.tag
if tag2.endswith('}TextEquiv') or tag2.endswith('}TextEquiv'):
for childtext2 in child2:
if childtext2.tag.endswith('}Unicode') or childtext2.tag.endswith('}Unicode'):
if "type" in nn.attrib and nn.attrib['type']=='drop-capital':
co_text_drop_text.append(childtext2.text)
elif "type" in nn.attrib and nn.attrib['type']=='heading':
co_text_heading_text.append(childtext2.text)
elif "type" in nn.attrib and nn.attrib['type']=='signature-mark':
co_text_signature_mark_text.append(childtext2.text)
elif "type" in nn.attrib and nn.attrib['type']=='header':
co_text_header_text.append(childtext2.text)
###elif "type" in nn.attrib and nn.attrib['type']=='catch-word':
###co_text_catch_text.append(childtext2.text)
###elif "type" in nn.attrib and nn.attrib['type']=='page-number':
###co_text_page_number_text.append(childtext2.text)
elif "type" in nn.attrib and nn.attrib['type']=='marginalia':
co_text_marginalia_text.append(childtext2.text)
else:
co_text_paragraph_text.append(childtext2.text)
c_t_in_drop=[]
c_t_in_paragraph=[]
c_t_in_heading=[]
c_t_in_header=[]
c_t_in_page_number=[]
c_t_in_signature_mark=[]
c_t_in_catch=[]
c_t_in_marginalia=[]
sumi=0
for vv in nn.iter():
# check the format of coords
if vv.tag==link+'Coords':
coords=bool(vv.attrib)
if coords:
#print('birda1')
p_h=vv.attrib['points'].split(' ')
if "type" in nn.attrib and nn.attrib['type']=='drop-capital':
c_t_in_drop.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
elif "type" in nn.attrib and nn.attrib['type']=='heading':
##id_heading.append(nn.attrib['id'])
c_t_in_heading.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
elif "type" in nn.attrib and nn.attrib['type']=='signature-mark':
c_t_in_signature_mark.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
#print(c_t_in_paragraph)
elif "type" in nn.attrib and nn.attrib['type']=='header':
#id_header.append(nn.attrib['id'])
c_t_in_header.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
###elif "type" in nn.attrib and nn.attrib['type']=='catch-word':
###c_t_in_catch.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
###elif "type" in nn.attrib and nn.attrib['type']=='page-number':
###c_t_in_page_number.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
elif "type" in nn.attrib and nn.attrib['type']=='marginalia':
#id_marginalia.append(nn.attrib['id'])
c_t_in_marginalia.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
else:
#id_paragraph.append(nn.attrib['id'])
c_t_in_paragraph.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
break
else:
pass
if vv.tag==link+'Point':
if "type" in nn.attrib and nn.attrib['type']=='drop-capital':
c_t_in_drop.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif "type" in nn.attrib and nn.attrib['type']=='heading':
#id_heading.append(nn.attrib['id'])
c_t_in_heading.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif "type" in nn.attrib and nn.attrib['type']=='signature-mark':
c_t_in_signature_mark.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif "type" in nn.attrib and nn.attrib['type']=='header':
#id_header.append(nn.attrib['id'])
c_t_in_header.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
###elif "type" in nn.attrib and nn.attrib['type']=='catch-word':
###c_t_in_catch.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
###sumi+=1
###elif "type" in nn.attrib and nn.attrib['type']=='page-number':
###c_t_in_page_number.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
###sumi+=1
elif "type" in nn.attrib and nn.attrib['type']=='marginalia':
#id_marginalia.append(nn.attrib['id'])
c_t_in_marginalia.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
else:
#id_paragraph.append(nn.attrib['id'])
c_t_in_paragraph.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif vv.tag!=link+'Point' and sumi>=1:
break
if len(c_t_in_drop)>0:
co_text_drop.append(np.array(c_t_in_drop))
if len(c_t_in_paragraph)>0:
co_text_paragraph.append(np.array(c_t_in_paragraph))
id_paragraph.append(nn.attrib['id'])
if len(c_t_in_heading)>0:
co_text_heading.append(np.array(c_t_in_heading))
id_heading.append(nn.attrib['id'])
if len(c_t_in_header)>0:
co_text_header.append(np.array(c_t_in_header))
id_header.append(nn.attrib['id'])
if len(c_t_in_page_number)>0:
co_text_page_number.append(np.array(c_t_in_page_number))
if len(c_t_in_catch)>0:
co_text_catch.append(np.array(c_t_in_catch))
if len(c_t_in_signature_mark)>0:
co_text_signature_mark.append(np.array(c_t_in_signature_mark))
if len(c_t_in_marginalia)>0:
co_text_marginalia.append(np.array(c_t_in_marginalia))
id_marginalia.append(nn.attrib['id'])
elif tag.endswith('}GraphicRegion') or tag.endswith('}graphicregion'):
for nn in root1.iter(tag):
c_t_in=[]
c_t_in_text_annotation=[]
c_t_in_decoration=[]
sumi=0
for vv in nn.iter():
# check the format of coords
if vv.tag==link+'Coords':
coords=bool(vv.attrib)
if coords:
p_h=vv.attrib['points'].split(' ')
if "type" in nn.attrib and nn.attrib['type']=='handwritten-annotation':
c_t_in_text_annotation.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
elif "type" in nn.attrib and nn.attrib['type']=='decoration':
c_t_in_decoration.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
else:
c_t_in.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
break
else:
pass
if vv.tag==link+'Point':
if "type" in nn.attrib and nn.attrib['type']=='handwritten-annotation':
c_t_in_text_annotation.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif "type" in nn.attrib and nn.attrib['type']=='decoration':
c_t_in_decoration.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
else:
c_t_in.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
if len(c_t_in_text_annotation)>0:
co_graphic_text_annotation.append(np.array(c_t_in_text_annotation))
if len(c_t_in_decoration)>0:
co_graphic_decoration.append(np.array(c_t_in_decoration))
if len(c_t_in)>0:
co_graphic.append(np.array(c_t_in))
elif tag.endswith('}ImageRegion') or tag.endswith('}imageregion'):
for nn in root1.iter(tag):
c_t_in=[]
sumi=0
for vv in nn.iter():
# check the format of coords
if vv.tag==link+'Coords':
coords=bool(vv.attrib)
if coords:
p_h=vv.attrib['points'].split(' ')
c_t_in.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
break
else:
pass
if vv.tag==link+'Point':
c_t_in.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif vv.tag!=link+'Point' and sumi>=1:
break
co_img.append(np.array(c_t_in))
co_img_text.append(' ')
elif tag.endswith('}SeparatorRegion') or tag.endswith('}separatorregion'):
for nn in root1.iter(tag):
c_t_in=[]
sumi=0
for vv in nn.iter():
# check the format of coords
if vv.tag==link+'Coords':
coords=bool(vv.attrib)
if coords:
p_h=vv.attrib['points'].split(' ')
c_t_in.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
break
else:
pass
if vv.tag==link+'Point':
c_t_in.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif vv.tag!=link+'Point' and sumi>=1:
break
co_sep.append(np.array(c_t_in))
elif tag.endswith('}TableRegion') or tag.endswith('}tableregion'):
for nn in root1.iter(tag):
c_t_in=[]
sumi=0
for vv in nn.iter():
# check the format of coords
if vv.tag==link+'Coords':
coords=bool(vv.attrib)
if coords:
p_h=vv.attrib['points'].split(' ')
c_t_in.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
break
else:
pass
if vv.tag==link+'Point':
c_t_in.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif vv.tag!=link+'Point' and sumi>=1:
break
co_table.append(np.array(c_t_in))
co_table_text.append(' ')
elif tag.endswith('}NoiseRegion') or tag.endswith('}noiseregion'):
for nn in root1.iter(tag):
c_t_in=[]
sumi=0
for vv in nn.iter():
# check the format of coords
if vv.tag==link+'Coords':
coords=bool(vv.attrib)
if coords:
p_h=vv.attrib['points'].split(' ')
c_t_in.append( np.array( [ [ int(x.split(',')[0]) , int(x.split(',')[1]) ] for x in p_h] ) )
break
else:
pass
if vv.tag==link+'Point':
c_t_in.append([ int(float(vv.attrib['x'])) , int(float(vv.attrib['y'])) ])
sumi+=1
elif vv.tag!=link+'Point' and sumi>=1:
break
co_noise.append(np.array(c_t_in))
co_noise_text.append(' ')
img = np.zeros( (y_len,x_len,3) )
img_poly=cv2.fillPoly(img, pts =co_text_paragraph, color=(1,1,1))
img_poly=cv2.fillPoly(img, pts =co_text_heading, color=(2,2,2))
img_poly=cv2.fillPoly(img, pts =co_text_header, color=(2,2,2))
img_poly=cv2.fillPoly(img, pts =co_text_marginalia, color=(3,3,3))
img_poly=cv2.fillPoly(img, pts =co_img, color=(4,4,4))
img_poly=cv2.fillPoly(img, pts =co_sep, color=(5,5,5))
return tree1, root1, bb_coord_printspace, id_paragraph, id_header+id_heading, co_text_paragraph, co_text_header+co_text_heading,\
tot_region_ref,x_len, y_len,index_tot_regions, img_poly
def return_indexes_of_contours_loctaed_inside_another_list_of_contours(self, contours, contours_loc, cx_main_loc, cy_main_loc, indexes_loc):
indexes_of_located_cont = []
center_x_coordinates_of_located = []
center_y_coordinates_of_located = []
#M_main_tot = [cv2.moments(contours_loc[j])
#for j in range(len(contours_loc))]
#cx_main_loc = [(M_main_tot[j]["m10"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))]
#cy_main_loc = [(M_main_tot[j]["m01"] / (M_main_tot[j]["m00"] + 1e-32)) for j in range(len(M_main_tot))]
for ij in range(len(contours)):
results = [cv2.pointPolygonTest(contours[ij], (cx_main_loc[ind], cy_main_loc[ind]), False)
for ind in range(len(cy_main_loc)) ]
results = np.array(results)
indexes_in = np.where((results == 0) | (results == 1))
indexes = indexes_loc[indexes_in]# [(results == 0) | (results == 1)]#np.where((results == 0) | (results == 1))
indexes_of_located_cont.append(indexes)
center_x_coordinates_of_located.append(np.array(cx_main_loc)[indexes_in] )
center_y_coordinates_of_located.append(np.array(cy_main_loc)[indexes_in] )
return indexes_of_located_cont, center_x_coordinates_of_located, center_y_coordinates_of_located
def do_order_of_regions_with_model(self, contours_only_text_parent, contours_only_text_parent_h, text_regions_p):
height1 =672#448
width1 = 448#224
height2 =672#448
width2= 448#224
height3 =672#448
width3 = 448#224
inference_bs = 3
ver_kernel = np.ones((5, 1), dtype=np.uint8)
hor_kernel = np.ones((1, 5), dtype=np.uint8)
min_cont_size_to_be_dilated = 10
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
cx_conts, cy_conts, x_min_conts, x_max_conts, y_min_conts, y_max_conts, _ = find_new_features_of_contours(contours_only_text_parent)
args_cont_located = np.array(range(len(contours_only_text_parent)))
diff_y_conts = np.abs(y_max_conts[:]-y_min_conts)
diff_x_conts = np.abs(x_max_conts[:]-x_min_conts)
mean_x = statistics.mean(diff_x_conts)
median_x = statistics.median(diff_x_conts)
diff_x_ratio= diff_x_conts/mean_x
args_cont_located_excluded = args_cont_located[diff_x_ratio>=1.3]
args_cont_located_included = args_cont_located[diff_x_ratio<1.3]
contours_only_text_parent_excluded = [contours_only_text_parent[ind] for ind in range(len(contours_only_text_parent)) if diff_x_ratio[ind]>=1.3]#contours_only_text_parent[diff_x_ratio>=1.3]
contours_only_text_parent_included = [contours_only_text_parent[ind] for ind in range(len(contours_only_text_parent)) if diff_x_ratio[ind]<1.3]#contours_only_text_parent[diff_x_ratio<1.3]
cx_conts_excluded = [cx_conts[ind] for ind in range(len(cx_conts)) if diff_x_ratio[ind]>=1.3]#cx_conts[diff_x_ratio>=1.3]
cx_conts_included = [cx_conts[ind] for ind in range(len(cx_conts)) if diff_x_ratio[ind]<1.3]#cx_conts[diff_x_ratio<1.3]
cy_conts_excluded = [cy_conts[ind] for ind in range(len(cy_conts)) if diff_x_ratio[ind]>=1.3]#cy_conts[diff_x_ratio>=1.3]
cy_conts_included = [cy_conts[ind] for ind in range(len(cy_conts)) if diff_x_ratio[ind]<1.3]#cy_conts[diff_x_ratio<1.3]
#print(diff_x_ratio, 'ratio')
text_regions_p = text_regions_p.astype('uint8')
if len(contours_only_text_parent_excluded)>0:
textregion_par = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1])).astype('uint8')
textregion_par = cv2.fillPoly(textregion_par, pts=contours_only_text_parent_included, color=(1,1))
else:
textregion_par = (text_regions_p[:,:]==1)*1
textregion_par = textregion_par.astype('uint8')
text_regions_p_textregions_dilated = cv2.erode(textregion_par , hor_kernel, iterations=2)
text_regions_p_textregions_dilated = cv2.dilate(text_regions_p_textregions_dilated , ver_kernel, iterations=4)
text_regions_p_textregions_dilated = cv2.erode(text_regions_p_textregions_dilated , hor_kernel, iterations=1)
text_regions_p_textregions_dilated = cv2.dilate(text_regions_p_textregions_dilated , ver_kernel, iterations=5)
text_regions_p_textregions_dilated[text_regions_p[:,:]>1] = 0
contours_only_dilated, hir_on_text_dilated = return_contours_of_image(text_regions_p_textregions_dilated)
contours_only_dilated = return_parent_contours(contours_only_dilated, hir_on_text_dilated)
indexes_of_located_cont, center_x_coordinates_of_located, center_y_coordinates_of_located = self.return_indexes_of_contours_loctaed_inside_another_list_of_contours(contours_only_dilated, contours_only_text_parent_included, cx_conts_included, cy_conts_included, args_cont_located_included)
if len(args_cont_located_excluded)>0:
for ind in args_cont_located_excluded:
indexes_of_located_cont.append(np.array([ind]))
contours_only_dilated.append(contours_only_text_parent[ind])
center_y_coordinates_of_located.append(0)
array_list = [np.array([elem]) if isinstance(elem, int) else elem for elem in indexes_of_located_cont]
flattened_array = np.concatenate([arr.ravel() for arr in array_list])
#print(len( np.unique(flattened_array)), 'indexes_of_located_cont uniques')
missing_textregions = list( set(np.array(range(len(contours_only_text_parent))) ) - set(np.unique(flattened_array)) )
#print(missing_textregions, 'missing_textregions')
for ind in missing_textregions:
indexes_of_located_cont.append(np.array([ind]))
contours_only_dilated.append(contours_only_text_parent[ind])
center_y_coordinates_of_located.append(0)
if contours_only_text_parent_h:
for vi in range(len(contours_only_text_parent_h)):
indexes_of_located_cont.append(int(vi+len(contours_only_text_parent)))
array_list = [np.array([elem]) if isinstance(elem, int) else elem for elem in indexes_of_located_cont]
flattened_array = np.concatenate([arr.ravel() for arr in array_list])
y_len = text_regions_p.shape[0]
x_len = text_regions_p.shape[1]
img_poly = np.zeros((y_len,x_len), dtype='uint8')
###img_poly[text_regions_p[:,:]==1] = 1
###img_poly[text_regions_p[:,:]==2] = 2
###img_poly[text_regions_p[:,:]==3] = 4
###img_poly[text_regions_p[:,:]==6] = 5
##img_poly[text_regions_p[:,:]==1] = 1
##img_poly[text_regions_p[:,:]==2] = 2
##img_poly[text_regions_p[:,:]==3] = 3
##img_poly[text_regions_p[:,:]==4] = 4
##img_poly[text_regions_p[:,:]==5] = 5
img_poly = np.copy(text_regions_p)
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
if contours_only_text_parent_h:
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(
contours_only_text_parent_h)
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,
int(x_min_main[j]):int(x_max_main[j])] = 1
co_text_all_org = contours_only_text_parent + contours_only_text_parent_h
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
co_text_all = contours_only_dilated + contours_only_text_parent_h
else:
co_text_all = contours_only_text_parent + contours_only_text_parent_h
else:
co_text_all_org = contours_only_text_parent
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
co_text_all = contours_only_dilated
else:
co_text_all = contours_only_text_parent
if not len(co_text_all):
return [], []
labels_con = np.zeros((int(y_len /6.), int(x_len/6.), len(co_text_all)), dtype=bool)
co_text_all = [(i/6).astype(int) for i in co_text_all]
for i in range(len(co_text_all)):
img = labels_con[:,:,i].astype(np.uint8)
#img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
cv2.fillPoly(img, pts=[co_text_all[i]], color=(1,))
labels_con[:,:,i] = img
labels_con = resize_image(labels_con.astype(np.uint8), height1, width1).astype(bool)
img_header_and_sep = resize_image(img_header_and_sep, height1, width1)
img_poly = resize_image(img_poly, height3, width3)
input_1 = np.zeros((inference_bs, height1, width1, 3))
ordered = [list(range(len(co_text_all)))]
index_update = 0
#print(labels_con.shape[2],"number of regions for reading order")
while index_update>=0:
ij_list = ordered.pop(index_update)
i = ij_list.pop(0)
ante_list = []
post_list = []
tot_counter = 0
batch = []
for j in ij_list:
img1 = labels_con[:,:,i].astype(float)
img2 = labels_con[:,:,j].astype(float)
img1[img_poly==5] = 2
img2[img_poly==5] = 2
img1[img_header_and_sep==1] = 3
img2[img_header_and_sep==1] = 3
input_1[len(batch), :, :, 0] = img1 / 3.
input_1[len(batch), :, :, 2] = img2 / 3.
input_1[len(batch), :, :, 1] = img_poly / 5.
tot_counter += 1
batch.append(j)
if tot_counter % inference_bs == 0 or tot_counter == len(ij_list):
y_pr = self.model_reading_order.predict(input_1 , verbose=0)
for jb, j in enumerate(batch):
if y_pr[jb][0]>=0.5:
post_list.append(j)
else:
ante_list.append(j)
batch = []
if len(ante_list):
ordered.insert(index_update, ante_list)
index_update += 1
ordered.insert(index_update, [i])
if len(post_list):
ordered.insert(index_update + 1, post_list)
index_update = -1
for index_next, ij_list in enumerate(ordered):
if len(ij_list) > 1:
index_update = index_next
break
ordered = [i[0] for i in ordered]
##id_all_text = np.array(id_all_text)[index_sort]
if len(contours_only_text_parent)>min_cont_size_to_be_dilated and self.light_version:
org_contours_indexes = []
for ind in range(len(ordered)):
region_with_curr_order = ordered[ind]
if region_with_curr_order < len(contours_only_dilated):
if np.isscalar(indexes_of_located_cont[region_with_curr_order]):
org_contours_indexes = org_contours_indexes + [indexes_of_located_cont[region_with_curr_order]]
else:
arg_sort_located_cont = np.argsort(center_y_coordinates_of_located[region_with_curr_order])
org_contours_indexes = org_contours_indexes + list(np.array(indexes_of_located_cont[region_with_curr_order])[arg_sort_located_cont]) ##org_contours_indexes + list (
else:
org_contours_indexes = org_contours_indexes + [indexes_of_located_cont[region_with_curr_order]]
region_ids = ['region_%04d' % i for i in range(len(co_text_all_org))]
return org_contours_indexes, region_ids
else:
region_ids = ['region_%04d' % i for i in range(len(co_text_all_org))]
return ordered, region_ids
def run(self,
overwrite: bool = False,
xml_filename: Optional[str] = None,
dir_in: Optional[str] = None,
dir_out: Optional[str] = None,
):
"""
Get image and scales, then extract the page of scanned image
"""
self.logger.debug("enter run")
t0_tot = time.time()
if dir_in:
ls_xmls = [os.path.join(dir_in, xml_filename)
for xml_filename in filter(is_xml_filename,
os.listdir(dir_in))]
elif xml_filename:
ls_xmls = [xml_filename]
else:
raise ValueError("run requires either a single image filename or a directory")
for xml_filename in ls_xmls:
self.logger.info(xml_filename)
t0 = time.time()
file_name = Path(xml_filename).stem
(tree_xml, root_xml, bb_coord_printspace, id_paragraph, id_header,
co_text_paragraph, co_text_header, tot_region_ref,
x_len, y_len, index_tot_regions, img_poly) = self.read_xml(xml_filename)
id_all_text = id_paragraph + id_header
order_text_new, id_of_texts_tot = self.do_order_of_regions_with_model(co_text_paragraph, co_text_header, img_poly[:,:,0])
id_all_text = np.array(id_all_text)[order_text_new]
alltags=[elem.tag for elem in root_xml.iter()]
link=alltags[0].split('}')[0]+'}'
name_space = alltags[0].split('}')[0]
name_space = name_space.split('{')[1]
page_element = root_xml.find(link+'Page')
old_ro = root_xml.find(".//{*}ReadingOrder")
if old_ro is not None:
page_element.remove(old_ro)
#print(old_ro, 'old_ro')
ro_subelement = ET.Element('ReadingOrder')
ro_subelement2 = ET.SubElement(ro_subelement, 'OrderedGroup')
ro_subelement2.set('id', "ro357564684568544579089")
for index, id_text in enumerate(id_all_text):
new_element_2 = ET.SubElement(ro_subelement2, 'RegionRefIndexed')
new_element_2.set('regionRef', id_all_text[index])
new_element_2.set('index', str(index))
if (link+'PrintSpace' in alltags) or (link+'Border' in alltags):
page_element.insert(1, ro_subelement)
else:
page_element.insert(0, ro_subelement)
alltags=[elem.tag for elem in root_xml.iter()]
ET.register_namespace("",name_space)
tree_xml.write(os.path.join(dir_out, file_name+'.xml'),
xml_declaration=True,
method='xml',
encoding="utf-8",
default_namespace=None)
#sys.exit()

View file

@ -1,5 +1,5 @@
{
"version": "0.6.0",
"version": "0.4.0",
"git_url": "https://github.com/qurator-spk/eynollah",
"dockerhub": "ocrd/eynollah",
"tools": {
@ -38,7 +38,7 @@
"textline_light": {
"type": "boolean",
"default": true,
"description": "Light version need textline light. If this parameter set to true, this tool will try to return contoure of textlines instead of rectangle bounding box of textline with a faster method."
"description": "Light version need textline light"
},
"tables": {
"type": "boolean",
@ -65,6 +65,11 @@
"default": false,
"description": "if this parameter set to true, this tool would check that input image need resizing and enhancement or not."
},
"textline_light": {
"type": "boolean",
"default": false,
"description": "if this parameter set to true, this tool will try to return contoure of textlines instead of rectangle bounding box of textline with a faster method."
},
"right_to_left": {
"type": "boolean",
"default": false,
@ -74,31 +79,16 @@
"type": "boolean",
"default": false,
"description": "ignore the special role of headings during reading order detection"
},
"reading_order_machine_based": {
"type": "boolean",
"default": false,
"description": "use data-driven (rather than rule-based) reading order detection"
}
},
"resources": [
{
"url": "https://zenodo.org/records/17194824/files/models_layout_v0_5_0.tar.gz?download=1",
"name": "models_layout_v0_5_0",
"type": "archive",
"path_in_archive": "models_layout_v0_5_0",
"size": 3525684179,
"description": "Models for layout detection, reading order detection, textline detection, page extraction, column classification, table detection, binarization, image enhancement",
"version_range": ">= v0.5.0"
},
{
"description": "models for eynollah (TensorFlow SavedModel format)",
"url": "https://github.com/qurator-spk/eynollah/releases/download/v0.3.1/models_eynollah.tar.gz",
"name": "default",
"size": 1894627041,
"type": "archive",
"path_in_archive": "models_eynollah",
"version_range": ">= v0.3.0, < v0.5.0"
"path_in_archive": "models_eynollah"
}
]
},

View file

@ -12,7 +12,7 @@ from .utils import crop_image_inside_box
from .utils.rotate import rotate_image_different
from .utils.resize import resize_image
class EynollahPlotter:
class EynollahPlotter():
"""
Class collecting all the plotting and image writing methods
"""

View file

@ -1,7 +1,6 @@
from functools import cached_property
from typing import Optional
from ocrd_models import OcrdPage
from ocrd import OcrdPageResultImage, Processor, OcrdPageResult
from ocrd import Processor, OcrdPageResult
from .eynollah import Eynollah, EynollahXmlWriter
@ -10,21 +9,20 @@ class EynollahProcessor(Processor):
# already employs GPU (without singleton process atm)
max_workers = 1
@cached_property
def executable(self) -> str:
@property
def executable(self):
return 'ocrd-eynollah-segment'
def setup(self) -> None:
assert self.parameter
if self.parameter['textline_light'] != self.parameter['light_version']:
raise ValueError("Error: You must set or unset both parameter 'textline_light' (to enable light textline detection), "
"and parameter 'light_version' (faster+simpler method for main region detection and deskewing)")
if self.parameter['textline_light'] and not self.parameter['light_version']:
raise ValueError("Error: You set parameter 'textline_light' to enable light textline detection, "
"but parameter 'light_version' is not enabled")
self.eynollah = Eynollah(
self.resolve_resource(self.parameter['models']),
logger=self.logger,
allow_enhancement=self.parameter['allow_enhancement'],
curved_line=self.parameter['curved_line'],
right2left=self.parameter['right_to_left'],
reading_order_machine_based=self.parameter['reading_order_machine_based'],
ignore_page_extraction=self.parameter['ignore_page_extraction'],
light_version=self.parameter['light_version'],
textline_light=self.parameter['textline_light'],
@ -33,7 +31,6 @@ class EynollahProcessor(Processor):
headers_off=self.parameter['headers_off'],
tables=self.parameter['tables'],
)
self.eynollah.logger = self.logger
self.eynollah.plotter = None
def shutdown(self):
@ -59,8 +56,6 @@ class EynollahProcessor(Processor):
- If ``ignore_page_extraction``, then attempt no cropping of the page.
- If ``curved_line``, then compute contour polygons for text lines
instead of simple bounding boxes.
- If ``reading_order_machine_based``, then detect reading order via
data-driven model instead of geometrical heuristics.
Produce a new output file by serialising the resulting hierarchy.
"""

View file

@ -16,7 +16,6 @@ import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.python.keras import backend as tensorflow_backend
from .utils import is_image_filename
def resize_image(img_in, input_height, input_width):
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
@ -315,8 +314,8 @@ class SbbBinarizer:
prediction_true = prediction_true.astype(np.uint8)
return prediction_true[:,:,0]
def run(self, image=None, image_path=None, output=None, use_patches=False, dir_in=None):
# print(dir_in,'dir_in')
def run(self, image=None, image_path=None, save=None, use_patches=False, dir_in=None, dir_out=None):
print(dir_in,'dir_in')
if not dir_in:
if (image is not None and image_path is not None) or \
(image is None and image_path is None):
@ -344,11 +343,11 @@ class SbbBinarizer:
kernel = np.ones((5, 5), np.uint8)
img_last[:, :][img_last[:, :] > 0] = 255
img_last = (img_last[:, :] == 0) * 255
if output:
cv2.imwrite(output, img_last)
if save:
cv2.imwrite(save, img_last)
return img_last
else:
ls_imgs = list(filter(is_image_filename, os.listdir(dir_in)))
ls_imgs = os.listdir(dir_in)
for image_name in ls_imgs:
image_stem = image_name.split('.')[0]
print(image_name,'image_name')
@ -375,4 +374,4 @@ class SbbBinarizer:
img_last[:, :][img_last[:, :] > 0] = 255
img_last = (img_last[:, :] == 0) * 255
cv2.imwrite(os.path.join(output, image_stem + '.png'), img_last)
cv2.imwrite(os.path.join(dir_out,image_stem+'.png'), img_last)

View file

@ -1,24 +0,0 @@
import click
import tensorflow as tf
from .models import resnet50_unet
def configuration():
gpu_options = tf.compat.v1.GPUOptions(allow_growth=True)
session = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options))
@click.command()
def build_model_load_pretrained_weights_and_save():
n_classes = 2
input_height = 224
input_width = 448
weight_decay = 1e-6
pretraining = False
dir_of_weights = 'model_bin_sbb_ens.h5'
# configuration()
model = resnet50_unet(n_classes, input_height, input_width, weight_decay, pretraining)
model.load_weights(dir_of_weights)
model.save('./name_in_another_python_version.h5')

View file

@ -1,26 +0,0 @@
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import click
import sys
from .build_model_load_pretrained_weights_and_save import build_model_load_pretrained_weights_and_save
from .generate_gt_for_training import main as generate_gt_cli
from .inference import main as inference_cli
from .train import ex
@click.command(context_settings=dict(
ignore_unknown_options=True,
))
@click.argument('SACRED_ARGS', nargs=-1, type=click.UNPROCESSED)
def train_cli(sacred_args):
ex.run_commandline([sys.argv[0]] + list(sacred_args))
@click.group('training')
def main():
pass
main.add_command(build_model_load_pretrained_weights_and_save)
main.add_command(generate_gt_cli, 'generate-gt')
main.add_command(inference_cli, 'inference')
main.add_command(train_cli, 'train')

View file

@ -1,583 +0,0 @@
import click
import json
import os
from tqdm import tqdm
from pathlib import Path
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
from eynollah.training.gt_gen_utils import (
filter_contours_area_of_image,
find_format_of_given_filename_in_dir,
find_new_features_of_contours,
fit_text_single_line,
get_content_of_dir,
get_images_of_ground_truth,
get_layout_contours_for_visualization,
get_textline_contours_and_ocr_text,
get_textline_contours_for_visualization,
overlay_layout_on_image,
read_xml,
resize_image,
visualize_image_from_contours,
visualize_image_from_contours_layout
)
@click.group()
def main():
pass
@main.command()
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_images",
"-di",
help="directory of org images. If print space cropping or scaling is needed for labels it would be great to provide the original images to apply the same function on them. So if -ps is not set true or in config files no columns_width key is given this argumnet can be ignored. File stems in this directory should be the same as those in dir_xml.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_images",
"-doi",
help="directory where the output org images after undergoing a process (like print space cropping or scaling) will be written.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-do",
help="directory where ground truth label images would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--config",
"-cfg",
help="config file of prefered layout or use case.",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--type_output",
"-to",
help="this defines how output should be. A 2d image array or a 3d image array encoded with RGB color. Just pass 2d or 3d. The file will be saved one directory up. 2D image array is 3d but only information of one channel would be enough since all channels have the same values.",
)
@click.option(
"--printspace",
"-ps",
is_flag=True,
help="if this parameter set to true, generated labels and in the case of provided org images cropping will be imposed and cropped labels and images will be written in output directories.",
)
def pagexml2label(dir_xml,dir_out,type_output,config, printspace, dir_images, dir_out_images):
if config:
with open(config) as f:
config_params = json.load(f)
else:
print("passed")
config_params = None
gt_list = get_content_of_dir(dir_xml)
get_images_of_ground_truth(gt_list,dir_xml,dir_out,type_output, config, config_params, printspace, dir_images, dir_out_images)
@main.command()
@click.option(
"--dir_imgs",
"-dis",
help="directory of images with high resolution.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_images",
"-dois",
help="directory where degraded images will be written.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_labels",
"-dols",
help="directory where original images will be written as labels.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--scales",
"-scs",
help="json dictionary where the scales are written.",
type=click.Path(exists=True, dir_okay=False),
)
def image_enhancement(dir_imgs, dir_out_images, dir_out_labels, scales):
ls_imgs = os.listdir(dir_imgs)
with open(scales) as f:
scale_dict = json.load(f)
ls_scales = scale_dict['scales']
for img in tqdm(ls_imgs):
img_name = img.split('.')[0]
img_type = img.split('.')[1]
image = cv2.imread(os.path.join(dir_imgs, img))
for i, scale in enumerate(ls_scales):
height_sc = int(image.shape[0]*scale)
width_sc = int(image.shape[1]*scale)
image_down_scaled = resize_image(image, height_sc, width_sc)
image_back_to_org_scale = resize_image(image_down_scaled, image.shape[0], image.shape[1])
cv2.imwrite(os.path.join(dir_out_images, img_name+'_'+str(i)+'.'+img_type), image_back_to_org_scale)
cv2.imwrite(os.path.join(dir_out_labels, img_name+'_'+str(i)+'.'+img_type), image)
@main.command()
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_modal_image",
"-domi",
help="directory where ground truth images would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out_classes",
"-docl",
help="directory where ground truth classes would be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--input_height",
"-ih",
help="input height",
)
@click.option(
"--input_width",
"-iw",
help="input width",
)
@click.option(
"--min_area_size",
"-min",
help="min area size of regions considered for reading order training.",
)
@click.option(
"--min_area_early",
"-min_early",
help="If you have already generated a training dataset using a specific minimum area value and now wish to create a dataset with a smaller minimum area value, you can avoid regenerating the previous dataset by providing the earlier minimum area value. This will ensure that only the missing data is generated.",
)
def machine_based_reading_order(dir_xml, dir_out_modal_image, dir_out_classes, input_height, input_width, min_area_size, min_area_early):
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
input_height = int(input_height)
input_width = int(input_width)
min_area = float(min_area_size)
if min_area_early:
min_area_early = float(min_area_early)
indexer_start= 0#55166
max_area = 1
#min_area = 0.0001
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
xml_file = os.path.join(dir_xml,ind_xml )
f_name = ind_xml.split('.')[0]
_, _, _, file_name, id_paragraph, id_header,co_text_paragraph,co_text_header,tot_region_ref,x_len, y_len,index_tot_regions,img_poly = read_xml(xml_file)
id_all_text = id_paragraph + id_header
co_text_all = co_text_paragraph + co_text_header
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_header)
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
texts_corr_order_index = [index_tot_regions[tot_region_ref.index(i)] for i in id_all_text ]
texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
co_text_all, texts_corr_order_index_int, regions_ar_less_than_early_min = filter_contours_area_of_image(img_poly, co_text_all, texts_corr_order_index_int, max_area, min_area, min_area_early)
arg_array = np.array(range(len(texts_corr_order_index_int)))
labels_con = np.zeros((y_len,x_len,len(arg_array)),dtype='uint8')
for i in range(len(co_text_all)):
img_label = np.zeros((y_len,x_len,3),dtype='uint8')
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
img_label[:,:,0][img_poly[:,:,0]==5] = 2
img_label[:,:,0][img_header_and_sep[:,:]==1] = 3
labels_con[:,:,i] = img_label[:,:,0]
labels_con = resize_image(labels_con, input_height, input_width)
img_poly = resize_image(img_poly, input_height, input_width)
for i in range(len(texts_corr_order_index_int)):
for j in range(len(texts_corr_order_index_int)):
if i!=j:
if regions_ar_less_than_early_min:
if regions_ar_less_than_early_min[i]==1:
input_multi_visual_modal = np.zeros((input_height,input_width,3)).astype(np.int8)
final_f_name = f_name+'_'+str(indexer+indexer_start)
order_class_condition = texts_corr_order_index_int[i]-texts_corr_order_index_int[j]
if order_class_condition<0:
class_type = 1
else:
class_type = 0
input_multi_visual_modal[:,:,0] = labels_con[:,:,i]
input_multi_visual_modal[:,:,1] = img_poly[:,:,0]
input_multi_visual_modal[:,:,2] = labels_con[:,:,j]
np.save(os.path.join(dir_out_classes,final_f_name+'_missed.npy' ), class_type)
cv2.imwrite(os.path.join(dir_out_modal_image,final_f_name+'_missed.png' ), input_multi_visual_modal)
indexer = indexer+1
else:
input_multi_visual_modal = np.zeros((input_height,input_width,3)).astype(np.int8)
final_f_name = f_name+'_'+str(indexer+indexer_start)
order_class_condition = texts_corr_order_index_int[i]-texts_corr_order_index_int[j]
if order_class_condition<0:
class_type = 1
else:
class_type = 0
input_multi_visual_modal[:,:,0] = labels_con[:,:,i]
input_multi_visual_modal[:,:,1] = img_poly[:,:,0]
input_multi_visual_modal[:,:,2] = labels_con[:,:,j]
np.save(os.path.join(dir_out_classes,final_f_name+'.npy' ), class_type)
cv2.imwrite(os.path.join(dir_out_modal_image,final_f_name+'.png' ), input_multi_visual_modal)
indexer = indexer+1
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_imgs",
"-di",
help="directory where the overlayed plots will be written", )
def visualize_reading_order(xml_file, dir_xml, dir_out, dir_imgs):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
indexer_start= 0#55166
#min_area = 0.0001
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
#xml_file = os.path.join(dir_xml,ind_xml )
if dir_xml:
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
else:
xml_file = os.path.join(ind_xml )
f_name = Path(ind_xml).stem
print(f_name, 'f_name')
#f_name = ind_xml.split('.')[0]
_, _, _, file_name, id_paragraph, id_header,co_text_paragraph,co_text_header,tot_region_ref,x_len, y_len,index_tot_regions,img_poly = read_xml(xml_file)
id_all_text = id_paragraph + id_header
co_text_all = co_text_paragraph + co_text_header
cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_all)
texts_corr_order_index = [int(index_tot_regions[tot_region_ref.index(i)]) for i in id_all_text ]
#texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
#cx_ordered = np.array(cx_main)[np.array(texts_corr_order_index)]
#cx_ordered = cx_ordered.astype(np.int32)
cx_ordered = [int(val) for (_, val) in sorted(zip(texts_corr_order_index, cx_main), key=lambda x: \
x[0], reverse=False)]
#cx_ordered = cx_ordered.astype(np.int32)
cy_ordered = [int(val) for (_, val) in sorted(zip(texts_corr_order_index, cy_main), key=lambda x: \
x[0], reverse=False)]
#cy_ordered = cy_ordered.astype(np.int32)
color = (0, 0, 255)
thickness = 20
if dir_imgs:
layout = np.zeros( (y_len,x_len,3) )
layout = cv2.fillPoly(layout, pts =co_text_all, color=(1,1,1))
img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name)
img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format))
overlayed = overlay_layout_on_image(layout, img, cx_ordered, cy_ordered, color, thickness)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), overlayed)
else:
img = np.zeros( (y_len,x_len,3) )
img = cv2.fillPoly(img, pts =co_text_all, color=(255,0,0))
for i in range(len(cx_ordered)-1):
start_point = (int(cx_ordered[i]), int(cy_ordered[i]))
end_point = (int(cx_ordered[i+1]), int(cy_ordered[i+1]))
img = cv2.arrowedLine(img, start_point, end_point,
color, thickness, tipLength = 0.03)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), img)
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_imgs",
"-di",
help="directory of images where textline segmentation will be overlayed", )
def visualize_textline_segmentation(xml_file, dir_xml, dir_out, dir_imgs):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name)
img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format))
co_tetxlines, y_len, x_len = get_textline_contours_for_visualization(xml_file)
added_image = visualize_image_from_contours(co_tetxlines, img)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), added_image)
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_imgs",
"-di",
help="directory of images where textline segmentation will be overlayed", )
def visualize_layout_segmentation(xml_file, dir_xml, dir_out, dir_imgs):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
if dir_xml:
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
else:
xml_file = os.path.join(ind_xml )
f_name = Path(ind_xml).stem
print(f_name, 'f_name')
img_file_name_with_format = find_format_of_given_filename_in_dir(dir_imgs, f_name)
img = cv2.imread(os.path.join(dir_imgs, img_file_name_with_format))
co_text, co_graphic, co_sep, co_img, co_table, co_noise, y_len, x_len = get_layout_contours_for_visualization(xml_file)
added_image = visualize_image_from_contours_layout(co_text['paragraph'], co_text['header']+co_text['heading'], co_text['drop-capital'], co_sep, co_img, co_text['marginalia'], co_table, img)
cv2.imwrite(os.path.join(dir_out, f_name+'.png'), added_image)
@main.command()
@click.option(
"--xml_file",
"-xml",
help="xml filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_xml",
"-dx",
help="directory of GT page-xml files",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--dir_out",
"-o",
help="directory where plots will be written",
type=click.Path(exists=True, file_okay=False),
)
def visualize_ocr_text(xml_file, dir_xml, dir_out):
assert xml_file or dir_xml, "A single xml file -xml or a dir of xml files -dx is required not both of them"
if dir_xml:
xml_files_ind = os.listdir(dir_xml)
xml_files_ind = [ind_xml for ind_xml in xml_files_ind if ind_xml.endswith('.xml')]
else:
xml_files_ind = [xml_file]
font_path = "Charis-7.000/Charis-Regular.ttf" # Make sure this file exists!
font = ImageFont.truetype(font_path, 40)
for ind_xml in tqdm(xml_files_ind):
indexer = 0
#print(ind_xml)
#print('########################')
if dir_xml:
xml_file = os.path.join(dir_xml,ind_xml )
f_name = Path(ind_xml).stem
else:
xml_file = os.path.join(ind_xml )
f_name = Path(ind_xml).stem
print(f_name, 'f_name')
co_tetxlines, y_len, x_len, ocr_texts = get_textline_contours_and_ocr_text(xml_file)
total_bb_coordinates = []
image_text = Image.new("RGB", (x_len, y_len), "white")
draw = ImageDraw.Draw(image_text)
for index, cnt in enumerate(co_tetxlines):
x,y,w,h = cv2.boundingRect(cnt)
#total_bb_coordinates.append([x,y,w,h])
#fit_text_single_line
#x_bb = bb_ind[0]
#y_bb = bb_ind[1]
#w_bb = bb_ind[2]
#h_bb = bb_ind[3]
if ocr_texts[index]:
is_vertical = h > 2*w # Check orientation
font = fit_text_single_line(draw, ocr_texts[index], font_path, w, int(h*0.4) )
if is_vertical:
vertical_font = fit_text_single_line(draw, ocr_texts[index], font_path, h, int(w * 0.8))
text_img = Image.new("RGBA", (h, w), (255, 255, 255, 0)) # Note: dimensions are swapped
text_draw = ImageDraw.Draw(text_img)
text_draw.text((0, 0), ocr_texts[index], font=vertical_font, fill="black")
# Rotate text image by 90 degrees
rotated_text = text_img.rotate(90, expand=1)
# Calculate paste position (centered in bbox)
paste_x = x + (w - rotated_text.width) // 2
paste_y = y + (h - rotated_text.height) // 2
image_text.paste(rotated_text, (paste_x, paste_y), rotated_text) # Use rotated image as mask
else:
text_bbox = draw.textbbox((0, 0), ocr_texts[index], font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
text_x = x + (w - text_width) // 2 # Center horizontally
text_y = y + (h - text_height) // 2 # Center vertically
# Draw the text
draw.text((text_x, text_y), ocr_texts[index], fill="black", font=font)
image_text.save(os.path.join(dir_out, f_name+'.png'))

File diff suppressed because it is too large Load diff

View file

@ -1,680 +0,0 @@
import sys
import os
import warnings
import json
import numpy as np
import cv2
from tensorflow.keras.models import load_model
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.layers import *
import click
from tensorflow.python.keras import backend as tensorflow_backend
import xml.etree.ElementTree as ET
from .gt_gen_utils import (
filter_contours_area_of_image,
find_new_features_of_contours,
read_xml,
resize_image,
update_list_and_return_first_with_length_bigger_than_one
)
from .models import (
PatchEncoder,
Patches
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
__doc__=\
"""
Tool to load model and predict for given image.
"""
class sbb_predict:
def __init__(self,image, dir_in, model, task, config_params_model, patches, save, save_layout, ground_truth, xml_file, out, min_area):
self.image=image
self.dir_in=dir_in
self.patches=patches
self.save=save
self.save_layout=save_layout
self.model_dir=model
self.ground_truth=ground_truth
self.task=task
self.config_params_model=config_params_model
self.xml_file = xml_file
self.out = out
if min_area:
self.min_area = float(min_area)
else:
self.min_area = 0
def resize_image(self,img_in,input_height,input_width):
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
def color_images(self,seg):
ann_u=range(self.n_classes)
if len(np.shape(seg))==3:
seg=seg[:,:,0]
seg_img=np.zeros((np.shape(seg)[0],np.shape(seg)[1],3)).astype(np.uint8)
for c in ann_u:
c=int(c)
seg_img[:,:,0][seg==c]=c
seg_img[:,:,1][seg==c]=c
seg_img[:,:,2][seg==c]=c
return seg_img
def otsu_copy_binary(self,img):
img_r=np.zeros((img.shape[0],img.shape[1],3))
img1=img[:,:,0]
#print(img.min())
#print(img[:,:,0].min())
#blur = cv2.GaussianBlur(img,(5,5))
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
img_r[:,:,0]=threshold1
img_r[:,:,1]=threshold1
img_r[:,:,2]=threshold1
#img_r=img_r/float(np.max(img_r))*255
return img_r
def otsu_copy(self,img):
img_r=np.zeros((img.shape[0],img.shape[1],3))
#img1=img[:,:,0]
#print(img.min())
#print(img[:,:,0].min())
#blur = cv2.GaussianBlur(img,(5,5))
#ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold1 = cv2.threshold(img[:,:,0], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold2 = cv2.threshold(img[:,:,1], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
_, threshold3 = cv2.threshold(img[:,:,2], 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
img_r[:,:,0]=threshold1
img_r[:,:,1]=threshold2
img_r[:,:,2]=threshold3
###img_r=img_r/float(np.max(img_r))*255
return img_r
def soft_dice_loss(self,y_true, y_pred, epsilon=1e-6):
axes = tuple(range(1, len(y_pred.shape)-1))
numerator = 2. * K.sum(y_pred * y_true, axes)
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
def weighted_categorical_crossentropy(self,weights=None):
def loss(y_true, y_pred):
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats,logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
return self.loss
def IoU(self,Yi,y_predi):
## mean Intersection over Union
## Mean IoU = TP/(FN + TP + FP)
IoUs = []
Nclass = np.unique(Yi)
for c in Nclass:
TP = np.sum( (Yi == c)&(y_predi==c) )
FP = np.sum( (Yi != c)&(y_predi==c) )
FN = np.sum( (Yi == c)&(y_predi != c))
IoU = TP/float(TP + FP + FN)
if self.n_classes>2:
print("class {:02.0f}: #TP={:6.0f}, #FP={:6.0f}, #FN={:5.0f}, IoU={:4.3f}".format(c,TP,FP,FN,IoU))
IoUs.append(IoU)
if self.n_classes>2:
mIoU = np.mean(IoUs)
print("_________________")
print("Mean IoU: {:4.3f}".format(mIoU))
return mIoU
elif self.n_classes==2:
mIoU = IoUs[1]
print("_________________")
print("IoU: {:4.3f}".format(mIoU))
return mIoU
def start_new_session_and_model(self):
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config) # tf.InteractiveSession()
tensorflow_backend.set_session(session)
#tensorflow.keras.layers.custom_layer = PatchEncoder
#tensorflow.keras.layers.custom_layer = Patches
self.model = load_model(self.model_dir , compile=False,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
#config = tf.ConfigProto()
#config.gpu_options.allow_growth=True
#self.session = tf.InteractiveSession()
#keras.losses.custom_loss = self.weighted_categorical_crossentropy
#self.model = load_model(self.model_dir , compile=False)
##if self.weights_dir!=None:
##self.model.load_weights(self.weights_dir)
if self.task != 'classification' and self.task != 'reading_order':
self.img_height=self.model.layers[len(self.model.layers)-1].output_shape[1]
self.img_width=self.model.layers[len(self.model.layers)-1].output_shape[2]
self.n_classes=self.model.layers[len(self.model.layers)-1].output_shape[3]
def visualize_model_output(self, prediction, img, task):
if task == "binarization":
prediction = prediction * -1
prediction = prediction + 1
added_image = prediction * 255
layout_only = None
else:
unique_classes = np.unique(prediction[:,:,0])
rgb_colors = {'0' : [255, 255, 255],
'1' : [255, 0, 0],
'2' : [255, 125, 0],
'3' : [255, 0, 125],
'4' : [125, 125, 125],
'5' : [125, 125, 0],
'6' : [0, 125, 255],
'7' : [0, 125, 0],
'8' : [125, 125, 125],
'9' : [0, 125, 255],
'10' : [125, 0, 125],
'11' : [0, 255, 0],
'12' : [0, 0, 255],
'13' : [0, 255, 255],
'14' : [255, 125, 125],
'15' : [255, 0, 255]}
layout_only = np.zeros(prediction.shape)
for unq_class in unique_classes:
rgb_class_unique = rgb_colors[str(int(unq_class))]
layout_only[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0]
layout_only[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
layout_only[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
img = self.resize_image(img, layout_only.shape[0], layout_only.shape[1])
layout_only = layout_only.astype(np.int32)
img = img.astype(np.int32)
added_image = cv2.addWeighted(img,0.5,layout_only,0.1,0)
return added_image, layout_only
def predict(self, image_dir):
if self.task == 'classification':
classes_names = self.config_params_model['classification_classes_name']
img_1ch = img=cv2.imread(image_dir, 0)
img_1ch = img_1ch / 255.0
img_1ch = cv2.resize(img_1ch, (self.config_params_model['input_height'], self.config_params_model['input_width']), interpolation=cv2.INTER_NEAREST)
img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
img_in[0, :, :, 0] = img_1ch[:, :]
img_in[0, :, :, 1] = img_1ch[:, :]
img_in[0, :, :, 2] = img_1ch[:, :]
label_p_pred = self.model.predict(img_in, verbose=0)
index_class = np.argmax(label_p_pred[0])
print("Predicted Class: {}".format(classes_names[str(int(index_class))]))
elif self.task == 'reading_order':
img_height = self.config_params_model['input_height']
img_width = self.config_params_model['input_width']
tree_xml, root_xml, bb_coord_printspace, file_name, id_paragraph, id_header, co_text_paragraph, co_text_header, tot_region_ref, x_len, y_len, index_tot_regions, img_poly = read_xml(self.xml_file)
_, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, _ = find_new_features_of_contours(co_text_header)
img_header_and_sep = np.zeros((y_len,x_len), dtype='uint8')
for j in range(len(cy_main)):
img_header_and_sep[int(y_max_main[j]):int(y_max_main[j])+12,int(x_min_main[j]):int(x_max_main[j]) ] = 1
co_text_all = co_text_paragraph + co_text_header
id_all_text = id_paragraph + id_header
##texts_corr_order_index = [index_tot_regions[tot_region_ref.index(i)] for i in id_all_text ]
##texts_corr_order_index_int = [int(x) for x in texts_corr_order_index]
texts_corr_order_index_int = list(np.array(range(len(co_text_all))))
#print(texts_corr_order_index_int)
max_area = 1
#print(np.shape(co_text_all[0]), len( np.shape(co_text_all[0]) ),'co_text_all')
#co_text_all = filter_contours_area_of_image_tables(img_poly, co_text_all, _, max_area, min_area)
#print(co_text_all,'co_text_all')
co_text_all, texts_corr_order_index_int, _ = filter_contours_area_of_image(img_poly, co_text_all, texts_corr_order_index_int, max_area, self.min_area)
#print(texts_corr_order_index_int)
#co_text_all = [co_text_all[index] for index in texts_corr_order_index_int]
id_all_text = [id_all_text[index] for index in texts_corr_order_index_int]
labels_con = np.zeros((y_len,x_len,len(co_text_all)),dtype='uint8')
for i in range(len(co_text_all)):
img_label = np.zeros((y_len,x_len,3),dtype='uint8')
img_label=cv2.fillPoly(img_label, pts =[co_text_all[i]], color=(1,1,1))
labels_con[:,:,i] = img_label[:,:,0]
if bb_coord_printspace:
#bb_coord_printspace[x,y,w,h,_,_]
x = bb_coord_printspace[0]
y = bb_coord_printspace[1]
w = bb_coord_printspace[2]
h = bb_coord_printspace[3]
labels_con = labels_con[y:y+h, x:x+w, :]
img_poly = img_poly[y:y+h, x:x+w, :]
img_header_and_sep = img_header_and_sep[y:y+h, x:x+w]
img3= np.copy(img_poly)
labels_con = resize_image(labels_con, img_height, img_width)
img_header_and_sep = resize_image(img_header_and_sep, img_height, img_width)
img3= resize_image (img3, img_height, img_width)
img3 = img3.astype(np.uint16)
inference_bs = 1#4
input_1= np.zeros( (inference_bs, img_height, img_width,3))
starting_list_of_regions = [list(range(labels_con.shape[2]))]
index_update = 0
index_selected = starting_list_of_regions[0]
scalibility_num = 0
while index_update>=0:
ij_list = starting_list_of_regions[index_update]
i = ij_list[0]
ij_list.pop(0)
pr_list = []
post_list = []
batch_counter = 0
tot_counter = 1
tot_iteration = len(ij_list)
full_bs_ite= tot_iteration//inference_bs
last_bs = tot_iteration % inference_bs
jbatch_indexer =[]
for j in ij_list:
img1= np.repeat(labels_con[:,:,i][:, :, np.newaxis], 3, axis=2)
img2 = np.repeat(labels_con[:,:,j][:, :, np.newaxis], 3, axis=2)
img2[:,:,0][img3[:,:,0]==5] = 2
img2[:,:,0][img_header_and_sep[:,:]==1] = 3
img1[:,:,0][img3[:,:,0]==5] = 2
img1[:,:,0][img_header_and_sep[:,:]==1] = 3
#input_1= np.zeros( (height1, width1,3))
jbatch_indexer.append(j)
input_1[batch_counter,:,:,0] = img1[:,:,0]/3.
input_1[batch_counter,:,:,2] = img2[:,:,0]/3.
input_1[batch_counter,:,:,1] = img3[:,:,0]/5.
#input_1[batch_counter,:,:,:]= np.zeros( (batch_counter, height1, width1,3))
batch_counter = batch_counter+1
#input_1[:,:,0] = img1[:,:,0]/3.
#input_1[:,:,2] = img2[:,:,0]/3.
#input_1[:,:,1] = img3[:,:,0]/5.
if batch_counter==inference_bs or ( (tot_counter//inference_bs)==full_bs_ite and tot_counter%inference_bs==last_bs):
y_pr = self.model.predict(input_1 , verbose=0)
scalibility_num = scalibility_num+1
if batch_counter==inference_bs:
iteration_batches = inference_bs
else:
iteration_batches = last_bs
for jb in range(iteration_batches):
if y_pr[jb][0]>=0.5:
post_list.append(jbatch_indexer[jb])
else:
pr_list.append(jbatch_indexer[jb])
batch_counter = 0
jbatch_indexer = []
tot_counter = tot_counter+1
starting_list_of_regions, index_update = update_list_and_return_first_with_length_bigger_than_one(index_update, i, pr_list, post_list,starting_list_of_regions)
index_sort = [i[0] for i in starting_list_of_regions ]
id_all_text = np.array(id_all_text)[index_sort]
alltags=[elem.tag for elem in root_xml.iter()]
link=alltags[0].split('}')[0]+'}'
name_space = alltags[0].split('}')[0]
name_space = name_space.split('{')[1]
page_element = root_xml.find(link+'Page')
"""
ro_subelement = ET.SubElement(page_element, 'ReadingOrder')
#print(page_element, 'page_element')
#new_element = ET.Element('ReadingOrder')
new_element_element = ET.Element('OrderedGroup')
new_element_element.set('id', "ro357564684568544579089")
for index, id_text in enumerate(id_all_text):
new_element_2 = ET.Element('RegionRefIndexed')
new_element_2.set('regionRef', id_all_text[index])
new_element_2.set('index', str(index_sort[index]))
new_element_element.append(new_element_2)
ro_subelement.append(new_element_element)
"""
##ro_subelement = ET.SubElement(page_element, 'ReadingOrder')
ro_subelement = ET.Element('ReadingOrder')
ro_subelement2 = ET.SubElement(ro_subelement, 'OrderedGroup')
ro_subelement2.set('id', "ro357564684568544579089")
for index, id_text in enumerate(id_all_text):
new_element_2 = ET.SubElement(ro_subelement2, 'RegionRefIndexed')
new_element_2.set('regionRef', id_all_text[index])
new_element_2.set('index', str(index))
if (link+'PrintSpace' in alltags) or (link+'Border' in alltags):
page_element.insert(1, ro_subelement)
else:
page_element.insert(0, ro_subelement)
alltags=[elem.tag for elem in root_xml.iter()]
ET.register_namespace("",name_space)
tree_xml.write(os.path.join(self.out, file_name+'.xml'),xml_declaration=True,method='xml',encoding="utf8",default_namespace=None)
#tree_xml.write('library2.xml')
else:
if self.patches:
#def textline_contours(img,input_width,input_height,n_classes,model):
img=cv2.imread(image_dir)
self.img_org = np.copy(img)
if img.shape[0] < self.img_height:
img = self.resize_image(img, self.img_height, img.shape[1])
if img.shape[1] < self.img_width:
img = self.resize_image(img, img.shape[0], self.img_width)
margin = int(0.1 * self.img_width)
width_mid = self.img_width - 2 * margin
height_mid = self.img_height - 2 * margin
img = img / float(255.0)
img_h = img.shape[0]
img_w = img.shape[1]
prediction_true = np.zeros((img_h, img_w, 3))
nxf = img_w / float(width_mid)
nyf = img_h / float(height_mid)
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
for i in range(nxf):
for j in range(nyf):
if i == 0:
index_x_d = i * width_mid
index_x_u = index_x_d + self.img_width
else:
index_x_d = i * width_mid
index_x_u = index_x_d + self.img_width
if j == 0:
index_y_d = j * height_mid
index_y_u = index_y_d + self.img_height
else:
index_y_d = j * height_mid
index_y_u = index_y_d + self.img_height
if index_x_u > img_w:
index_x_u = img_w
index_x_d = img_w - self.img_width
if index_y_u > img_h:
index_y_u = img_h
index_y_d = img_h - self.img_height
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
label_p_pred = self.model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
verbose=0)
if self.task == 'enhancement':
seg = label_p_pred[0, :, :, :]
seg = seg * 255
elif self.task == 'segmentation' or self.task == 'binarization':
seg = np.argmax(label_p_pred, axis=3)[0]
seg = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
if i == 0 and j == 0:
seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg
elif i == nxf - 1 and j == nyf - 1:
seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0]
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg
elif i == 0 and j == nyf - 1:
seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg
elif i == nxf - 1 and j == 0:
seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0]
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg
elif i == 0 and j != 0 and j != nyf - 1:
seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg
elif i == nxf - 1 and j != 0 and j != nyf - 1:
seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0]
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg
elif i != 0 and i != nxf - 1 and j == 0:
seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin]
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg
elif i != 0 and i != nxf - 1 and j == nyf - 1:
seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg
else:
seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin]
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg
prediction_true = prediction_true.astype(int)
prediction_true = cv2.resize(prediction_true, (self.img_org.shape[1], self.img_org.shape[0]), interpolation=cv2.INTER_NEAREST)
return prediction_true
else:
img=cv2.imread(image_dir)
self.img_org = np.copy(img)
width=self.img_width
height=self.img_height
img=img/255.0
img=self.resize_image(img,self.img_height,self.img_width)
label_p_pred=self.model.predict(
img.reshape(1,img.shape[0],img.shape[1],img.shape[2]))
if self.task == 'enhancement':
seg = label_p_pred[0, :, :, :]
seg = seg * 255
elif self.task == 'segmentation' or self.task == 'binarization':
seg = np.argmax(label_p_pred, axis=3)[0]
seg = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
prediction_true = seg.astype(int)
prediction_true = cv2.resize(prediction_true, (self.img_org.shape[1], self.img_org.shape[0]), interpolation=cv2.INTER_NEAREST)
return prediction_true
def run(self):
self.start_new_session_and_model()
if self.image:
res=self.predict(image_dir = self.image)
if self.task == 'classification' or self.task == 'reading_order':
pass
elif self.task == 'enhancement':
if self.save:
cv2.imwrite(self.save,res)
else:
img_seg_overlayed, only_layout = self.visualize_model_output(res, self.img_org, self.task)
if self.save:
cv2.imwrite(self.save,img_seg_overlayed)
if self.save_layout:
cv2.imwrite(self.save_layout, only_layout)
if self.ground_truth:
gt_img=cv2.imread(self.ground_truth)
self.IoU(gt_img[:,:,0],res[:,:,0])
else:
ls_images = os.listdir(self.dir_in)
for ind_image in ls_images:
f_name = ind_image.split('.')[0]
image_dir = os.path.join(self.dir_in, ind_image)
res=self.predict(image_dir)
if self.task == 'classification' or self.task == 'reading_order':
pass
elif self.task == 'enhancement':
self.save = os.path.join(self.out, f_name+'.png')
cv2.imwrite(self.save,res)
else:
img_seg_overlayed, only_layout = self.visualize_model_output(res, self.img_org, self.task)
self.save = os.path.join(self.out, f_name+'_overlayed.png')
cv2.imwrite(self.save,img_seg_overlayed)
self.save_layout = os.path.join(self.out, f_name+'_layout.png')
cv2.imwrite(self.save_layout, only_layout)
if self.ground_truth:
gt_img=cv2.imread(self.ground_truth)
self.IoU(gt_img[:,:,0],res[:,:,0])
@click.command()
@click.option(
"--image",
"-i",
help="image filename",
type=click.Path(exists=True, dir_okay=False),
)
@click.option(
"--dir_in",
"-di",
help="directory of images",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--out",
"-o",
help="output directory where xml with detected reading order will be written.",
type=click.Path(exists=True, file_okay=False),
)
@click.option(
"--patches/--no-patches",
"-p/-nop",
is_flag=True,
help="if this parameter set to true, this tool will try to do inference in patches.",
)
@click.option(
"--save",
"-s",
help="save prediction as a png file in current folder.",
)
@click.option(
"--save_layout",
"-sl",
help="save layout prediction only as a png file in current folder.",
)
@click.option(
"--model",
"-m",
help="directory of models",
type=click.Path(exists=True, file_okay=False),
required=True,
)
@click.option(
"--ground_truth",
"-gt",
help="ground truth directory if you want to see the iou of prediction.",
)
@click.option(
"--xml_file",
"-xml",
help="xml file with layout coordinates that reading order detection will be implemented on. The result will be written in the same xml file.",
)
@click.option(
"--min_area",
"-min",
help="min area size of regions considered for reading order detection. The default value is zero and means that all text regions are considered for reading order.",
)
def main(image, dir_in, model, patches, save, save_layout, ground_truth, xml_file, out, min_area):
assert image or dir_in, "Either a single image -i or a dir_in -di is required"
with open(os.path.join(model,'config.json')) as f:
config_params_model = json.load(f)
task = config_params_model['task']
if task != 'classification' and task != 'reading_order':
if image and not save:
print("Error: You used one of segmentation or binarization task with image input but not set -s, you need a filename to save visualized output with -s")
sys.exit(1)
if dir_in and not out:
print("Error: You used one of segmentation or binarization task with dir_in but not set -out")
sys.exit(1)
x=sbb_predict(image, dir_in, model, task, config_params_model, patches, save, save_layout, ground_truth, xml_file, out, min_area)
x.run()

View file

@ -1,357 +0,0 @@
from tensorflow.keras import backend as K
import tensorflow as tf
import numpy as np
def focal_loss(gamma=2., alpha=4.):
gamma = float(gamma)
alpha = float(alpha)
def focal_loss_fixed(y_true, y_pred):
"""Focal loss for multi-classification
FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
Notice: y_pred is probability after softmax
gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
Focal Loss for Dense Object Detection
https://arxiv.org/abs/1708.02002
Arguments:
y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
y_pred {tensor} -- model's output, shape of [batch_size, num_cls]
Keyword Arguments:
gamma {float} -- (default: {2.0})
alpha {float} -- (default: {4.0})
Returns:
[tensor] -- loss.
"""
epsilon = 1.e-9
y_true = tf.convert_to_tensor(y_true, tf.float32)
y_pred = tf.convert_to_tensor(y_pred, tf.float32)
model_out = tf.add(y_pred, epsilon)
ce = tf.multiply(y_true, -tf.log(model_out))
weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
fl = tf.multiply(alpha, tf.multiply(weight, ce))
reduced_fl = tf.reduce_max(fl, axis=1)
return tf.reduce_mean(reduced_fl)
return focal_loss_fixed
def weighted_categorical_crossentropy(weights=None):
""" weighted_categorical_crossentropy
Args:
* weights<ktensor|nparray|list>: crossentropy weights
Returns:
* weighted categorical crossentropy function
"""
def loss(y_true, y_pred):
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
return loss
def image_categorical_cross_entropy(y_true, y_pred, weights=None):
"""
:param y_true: tensor of shape (batch_size, height, width) representing the ground truth.
:param y_pred: tensor of shape (batch_size, height, width) representing the prediction.
:return: The mean cross-entropy on softmaxed tensors.
"""
labels_floats = tf.cast(y_true, tf.float32)
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
if weights is not None:
weight_mask = tf.maximum(
tf.reduce_max(tf.constant(
np.array(weights, dtype=np.float32)[None, None, None])
* labels_floats, axis=-1), 1.0)
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
return tf.reduce_mean(per_pixel_loss)
def class_tversky(y_true, y_pred):
smooth = 1.0 # 1.00
y_true = K.permute_dimensions(y_true, (3, 1, 2, 0))
y_pred = K.permute_dimensions(y_pred, (3, 1, 2, 0))
y_true_pos = K.batch_flatten(y_true)
y_pred_pos = K.batch_flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos, 1)
false_neg = K.sum(y_true_pos * (1 - y_pred_pos), 1)
false_pos = K.sum((1 - y_true_pos) * y_pred_pos, 1)
alpha = 0.2 # 0.5
beta = 0.8
return (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
def focal_tversky_loss(y_true, y_pred):
pt_1 = class_tversky(y_true, y_pred)
gamma = 1.3 # 4./3.0#1.3#4.0/3.00# 0.75
return K.sum(K.pow((1 - pt_1), gamma))
def generalized_dice_coeff2(y_true, y_pred):
n_el = 1
for dim in y_true.shape:
n_el *= int(dim)
n_cl = y_true.shape[-1]
w = K.zeros(shape=(n_cl,))
w = (K.sum(y_true, axis=(0, 1, 2))) / n_el
w = 1 / (w ** 2 + 0.000001)
numerator = y_true * y_pred
numerator = w * K.sum(numerator, (0, 1, 2))
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, (0, 1, 2))
denominator = K.sum(denominator)
return 2 * numerator / denominator
def generalized_dice_coeff(y_true, y_pred):
axes = tuple(range(1, len(y_pred.shape) - 1))
Ncl = y_pred.shape[-1]
w = K.zeros(shape=(Ncl,))
w = K.sum(y_true, axis=axes)
w = 1 / (w ** 2 + 0.000001)
# Compute gen dice coef:
numerator = y_true * y_pred
numerator = w * K.sum(numerator, axes)
numerator = K.sum(numerator)
denominator = y_true + y_pred
denominator = w * K.sum(denominator, axes)
denominator = K.sum(denominator)
gen_dice_coef = 2 * numerator / denominator
return gen_dice_coef
def generalized_dice_loss(y_true, y_pred):
return 1 - generalized_dice_coeff2(y_true, y_pred)
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
"""
Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.
Assumes the `channels_last` format.
# Arguments
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
epsilon: Used for numerical stability to avoid divide by zero errors
# References
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
https://arxiv.org/abs/1606.04797
More details on Dice loss formulation
https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72)
Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022
"""
# skip the batch and class axis for calculating Dice score
axes = tuple(range(1, len(y_pred.shape) - 1))
numerator = 2. * K.sum(y_pred * y_true, axes)
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last=True, mean_per_class=False,
verbose=False):
"""
Compute mean metrics of two segmentation masks, via Keras.
IoU(A,B) = |A & B| / (| A U B|)
Dice(A,B) = 2*|A & B| / (|A| + |B|)
Args:
y_true: true masks, one-hot encoded.
y_pred: predicted masks, either softmax outputs, or one-hot encoded.
metric_name: metric to be computed, either 'iou' or 'dice'.
metric_type: one of 'standard' (default), 'soft', 'naive'.
In the standard version, y_pred is one-hot encoded and the mean
is taken only over classes that are present (in y_true or y_pred).
The 'soft' version of the metrics are computed without one-hot
encoding y_pred.
The 'naive' version return mean metrics where absent classes contribute
to the class mean as 1.0 (instead of being dropped from the mean).
drop_last = True: boolean flag to drop last class (usually reserved
for background class in semantic segmentation)
mean_per_class = False: return mean along batch axis for each class.
verbose = False: print intermediate results such as intersection, union
(as number of pixels).
Returns:
IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True
in which case it returns the per-class metric, averaged over the batch.
Inputs are B*W*H*N tensors, with
B = batch size,
W = width,
H = height,
N = number of classes
"""
flag_soft = (metric_type == 'soft')
flag_naive_mean = (metric_type == 'naive')
# always assume one or more classes
num_classes = K.shape(y_true)[-1]
if not flag_soft:
# get one-hot encoded masks from y_pred (true masks should already be one-hot)
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
y_true = K.one_hot(K.argmax(y_true), num_classes)
# if already one-hot, could have skipped above command
# keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64)
y_true = K.cast(y_true, 'float32')
y_pred = K.cast(y_pred, 'float32')
# intersection and union shapes are batch_size * n_classes (values = area in pixels)
axes = (1, 2) # W,H axes of each image
intersection = K.sum(K.abs(y_true * y_pred), axis=axes)
mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes)
union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot
smooth = .001
iou = (intersection + smooth) / (union + smooth)
dice = 2 * (intersection + smooth) / (mask_sum + smooth)
metric = {'iou': iou, 'dice': dice}[metric_name]
# define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise
mask = K.cast(K.not_equal(union, 0), 'float32')
if drop_last:
metric = metric[:, :-1]
mask = mask[:, :-1]
if verbose:
print('intersection, union')
print(K.eval(intersection), K.eval(union))
print(K.eval(intersection / union))
# return mean metrics: remaining axes are (batch, classes)
if flag_naive_mean:
return K.mean(metric)
# take mean only over non-absent classes
class_count = K.sum(mask, axis=0)
non_zero = tf.greater(class_count, 0)
non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero)
non_zero_count = tf.boolean_mask(class_count, non_zero)
if verbose:
print('Counts of inputs with class present, metrics for non-absent classes')
print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count))
return K.mean(non_zero_sum / non_zero_count)
def mean_iou(y_true, y_pred, **kwargs):
"""
Compute mean Intersection over Union of two segmentation masks, via Keras.
Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs.
"""
return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs)
def Mean_IOU(y_true, y_pred):
nb_classes = K.int_shape(y_pred)[-1]
iou = []
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
void_labels = K.equal(K.sum(y_true, axis=-1), 0)
for i in range(0, nb_classes): # exclude first label (background) and last label (void)
true_labels = K.equal(true_pixels, i) # & ~void_labels
pred_labels = K.equal(pred_pixels, i) # & ~void_labels
inter = tf.to_int32(true_labels & pred_labels)
union = tf.to_int32(true_labels | pred_labels)
legal_batches = K.sum(tf.to_int32(true_labels), axis=1) > 0
ious = K.sum(inter, axis=1) / K.sum(union, axis=1)
iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects
iou = tf.stack(iou)
legal_labels = ~tf.debugging.is_nan(iou)
iou = tf.gather(iou, indices=tf.where(legal_labels))
return K.mean(iou)
def iou_vahid(y_true, y_pred):
nb_classes = tf.shape(y_true)[-1] + tf.to_int32(1)
true_pixels = K.argmax(y_true, axis=-1)
pred_pixels = K.argmax(y_pred, axis=-1)
iou = []
for i in tf.range(nb_classes):
tp = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.equal(pred_pixels, i)))
fp = K.sum(tf.to_int32(K.not_equal(true_pixels, i) & K.equal(pred_pixels, i)))
fn = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.not_equal(pred_pixels, i)))
iouh = tp / (tp + fp + fn)
iou.append(iouh)
return K.mean(iou)
def IoU_metric(Yi, y_predi):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
y_predi = np.argmax(y_predi, axis=3)
y_testi = np.argmax(Yi, axis=3)
IoUs = []
Nclass = int(np.max(Yi)) + 1
for c in range(Nclass):
TP = np.sum((Yi == c) & (y_predi == c))
FP = np.sum((Yi != c) & (y_predi == c))
FN = np.sum((Yi == c) & (y_predi != c))
IoU = TP / float(TP + FP + FN)
IoUs.append(IoU)
return K.cast(np.mean(IoUs), dtype='float32')
def IoU_metric_keras(y_true, y_pred):
# mean Intersection over Union
# Mean IoU = TP/(FN + TP + FP)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess))
def jaccard_distance_loss(y_true, y_pred, smooth=100):
"""
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
The jaccard distance loss is usefull for unbalanced datasets. This has been
shifted so it converges on 0 and is smoothed to avoid exploding or disapearing
gradient.
Ref: https://en.wikipedia.org/wiki/Jaccard_index
@url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96
@author: wassname
"""
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return (1 - jac) * smooth

View file

@ -1,760 +0,0 @@
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras import layers
from tensorflow.keras.regularizers import l2
##mlp_head_units = [512, 256]#[2048, 1024]
###projection_dim = 64
##transformer_layers = 2#8
##num_heads = 1#4
resnet50_Weights_path = './pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
IMAGE_ORDERING = 'channels_last'
MERGE_AXIS = -1
def mlp(x, hidden_units, dropout_rate):
for units in hidden_units:
x = layers.Dense(units, activation=tf.nn.gelu)(x)
x = layers.Dropout(dropout_rate)(x)
return x
class Patches(layers.Layer):
def __init__(self, patch_size_x, patch_size_y):#__init__(self, **kwargs):#:__init__(self, patch_size):#__init__(self, **kwargs):
super(Patches, self).__init__()
self.patch_size_x = patch_size_x
self.patch_size_y = patch_size_y
def call(self, images):
#print(tf.shape(images)[1],'images')
#print(self.patch_size,'self.patch_size')
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size_y, self.patch_size_x, 1],
strides=[1, self.patch_size_y, self.patch_size_x, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
#patch_dims = patches.shape[-1]
patch_dims = tf.shape(patches)[-1]
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
def get_config(self):
config = super().get_config().copy()
config.update({
'patch_size_x': self.patch_size_x,
'patch_size_y': self.patch_size_y,
})
return config
class Patches_old(layers.Layer):
def __init__(self, patch_size):#__init__(self, **kwargs):#:__init__(self, patch_size):#__init__(self, **kwargs):
super(Patches, self).__init__()
self.patch_size = patch_size
def call(self, images):
#print(tf.shape(images)[1],'images')
#print(self.patch_size,'self.patch_size')
batch_size = tf.shape(images)[0]
patches = tf.image.extract_patches(
images=images,
sizes=[1, self.patch_size, self.patch_size, 1],
strides=[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, 1, 1],
padding="VALID",
)
patch_dims = patches.shape[-1]
#print(patches.shape,patch_dims,'patch_dims')
patches = tf.reshape(patches, [batch_size, -1, patch_dims])
return patches
def get_config(self):
config = super().get_config().copy()
config.update({
'patch_size': self.patch_size,
})
return config
class PatchEncoder(layers.Layer):
def __init__(self, num_patches, projection_dim):
super(PatchEncoder, self).__init__()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def call(self, patch):
positions = tf.range(start=0, limit=self.num_patches, delta=1)
encoded = self.projection(patch) + self.position_embedding(positions)
return encoded
def get_config(self):
config = super().get_config().copy()
config.update({
'num_patches': self.num_patches,
'projection': self.projection,
'position_embedding': self.position_embedding,
})
return config
def one_side_pad(x):
x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x)
if IMAGE_ORDERING == 'channels_first':
x = Lambda(lambda x: x[:, :, :-1, :-1])(x)
elif IMAGE_ORDERING == 'channels_last':
x = Lambda(lambda x: x[:, :-1, :-1, :])(x)
return x
def identity_block(input_tensor, kernel_size, filters, stage, block):
"""The identity block is the block that has no conv layer at shortcut.
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the filterss of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
"""
filters1, filters2, filters3 = filters
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING,
padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
"""conv_block is the block that has a conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the filterss of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
# Returns
Output tensor for the block.
Note that from stage 3, the first conv layer at main path is with strides=(2,2)
And the shortcut should have strides=(2,2) as well
"""
filters1, filters2, filters3 = filters
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING, padding='same',
name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
shortcut = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
name=conv_name_base + '1')(input_tensor)
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
x = layers.add([x, shortcut])
x = Activation('relu')(x)
return x
def resnet50_unet_light(n_classes, input_height=224, input_width=224, taks="segmentation", weight_decay=1e-6, pretraining=False):
assert input_height % 32 == 0
assert input_width % 32 == 0
img_input = Input(shape=(input_height, input_width, 3))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
model = Model(img_input, x).load_weights(resnet50_Weights_path)
v512_2048 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f5)
v512_2048 = (BatchNormalization(axis=bn_axis))(v512_2048)
v512_2048 = Activation('relu')(v512_2048)
v512_1024 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f4)
v512_1024 = (BatchNormalization(axis=bn_axis))(v512_1024)
v512_1024 = Activation('relu')(v512_1024)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v512_2048)
o = (concatenate([o, v512_1024], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, img_input], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(img_input, o)
return model
def resnet50_unet(n_classes, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
assert input_height % 32 == 0
assert input_width % 32 == 0
img_input = Input(shape=(input_height, input_width, 3))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
Model(img_input, x).load_weights(resnet50_Weights_path)
v1024_2048 = Conv2D(1024, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(
f5)
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
v1024_2048 = Activation('relu')(v1024_2048)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
o = (concatenate([o, f4], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, img_input], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(img_input, o)
return model
def vit_resnet50_unet(n_classes, patch_size_x, patch_size_y, num_patches, mlp_head_units=None, transformer_layers=8, num_heads =4, projection_dim = 64, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
if mlp_head_units is None:
mlp_head_units = [128, 64]
inputs = layers.Input(shape=(input_height, input_width, 3))
#transformer_units = [
#projection_dim * 2,
#projection_dim,
#] # Size of the transformer layers
IMAGE_ORDERING = 'channels_last'
bn_axis=3
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(inputs)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
model = Model(inputs, x).load_weights(resnet50_Weights_path)
#num_patches = x.shape[1]*x.shape[2]
#patch_size_y = input_height / x.shape[1]
#patch_size_x = input_width / x.shape[2]
#patch_size = patch_size_x * patch_size_y
patches = Patches(patch_size_x, patch_size_y)(x)
# Encode patches.
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)
for _ in range(transformer_layers):
# Layer normalization 1.
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
# Create a multi-head attention layer.
attention_output = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=projection_dim, dropout=0.1
)(x1, x1)
# Skip connection 1.
x2 = layers.Add()([attention_output, encoded_patches])
# Layer normalization 2.
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
# MLP.
x3 = mlp(x3, hidden_units=mlp_head_units, dropout_rate=0.1)
# Skip connection 2.
encoded_patches = layers.Add()([x3, x2])
encoded_patches = tf.reshape(encoded_patches, [-1, x.shape[1], x.shape[2] , int( projection_dim / (patch_size_x * patch_size_y) )])
v1024_2048 = Conv2D( 1024 , (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(encoded_patches)
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
v1024_2048 = Activation('relu')(v1024_2048)
o = (UpSampling2D( (2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
o = (concatenate([o, f4],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o ,f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, inputs],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(inputs=inputs, outputs=o)
return model
def vit_resnet50_unet_transformer_before_cnn(n_classes, patch_size_x, patch_size_y, num_patches, mlp_head_units=None, transformer_layers=8, num_heads =4, projection_dim = 64, input_height=224, input_width=224, task="segmentation", weight_decay=1e-6, pretraining=False):
if mlp_head_units is None:
mlp_head_units = [128, 64]
inputs = layers.Input(shape=(input_height, input_width, 3))
##transformer_units = [
##projection_dim * 2,
##projection_dim,
##] # Size of the transformer layers
IMAGE_ORDERING = 'channels_last'
bn_axis=3
patches = Patches(patch_size_x, patch_size_y)(inputs)
# Encode patches.
encoded_patches = PatchEncoder(num_patches, projection_dim)(patches)
for _ in range(transformer_layers):
# Layer normalization 1.
x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)
# Create a multi-head attention layer.
attention_output = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=projection_dim, dropout=0.1
)(x1, x1)
# Skip connection 1.
x2 = layers.Add()([attention_output, encoded_patches])
# Layer normalization 2.
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
# MLP.
x3 = mlp(x3, hidden_units=mlp_head_units, dropout_rate=0.1)
# Skip connection 2.
encoded_patches = layers.Add()([x3, x2])
encoded_patches = tf.reshape(encoded_patches, [-1, input_height, input_width , int( projection_dim / (patch_size_x * patch_size_y) )])
encoded_patches = Conv2D(3, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay), name='convinput')(encoded_patches)
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(encoded_patches)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
model = Model(encoded_patches, x).load_weights(resnet50_Weights_path)
v1024_2048 = Conv2D( 1024 , (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(x)
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
v1024_2048 = Activation('relu')(v1024_2048)
o = (UpSampling2D( (2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
o = (concatenate([o, f4],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o ,f3], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f2], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, f1], axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
o = (concatenate([o, inputs],axis=MERGE_AXIS))
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay)))(o)
o = (BatchNormalization(axis=bn_axis))(o)
o = Activation('relu')(o)
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING,kernel_regularizer=l2(weight_decay))(o)
if task == "segmentation":
o = (BatchNormalization(axis=bn_axis))(o)
o = (Activation('softmax'))(o)
else:
o = (Activation('sigmoid'))(o)
model = Model(inputs=inputs, outputs=o)
return model
def resnet50_classifier(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
include_top=True
assert input_height%32 == 0
assert input_width%32 == 0
img_input = Input(shape=(input_height,input_width , 3 ))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
f2 = one_side_pad(x )
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
f4 = x
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
f5 = x
if pretraining:
Model(img_input, x).load_weights(resnet50_Weights_path)
x = AveragePooling2D((7, 7), name='avg_pool')(x)
x = Flatten()(x)
##
x = Dense(256, activation='relu', name='fc512')(x)
x=Dropout(0.2)(x)
##
x = Dense(n_classes, activation='softmax', name='fc1000')(x)
model = Model(img_input, x)
return model
def machine_based_reading_order_model(n_classes,input_height=224,input_width=224,weight_decay=1e-6,pretraining=False):
assert input_height%32 == 0
assert input_width%32 == 0
img_input = Input(shape=(input_height,input_width , 3 ))
if IMAGE_ORDERING == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
x1 = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
x1 = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2),kernel_regularizer=l2(weight_decay), name='conv1')(x1)
x1 = BatchNormalization(axis=bn_axis, name='bn_conv1')(x1)
x1 = Activation('relu')(x1)
x1 = MaxPooling2D((3, 3) , data_format=IMAGE_ORDERING , strides=(2, 2))(x1)
x1 = conv_block(x1, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='b')
x1 = identity_block(x1, 3, [64, 64, 256], stage=2, block='c')
x1 = conv_block(x1, 3, [128, 128, 512], stage=3, block='a')
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='b')
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='c')
x1 = identity_block(x1, 3, [128, 128, 512], stage=3, block='d')
x1 = conv_block(x1, 3, [256, 256, 1024], stage=4, block='a')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='b')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='c')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='d')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='e')
x1 = identity_block(x1, 3, [256, 256, 1024], stage=4, block='f')
x1 = conv_block(x1, 3, [512, 512, 2048], stage=5, block='a')
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='b')
x1 = identity_block(x1, 3, [512, 512, 2048], stage=5, block='c')
if pretraining:
Model(img_input , x1).load_weights(resnet50_Weights_path)
x1 = AveragePooling2D((7, 7), name='avg_pool1')(x1)
flattened = Flatten()(x1)
o = Dense(256, activation='relu', name='fc512')(flattened)
o=Dropout(0.2)(o)
o = Dense(256, activation='relu', name='fc512a')(o)
o=Dropout(0.2)(o)
o = Dense(n_classes, activation='sigmoid', name='fc1000')(o)
model = Model(img_input , o)
return model

View file

@ -1,474 +0,0 @@
import os
import sys
import json
import click
from eynollah.training.metrics import (
soft_dice_loss,
weighted_categorical_crossentropy
)
from eynollah.training.models import (
PatchEncoder,
Patches,
machine_based_reading_order_model,
resnet50_classifier,
resnet50_unet,
vit_resnet50_unet,
vit_resnet50_unet_transformer_before_cnn
)
from eynollah.training.utils import (
data_gen,
generate_arrays_from_folder_reading_order,
generate_data_from_folder_evaluation,
generate_data_from_folder_training,
get_one_hot,
provide_patches,
return_number_of_total_training_data
)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from tensorflow.compat.v1.keras.backend import set_session
from tensorflow.keras.optimizers import SGD, Adam
from sacred import Experiment
from tensorflow.keras.models import load_model
from tqdm import tqdm
from sklearn.metrics import f1_score
from tensorflow.keras.callbacks import Callback
import numpy as np
import cv2
class SaveWeightsAfterSteps(Callback):
def __init__(self, save_interval, save_path, _config):
super(SaveWeightsAfterSteps, self).__init__()
self.save_interval = save_interval
self.save_path = save_path
self.step_count = 0
self._config = _config
def on_train_batch_end(self, batch, logs=None):
self.step_count += 1
if self.step_count % self.save_interval ==0:
save_file = f"{self.save_path}/model_step_{self.step_count}"
#os.system('mkdir '+save_file)
self.model.save(save_file)
with open(os.path.join(os.path.join(self.save_path, f"model_step_{self.step_count}"),"config.json"), "w") as fp:
json.dump(self._config, fp) # encode dict into JSON
print(f"saved model as steps {self.step_count} to {save_file}")
def configuration():
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
set_session(session)
def get_dirs_or_files(input_data):
image_input, labels_input = os.path.join(input_data, 'images/'), os.path.join(input_data, 'labels/')
if os.path.isdir(input_data):
# Check if training dir exists
assert os.path.isdir(image_input), "{} is not a directory".format(image_input)
assert os.path.isdir(labels_input), "{} is not a directory".format(labels_input)
return image_input, labels_input
ex = Experiment(save_git_info=False)
@ex.config
def config_params():
n_classes = None # Number of classes. In the case of binary classification this should be 2.
n_epochs = 1 # Number of epochs.
input_height = 224 * 1 # Height of model's input in pixels.
input_width = 224 * 1 # Width of model's input in pixels.
weight_decay = 1e-6 # Weight decay of l2 regularization of model layers.
n_batch = 1 # Number of batches at each iteration.
learning_rate = 1e-4 # Set the learning rate.
patches = False # Divides input image into smaller patches (input size of the model) when set to true. For the model to see the full image, like page extraction, set this to false.
augmentation = False # To apply any kind of augmentation, this parameter must be set to true.
flip_aug = False # If true, different types of flipping will be applied to the image. Types of flips are defined with "flip_index" in config_params.json.
blur_aug = False # If true, different types of blurring will be applied to the image. Types of blur are defined with "blur_k" in config_params.json.
padding_white = False # If true, white padding will be applied to the image.
padding_black = False # If true, black padding will be applied to the image.
scaling = False # If true, scaling will be applied to the image. The amount of scaling is defined with "scales" in config_params.json.
shifting = False
degrading = False # If true, degrading will be applied to the image. The amount of degrading is defined with "degrade_scales" in config_params.json.
brightening = False # If true, brightening will be applied to the image. The amount of brightening is defined with "brightness" in config_params.json.
binarization = False # If true, Otsu thresholding will be applied to augment the input with binarized images.
adding_rgb_background = False
adding_rgb_foreground = False
add_red_textlines = False
channels_shuffling = False
dir_train = None # Directory of training dataset with subdirectories having the names "images" and "labels".
dir_eval = None # Directory of validation dataset with subdirectories having the names "images" and "labels".
dir_output = None # Directory where the output model will be saved.
pretraining = False # Set to true to load pretrained weights of ResNet50 encoder.
scaling_bluring = False # If true, a combination of scaling and blurring will be applied to the image.
scaling_binarization = False # If true, a combination of scaling and binarization will be applied to the image.
rotation = False # If true, a 90 degree rotation will be implemeneted.
rotation_not_90 = False # If true rotation based on provided angles with thetha will be implemeneted.
scaling_brightness = False # If true, a combination of scaling and brightening will be applied to the image.
scaling_flip = False # If true, a combination of scaling and flipping will be applied to the image.
thetha = None # Rotate image by these angles for augmentation.
shuffle_indexes = None
blur_k = None # Blur image for augmentation.
scales = None # Scale patches for augmentation.
degrade_scales = None # Degrade image for augmentation.
brightness = None # Brighten image for augmentation.
flip_index = None # Flip image for augmentation.
continue_training = False # Set to true if you would like to continue training an already trained a model.
transformer_patchsize_x = None # Patch size of vision transformer patches in x direction.
transformer_patchsize_y = None # Patch size of vision transformer patches in y direction.
transformer_num_patches_xy = None # Number of patches for vision transformer in x and y direction respectively.
transformer_projection_dim = 64 # Transformer projection dimension. Default value is 64.
transformer_mlp_head_units = [128, 64] # Transformer Multilayer Perceptron (MLP) head units. Default value is [128, 64]
transformer_layers = 8 # transformer layers. Default value is 8.
transformer_num_heads = 4 # Transformer number of heads. Default value is 4.
transformer_cnn_first = True # We have two types of vision transformers. In one type, a CNN is applied first, followed by a transformer. In the other type, this order is reversed. If transformer_cnn_first is true, it means the CNN will be applied before the transformer. Default value is true.
index_start = 0 # Index of model to continue training from. E.g. if you trained for 3 epochs and last index is 2, to continue from model_1.h5, set "index_start" to 3 to start naming model with index 3.
dir_of_start_model = '' # Directory containing pretrained encoder to continue training the model.
is_loss_soft_dice = False # Use soft dice as loss function. When set to true, "weighted_loss" must be false.
weighted_loss = False # Use weighted categorical cross entropy as loss fucntion. When set to true, "is_loss_soft_dice" must be false.
data_is_provided = False # Only set this to true when you have already provided the input data and the train and eval data are in "dir_output".
task = "segmentation" # This parameter defines task of model which can be segmentation, enhancement or classification.
f1_threshold_classification = None # This threshold is used to consider models with an evaluation f1 scores bigger than it. The selected model weights undergo a weights ensembling. And avreage ensembled model will be written to output.
classification_classes_name = None # Dictionary of classification classes names.
backbone_type = None # As backbone we have 2 types of backbones. A vision transformer alongside a CNN and we call it "transformer" and only CNN called "nontransformer"
save_interval = None
dir_img_bin = None
number_of_backgrounds_per_image = 1
dir_rgb_backgrounds = None
dir_rgb_foregrounds = None
@ex.automain
def run(_config, n_classes, n_epochs, input_height,
input_width, weight_decay, weighted_loss,
index_start, dir_of_start_model, is_loss_soft_dice,
n_batch, patches, augmentation, flip_aug,
blur_aug, padding_white, padding_black, scaling, shifting, degrading,channels_shuffling,
brightening, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, blur_k, scales, degrade_scales,shuffle_indexes,
brightness, dir_train, data_is_provided, scaling_bluring,
scaling_brightness, scaling_binarization, rotation, rotation_not_90,
thetha, scaling_flip, continue_training, transformer_projection_dim,
transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_cnn_first,
transformer_patchsize_x, transformer_patchsize_y,
transformer_num_patches_xy, backbone_type, save_interval, flip_index, dir_eval, dir_output,
pretraining, learning_rate, task, f1_threshold_classification, classification_classes_name, dir_img_bin, number_of_backgrounds_per_image,dir_rgb_backgrounds, dir_rgb_foregrounds):
if dir_rgb_backgrounds:
list_all_possible_background_images = os.listdir(dir_rgb_backgrounds)
else:
list_all_possible_background_images = None
if dir_rgb_foregrounds:
list_all_possible_foreground_rgbs = os.listdir(dir_rgb_foregrounds)
else:
list_all_possible_foreground_rgbs = None
if task == "segmentation" or task == "enhancement" or task == "binarization":
if data_is_provided:
dir_train_flowing = os.path.join(dir_output, 'train')
dir_eval_flowing = os.path.join(dir_output, 'eval')
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images')
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels')
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images')
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels')
configuration()
else:
dir_img, dir_seg = get_dirs_or_files(dir_train)
dir_img_val, dir_seg_val = get_dirs_or_files(dir_eval)
# make first a directory in output for both training and evaluations in order to flow data from these directories.
dir_train_flowing = os.path.join(dir_output, 'train')
dir_eval_flowing = os.path.join(dir_output, 'eval')
dir_flow_train_imgs = os.path.join(dir_train_flowing, 'images/')
dir_flow_train_labels = os.path.join(dir_train_flowing, 'labels/')
dir_flow_eval_imgs = os.path.join(dir_eval_flowing, 'images/')
dir_flow_eval_labels = os.path.join(dir_eval_flowing, 'labels/')
if os.path.isdir(dir_train_flowing):
os.system('rm -rf ' + dir_train_flowing)
os.makedirs(dir_train_flowing)
else:
os.makedirs(dir_train_flowing)
if os.path.isdir(dir_eval_flowing):
os.system('rm -rf ' + dir_eval_flowing)
os.makedirs(dir_eval_flowing)
else:
os.makedirs(dir_eval_flowing)
os.mkdir(dir_flow_train_imgs)
os.mkdir(dir_flow_train_labels)
os.mkdir(dir_flow_eval_imgs)
os.mkdir(dir_flow_eval_labels)
# set the gpu configuration
configuration()
imgs_list=np.array(os.listdir(dir_img))
segs_list=np.array(os.listdir(dir_seg))
imgs_list_test=np.array(os.listdir(dir_img_val))
segs_list_test=np.array(os.listdir(dir_seg_val))
# writing patches into a sub-folder in order to be flowed from directory.
provide_patches(imgs_list, segs_list, dir_img, dir_seg, dir_flow_train_imgs,
dir_flow_train_labels, input_height, input_width, blur_k,
blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background,adding_rgb_foreground, add_red_textlines, channels_shuffling,
scaling, shifting, degrading, brightening, scales, degrade_scales, brightness,
flip_index,shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=augmentation,
patches=patches, dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds, dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs)
provide_patches(imgs_list_test, segs_list_test, dir_img_val, dir_seg_val,
dir_flow_eval_imgs, dir_flow_eval_labels, input_height, input_width,
blur_k, blur_aug, padding_white, padding_black, flip_aug, binarization, adding_rgb_background, adding_rgb_foreground, add_red_textlines, channels_shuffling,
scaling, shifting, degrading, brightening, scales, degrade_scales, brightness,
flip_index, shuffle_indexes, scaling_bluring, scaling_brightness, scaling_binarization,
rotation, rotation_not_90, thetha, scaling_flip, task, augmentation=False, patches=patches,dir_img_bin=dir_img_bin,number_of_backgrounds_per_image=number_of_backgrounds_per_image,list_all_possible_background_images=list_all_possible_background_images, dir_rgb_backgrounds=dir_rgb_backgrounds,dir_rgb_foregrounds=dir_rgb_foregrounds,list_all_possible_foreground_rgbs=list_all_possible_foreground_rgbs )
if weighted_loss:
weights = np.zeros(n_classes)
if data_is_provided:
for obj in os.listdir(dir_flow_train_labels):
try:
label_obj = cv2.imread(dir_flow_train_labels + '/' + obj)
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
except:
pass
else:
for obj in os.listdir(dir_seg):
try:
label_obj = cv2.imread(dir_seg + '/' + obj)
label_obj_one_hot = get_one_hot(label_obj, label_obj.shape[0], label_obj.shape[1], n_classes)
weights += (label_obj_one_hot.sum(axis=0)).sum(axis=0)
except:
pass
weights = 1.00 / weights
weights = weights / float(np.sum(weights))
weights = weights / float(np.min(weights))
weights = weights / float(np.sum(weights))
if continue_training:
if backbone_type=='nontransformer':
if is_loss_soft_dice and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={'soft_dice_loss': soft_dice_loss})
if weighted_loss and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={'loss': weighted_categorical_crossentropy(weights)})
if not is_loss_soft_dice and not weighted_loss:
model = load_model(dir_of_start_model , compile=True)
elif backbone_type=='transformer':
if is_loss_soft_dice and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={"PatchEncoder": PatchEncoder, "Patches": Patches,'soft_dice_loss': soft_dice_loss})
if weighted_loss and (task == "segmentation" or task == "binarization"):
model = load_model(dir_of_start_model, compile=True, custom_objects={'loss': weighted_categorical_crossentropy(weights)})
if not is_loss_soft_dice and not weighted_loss:
model = load_model(dir_of_start_model , compile=True,custom_objects = {"PatchEncoder": PatchEncoder, "Patches": Patches})
else:
index_start = 0
if backbone_type=='nontransformer':
model = resnet50_unet(n_classes, input_height, input_width, task, weight_decay, pretraining)
elif backbone_type=='transformer':
num_patches_x = transformer_num_patches_xy[0]
num_patches_y = transformer_num_patches_xy[1]
num_patches = num_patches_x * num_patches_y
if transformer_cnn_first:
if input_height != (num_patches_y * transformer_patchsize_y * 32):
print("Error: transformer_patchsize_y or transformer_num_patches_xy height value error . input_height should be equal to ( transformer_num_patches_xy height value * transformer_patchsize_y * 32)")
sys.exit(1)
if input_width != (num_patches_x * transformer_patchsize_x * 32):
print("Error: transformer_patchsize_x or transformer_num_patches_xy width value error . input_width should be equal to ( transformer_num_patches_xy width value * transformer_patchsize_x * 32)")
sys.exit(1)
if (transformer_projection_dim % (transformer_patchsize_y * transformer_patchsize_x)) != 0:
print("Error: transformer_projection_dim error. The remainder when parameter transformer_projection_dim is divided by (transformer_patchsize_y*transformer_patchsize_x) should be zero")
sys.exit(1)
model = vit_resnet50_unet(n_classes, transformer_patchsize_x, transformer_patchsize_y, num_patches, transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_projection_dim, input_height, input_width, task, weight_decay, pretraining)
else:
if input_height != (num_patches_y * transformer_patchsize_y):
print("Error: transformer_patchsize_y or transformer_num_patches_xy height value error . input_height should be equal to ( transformer_num_patches_xy height value * transformer_patchsize_y)")
sys.exit(1)
if input_width != (num_patches_x * transformer_patchsize_x):
print("Error: transformer_patchsize_x or transformer_num_patches_xy width value error . input_width should be equal to ( transformer_num_patches_xy width value * transformer_patchsize_x)")
sys.exit(1)
if (transformer_projection_dim % (transformer_patchsize_y * transformer_patchsize_x)) != 0:
print("Error: transformer_projection_dim error. The remainder when parameter transformer_projection_dim is divided by (transformer_patchsize_y*transformer_patchsize_x) should be zero")
sys.exit(1)
model = vit_resnet50_unet_transformer_before_cnn(n_classes, transformer_patchsize_x, transformer_patchsize_y, num_patches, transformer_mlp_head_units, transformer_layers, transformer_num_heads, transformer_projection_dim, input_height, input_width, task, weight_decay, pretraining)
#if you want to see the model structure just uncomment model summary.
model.summary()
if task == "segmentation" or task == "binarization":
if not is_loss_soft_dice and not weighted_loss:
model.compile(loss='categorical_crossentropy',
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
if is_loss_soft_dice:
model.compile(loss=soft_dice_loss,
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
if weighted_loss:
model.compile(loss=weighted_categorical_crossentropy(weights),
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
elif task == "enhancement":
model.compile(loss='mean_squared_error',
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
# generating train and evaluation data
train_gen = data_gen(dir_flow_train_imgs, dir_flow_train_labels, batch_size=n_batch,
input_height=input_height, input_width=input_width, n_classes=n_classes, task=task)
val_gen = data_gen(dir_flow_eval_imgs, dir_flow_eval_labels, batch_size=n_batch,
input_height=input_height, input_width=input_width, n_classes=n_classes, task=task)
##img_validation_patches = os.listdir(dir_flow_eval_imgs)
##score_best=[]
##score_best.append(0)
if save_interval:
save_weights_callback = SaveWeightsAfterSteps(save_interval, dir_output, _config)
for i in tqdm(range(index_start, n_epochs + index_start)):
if save_interval:
model.fit(
train_gen,
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
validation_data=val_gen,
validation_steps=1,
epochs=1, callbacks=[save_weights_callback])
else:
model.fit(
train_gen,
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
validation_data=val_gen,
validation_steps=1,
epochs=1)
model.save(os.path.join(dir_output,'model_'+str(i)))
with open(os.path.join(os.path.join(dir_output,'model_'+str(i)),"config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
#os.system('rm -rf '+dir_train_flowing)
#os.system('rm -rf '+dir_eval_flowing)
#model.save(dir_output+'/'+'model'+'.h5')
elif task=='classification':
configuration()
model = resnet50_classifier(n_classes, input_height, input_width, weight_decay, pretraining)
opt_adam = Adam(learning_rate=0.001)
model.compile(loss='categorical_crossentropy',
optimizer = opt_adam,metrics=['accuracy'])
list_classes = list(classification_classes_name.values())
testX, testY = generate_data_from_folder_evaluation(dir_eval, input_height, input_width, n_classes, list_classes)
y_tot=np.zeros((testX.shape[0],n_classes))
score_best= [0]
num_rows = return_number_of_total_training_data(dir_train)
weights=[]
for i in range(n_epochs):
history = model.fit( generate_data_from_folder_training(dir_train, n_batch , input_height, input_width, n_classes, list_classes), steps_per_epoch=num_rows / n_batch, verbose=1)#,class_weight=weights)
y_pr_class = []
for jj in range(testY.shape[0]):
y_pr=model.predict(testX[jj,:,:,:].reshape(1,input_height,input_width,3), verbose=0)
y_pr_ind= np.argmax(y_pr,axis=1)
y_pr_class.append(y_pr_ind)
y_pr_class = np.array(y_pr_class)
f1score=f1_score(np.argmax(testY,axis=1), y_pr_class, average='macro')
print(i,f1score)
if f1score>score_best[0]:
score_best[0]=f1score
model.save(os.path.join(dir_output,'model_best'))
if f1score > f1_threshold_classification:
weights.append(model.get_weights() )
if len(weights) >= 1:
new_weights=list()
for weights_list_tuple in zip(*weights):
new_weights.append( [np.array(weights_).mean(axis=0) for weights_ in zip(*weights_list_tuple)] )
new_weights = [np.array(x) for x in new_weights]
model_weight_averaged=tf.keras.models.clone_model(model)
model_weight_averaged.set_weights(new_weights)
model_weight_averaged.save(os.path.join(dir_output,'model_ens_avg'))
with open(os.path.join( os.path.join(dir_output,'model_ens_avg'), "config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
with open(os.path.join( os.path.join(dir_output,'model_best'), "config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
elif task=='reading_order':
configuration()
model = machine_based_reading_order_model(n_classes,input_height,input_width,weight_decay,pretraining)
dir_flow_train_imgs = os.path.join(dir_train, 'images')
dir_flow_train_labels = os.path.join(dir_train, 'labels')
classes = os.listdir(dir_flow_train_labels)
if augmentation:
num_rows = len(classes)*(len(thetha) + 1)
else:
num_rows = len(classes)
#ls_test = os.listdir(dir_flow_train_labels)
#f1score_tot = [0]
indexer_start = 0
# opt = SGD(learning_rate=0.01, momentum=0.9)
opt_adam = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(loss="binary_crossentropy",
optimizer = opt_adam,metrics=['accuracy'])
if save_interval:
save_weights_callback = SaveWeightsAfterSteps(save_interval, dir_output, _config)
for i in range(n_epochs):
if save_interval:
history = model.fit(generate_arrays_from_folder_reading_order(dir_flow_train_labels, dir_flow_train_imgs, n_batch, input_height, input_width, n_classes, thetha, augmentation), steps_per_epoch=num_rows / n_batch, verbose=1, callbacks=[save_weights_callback])
else:
history = model.fit(generate_arrays_from_folder_reading_order(dir_flow_train_labels, dir_flow_train_imgs, n_batch, input_height, input_width, n_classes, thetha, augmentation), steps_per_epoch=num_rows / n_batch, verbose=1)
model.save( os.path.join(dir_output,'model_'+str(i+indexer_start) ))
with open(os.path.join(os.path.join(dir_output,'model_'+str(i)),"config.json"), "w") as fp:
json.dump(_config, fp) # encode dict into JSON
'''
if f1score>f1score_tot[0]:
f1score_tot[0] = f1score
model_dir = os.path.join(dir_out,'model_best')
model.save(model_dir)
'''

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,15 +1,7 @@
from typing import Sequence, Union
from numbers import Number
from functools import partial
import itertools
import cv2
import numpy as np
from scipy.sparse.csgraph import minimum_spanning_tree
from shapely.geometry import Polygon, LineString
from shapely.geometry.polygon import orient
from shapely import set_precision
from shapely.ops import unary_union, nearest_points
from shapely import geometry
from .rotate import rotate_image, rotation_image_new
@ -36,31 +28,38 @@ def find_contours_mean_y_diff(contours_main):
return np.mean(np.diff(np.sort(np.array(cy_main))))
def get_text_region_boxes_by_given_contours(contours):
return [cv2.boundingRect(contour)
for contour in contours]
boxes = []
contours_new = []
for jj in range(len(contours)):
box = cv2.boundingRect(contours[jj])
boxes.append(box)
contours_new.append(contours[jj])
def filter_contours_area_of_image(image, contours, hierarchy, max_area=1.0, min_area=0.0, dilate=0):
return boxes, contours_new
def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area):
found_polygons_early = []
for jv, contour in enumerate(contours):
if len(contour) < 3: # A polygon cannot have less than 3 points
for jv,c in enumerate(contours):
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = contour2polygon(contour, dilate=dilate)
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if (area >= min_area * np.prod(image.shape[:2]) and
area <= max_area * np.prod(image.shape[:2]) and
hierarchy[0][jv][3] == -1):
found_polygons_early.append(polygon2contour(polygon))
found_polygons_early.append(np.array([[point]
for point in polygon.exterior.coords], dtype=np.uint))
return found_polygons_early
def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area=1.0, min_area=0.0, dilate=0):
def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area):
found_polygons_early = []
for jv, contour in enumerate(contours):
if len(contour) < 3: # A polygon cannot have less than 3 points
for jv,c in enumerate(contours):
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = contour2polygon(contour, dilate=dilate)
# area = cv2.contourArea(contour)
polygon = geometry.Polygon([point[0] for point in c])
# area = cv2.contourArea(c)
area = polygon.area
##print(np.prod(thresh.shape[:2]))
# Check that polygon has area greater than minimal area
@ -69,41 +68,66 @@ def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area=1.
area <= max_area * np.prod(image.shape[:2]) and
# hierarchy[0][jv][3]==-1
True):
# print(contour[0][0][1])
found_polygons_early.append(polygon2contour(polygon))
# print(c[0][0][1])
found_polygons_early.append(np.array([[point]
for point in polygon.exterior.coords], dtype=np.int32))
return found_polygons_early
def find_center_of_contours(contours):
moments = [cv2.moments(contour) for contour in contours]
cx = [feat["m10"] / (feat["m00"] + 1e-32)
for feat in moments]
cy = [feat["m01"] / (feat["m00"] + 1e-32)
for feat in moments]
return cx, cy
def find_new_features_of_contours(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j])
for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j])
for j in range(len(contours_main))]
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32))
for j in range(len(M_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32))
for j in range(len(M_main))]
try:
x_min_main = np.array([np.min(contours_main[j][:, 0, 0])
for j in range(len(contours_main))])
argmin_x_main = np.array([np.argmin(contours_main[j][:, 0, 0])
for j in range(len(contours_main))])
x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 0]
for j in range(len(contours_main))])
y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 1]
for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0])
for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1])
for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1])
for j in range(len(contours_main))])
except:
x_min_main = np.array([np.min(contours_main[j][:, 0])
for j in range(len(contours_main))])
argmin_x_main = np.array([np.argmin(contours_main[j][:, 0])
for j in range(len(contours_main))])
x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0]
for j in range(len(contours_main))])
y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 1]
for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0])
for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 1])
for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 1])
for j in range(len(contours_main))])
# dis_x=np.abs(x_max_main-x_min_main)
def find_new_features_of_contours(contours):
# areas = np.array([cv2.contourArea(contour) for contour in contours])
cx, cy = find_center_of_contours(contours)
slice_x = np.index_exp[:, 0, 0]
slice_y = np.index_exp[:, 0, 1]
if any(contour.ndim < 3 for contour in contours):
slice_x = np.index_exp[:, 0]
slice_y = np.index_exp[:, 1]
x_min = np.array([np.min(contour[slice_x]) for contour in contours])
x_max = np.array([np.max(contour[slice_x]) for contour in contours])
y_min = np.array([np.min(contour[slice_y]) for contour in contours])
y_max = np.array([np.max(contour[slice_y]) for contour in contours])
# dis_x=np.abs(x_max-x_min)
y_corr_x_min = np.array([contour[np.argmin(contour[slice_x])][slice_y[1:]]
for contour in contours])
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
return cx, cy, x_min, x_max, y_min, y_max, y_corr_x_min
def find_features_of_contours(contours_main):
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
def find_features_of_contours(contours):
y_min = np.array([np.min(contour[:,0,1]) for contour in contours])
y_max = np.array([np.max(contour[:,0,1]) for contour in contours])
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
return y_min, y_max
return y_min_main, y_max_main
def return_parent_contours(contours, hierarchy):
contours_parent = [contours[i]
@ -111,13 +135,16 @@ def return_parent_contours(contours, hierarchy):
if hierarchy[0][i][3] == -1]
return contours_parent
def return_contours_of_interested_region(region_pre_p, label, min_area=0.0002):
def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
# pixels of images are identified by 5
if region_pre_p.ndim == 3:
cnts_images = (region_pre_p[:, :, 0] == label) * 1
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == label) * 1
_, thresh = cv2.threshold(cnts_images.astype(np.uint8), 0, 255, 0)
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
@ -126,11 +153,13 @@ def return_contours_of_interested_region(region_pre_p, label, min_area=0.0002):
return contours_imgs
def do_work_of_contours_in_image(contour, index_r_con, img, slope_first):
img_copy = np.zeros(img.shape[:2], dtype=np.uint8)
img_copy = cv2.fillPoly(img_copy, pts=[contour], color=1)
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[contour], color=(1, 1, 1))
img_copy = rotation_image_new(img_copy, -slope_first)
_, thresh = cv2.threshold(img_copy, 0, 255, 0)
img_copy = img_copy.astype(np.uint8)
imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
@ -153,8 +182,8 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first):
cnts_org = []
# print(cnts,'cnts')
for i in range(len(cnts)):
img_copy = np.zeros(img.shape[:2], dtype=np.uint8)
img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=1)
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1))
# plt.imshow(img_copy)
# plt.show()
@ -165,7 +194,9 @@ def get_textregion_contours_in_org_image(cnts, img, slope_first):
# plt.imshow(img_copy)
# plt.show()
_, thresh = cv2.threshold(img_copy, 0, 255, 0)
img_copy = img_copy.astype(np.uint8)
imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
@ -182,11 +213,12 @@ def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first):
interpolation=cv2.INTER_NEAREST)
cnts_org = []
for cnt in cnts:
img_copy = np.zeros(img.shape[:2], dtype=np.uint8)
img_copy = cv2.fillPoly(img_copy, pts=[cnt // zoom], color=1)
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[(cnt / zoom).astype(int)], color=(1, 1, 1))
img_copy = rotation_image_new(img_copy, -slope_first).astype(np.uint8)
_, thresh = cv2.threshold(img_copy, 0, 255, 0)
imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
@ -196,44 +228,50 @@ def get_textregion_contours_in_org_image_light_old(cnts, img, slope_first):
return cnts_org
def do_back_rotation_and_get_cnt_back(contour_par, index_r_con, img, slope_first, confidence_matrix):
img_copy = np.zeros(img.shape[:2], dtype=np.uint8)
img_copy = cv2.fillPoly(img_copy, pts=[contour_par], color=1)
confidence_matrix_mapped_with_contour = confidence_matrix * img_copy
confidence_contour = np.sum(confidence_matrix_mapped_with_contour) / float(np.sum(img_copy))
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[contour_par], color=(1, 1, 1))
confidence_matrix_mapped_with_contour = confidence_matrix * img_copy[:,:,0]
confidence_contour = np.sum(confidence_matrix_mapped_with_contour) / float(np.sum(img_copy[:,:,0]))
img_copy = rotation_image_new(img_copy, -slope_first).astype(np.uint8)
_, thresh = cv2.threshold(img_copy, 0, 255, 0)
imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(cont_int)==0:
cont_int = [contour_par]
confidence_contour = 0
else:
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
# print(np.shape(cont_int[0]))
return cont_int[0], index_r_con, confidence_contour
def get_textregion_contours_in_org_image_light(cnts, img, confidence_matrix):
def get_textregion_contours_in_org_image_light(cnts, img, slope_first, confidence_matrix, map=map):
if not len(cnts):
return []
return [], []
confidence_matrix = cv2.resize(confidence_matrix, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
img = cv2.resize(img, (int(img.shape[1]/6), int(img.shape[0]/6)), interpolation=cv2.INTER_NEAREST)
##cnts = list( (np.array(cnts)/2).astype(np.int16) )
#cnts = cnts/2
cnts = [(i/6).astype(int) for i in cnts]
results = map(partial(do_back_rotation_and_get_cnt_back,
img=img,
slope_first=slope_first,
confidence_matrix=confidence_matrix,
),
cnts, range(len(cnts)))
contours, indexes, conf_contours = tuple(zip(*results))
return [i*6 for i in contours], list(conf_contours)
confidence_matrix = cv2.resize(confidence_matrix,
(img.shape[1] // 6, img.shape[0] // 6),
interpolation=cv2.INTER_NEAREST)
confs = []
for cnt in cnts:
cnt_mask = np.zeros(confidence_matrix.shape)
cnt_mask = cv2.fillPoly(cnt_mask, pts=[cnt // 6], color=1.0)
confs.append(np.sum(confidence_matrix * cnt_mask) / np.sum(cnt_mask))
return confs
def return_contours_of_interested_textline(region_pre_p, label):
def return_contours_of_interested_textline(region_pre_p, pixel):
# pixels of images are identified by 5
if region_pre_p.ndim == 3:
cnts_images = (region_pre_p[:, :, 0] == label) * 1
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == label) * 1
_, thresh = cv2.threshold(cnts_images.astype(np.uint8), 0, 255, 0)
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
@ -243,123 +281,51 @@ def return_contours_of_interested_textline(region_pre_p, label):
def return_contours_of_image(image):
if len(image.shape) == 2:
image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
image = image.astype(np.uint8)
imgray = image
else:
image = image.astype(np.uint8)
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(imgray, 0, 255, 0)
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return contours, hierarchy
def dilate_textline_contours(all_found_textline_polygons):
return [[polygon2contour(contour2polygon(contour, dilate=6))
for contour in region]
for region in all_found_textline_polygons]
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
def dilate_textregion_contours(all_found_textline_polygons):
return [polygon2contour(contour2polygon(contour, dilate=6))
for contour in all_found_textline_polygons]
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
contours_imgs = filter_contours_area_of_image_tables(
thresh, contours_imgs, hierarchy, max_area=1, min_area=min_size)
def contour2polygon(contour: Union[np.ndarray, Sequence[Sequence[Sequence[Number]]]], dilate=0):
polygon = Polygon([point[0] for point in contour])
if dilate:
polygon = polygon.buffer(dilate)
if polygon.geom_type == 'GeometryCollection':
# heterogeneous result: filter zero-area shapes (LineString, Point)
polygon = unary_union([geom for geom in polygon.geoms if geom.area > 0])
if polygon.geom_type == 'MultiPolygon':
# homogeneous result: construct convex hull to connect
polygon = join_polygons(polygon.geoms)
return make_valid(polygon)
return contours_imgs
def polygon2contour(polygon: Polygon) -> np.ndarray:
polygon = np.array(polygon.exterior.coords[:-1], dtype=int)
return np.maximum(0, polygon).astype(int)[:, np.newaxis]
def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
def make_intersection(poly1, poly2):
interp = poly1.intersection(poly2)
# post-process
if interp.is_empty or interp.area == 0.0:
return None
if interp.geom_type == 'GeometryCollection':
# heterogeneous result: filter zero-area shapes (LineString, Point)
interp = unary_union([geom for geom in interp.geoms if geom.area > 0])
if interp.geom_type == 'MultiPolygon':
# homogeneous result: construct convex hull to connect
interp = join_polygons(interp.geoms)
assert interp.geom_type == 'Polygon', interp.wkt
interp = make_valid(interp)
return interp
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
contours_imgs = filter_contours_area_of_image_tables(
thresh, contours_imgs, hierarchy, max_area=max_area, min_area=min_area)
def make_valid(polygon: Polygon) -> Polygon:
"""Ensures shapely.geometry.Polygon object is valid by repeated rearrangement/simplification/enlargement."""
def isint(x):
return isinstance(x, int) or int(x) == x
# make sure rounding does not invalidate
if not all(map(isint, np.array(polygon.exterior.coords).flat)) and polygon.minimum_clearance < 1.0:
polygon = Polygon(np.round(polygon.exterior.coords))
points = list(polygon.exterior.coords[:-1])
# try by re-arranging points
for split in range(1, len(points)):
if polygon.is_valid or polygon.simplify(polygon.area).is_valid:
break
# simplification may not be possible (at all) due to ordering
# in that case, try another starting point
polygon = Polygon(points[-split:]+points[:-split])
# try by simplification
for tolerance in range(int(polygon.area + 1.5)):
if polygon.is_valid:
break
# simplification may require a larger tolerance
polygon = polygon.simplify(tolerance + 1)
# try by enlarging
for tolerance in range(1, int(polygon.area + 2.5)):
if polygon.is_valid:
break
# enlargement may require a larger tolerance
polygon = polygon.buffer(tolerance)
assert polygon.is_valid, polygon.wkt
return polygon
img_ret = np.zeros((region_pre_p.shape[0], region_pre_p.shape[1], 3))
img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1))
return img_ret[:, :, 0]
def join_polygons(polygons: Sequence[Polygon], scale=20) -> Polygon:
"""construct concave hull (alpha shape) from input polygons by connecting their pairwise nearest points"""
# ensure input polygons are simply typed and all oriented equally
polygons = [orient(poly)
for poly in itertools.chain.from_iterable(
[poly.geoms
if poly.geom_type in ['MultiPolygon', 'GeometryCollection']
else [poly]
for poly in polygons])]
npoly = len(polygons)
if npoly == 1:
return polygons[0]
# find min-dist path through all polygons (travelling salesman)
pairs = itertools.combinations(range(npoly), 2)
dists = np.zeros((npoly, npoly), dtype=float)
for i, j in pairs:
dist = polygons[i].distance(polygons[j])
if dist < 1e-5:
dist = 1e-5 # if pair merely touches, we still need to get an edge
dists[i, j] = dist
dists[j, i] = dist
dists = minimum_spanning_tree(dists, overwrite=True)
# add bridge polygons (where necessary)
for prevp, nextp in zip(*dists.nonzero()):
prevp = polygons[prevp]
nextp = polygons[nextp]
nearest = nearest_points(prevp, nextp)
bridgep = orient(LineString(nearest).buffer(max(1, scale/5), resolution=1), -1)
polygons.append(bridgep)
jointp = unary_union(polygons)
if jointp.geom_type == 'MultiPolygon':
jointp = unary_union(jointp.geoms)
assert jointp.geom_type == 'Polygon', jointp.wkt
# follow-up calculations will necessarily be integer;
# so anticipate rounding here and then ensure validity
jointp2 = set_precision(jointp, 1.0)
if jointp2.geom_type != 'Polygon' or not jointp2.is_valid:
jointp2 = Polygon(np.round(jointp.exterior.coords))
jointp2 = make_valid(jointp2)
assert jointp2.geom_type == 'Polygon', jointp2.wkt
return jointp2

View file

@ -3,7 +3,7 @@ from collections import Counter
REGION_ID_TEMPLATE = 'region_%04d'
LINE_ID_TEMPLATE = 'region_%04d_line_%04d'
class EynollahIdCounter:
class EynollahIdCounter():
def __init__(self, region_idx=0, line_idx=0):
self._counter = Counter()

View file

@ -1,7 +1,6 @@
import numpy as np
import cv2
from .contour import (
find_center_of_contours,
find_new_features_of_contours,
return_contours_of_image,
return_parent_contours,
@ -23,8 +22,8 @@ def adhere_drop_capital_region_into_corresponding_textline(
):
# print(np.shape(all_found_textline_polygons),np.shape(all_found_textline_polygons[3]),'all_found_textline_polygonsshape')
# print(all_found_textline_polygons[3])
cx_m, cy_m = find_center_of_contours(contours_only_text_parent)
cx_h, cy_h = find_center_of_contours(contours_only_text_parent_h)
cx_m, cy_m, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent)
cx_h, cy_h, _, _, _, _, _ = find_new_features_of_contours(contours_only_text_parent_h)
cx_d, cy_d, _, _, y_min_d, y_max_d, _ = find_new_features_of_contours(polygons_of_drop_capitals)
img_con_all = np.zeros((text_regions_p.shape[0], text_regions_p.shape[1], 3))
@ -90,9 +89,9 @@ def adhere_drop_capital_region_into_corresponding_textline(
region_final = region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)] - 1
# print(region_final,'region_final')
# cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
try:
cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -154,9 +153,9 @@ def adhere_drop_capital_region_into_corresponding_textline(
# areas_main=np.array([cv2.contourArea(all_found_textline_polygons[int(region_final)][0][j] ) for j in range(len(all_found_textline_polygons[int(region_final)]))])
# cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
try:
cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -209,7 +208,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
try:
# print(all_found_textline_polygons[j_cont][0])
cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -262,7 +261,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
else:
pass
##cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
##cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
###print(all_box_coord[j_cont])
###print(cx_t)
###print(cy_t)
@ -316,9 +315,9 @@ def adhere_drop_capital_region_into_corresponding_textline(
region_final = region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)] - 1
# print(region_final,'region_final')
# cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
try:
cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -376,12 +375,12 @@ def adhere_drop_capital_region_into_corresponding_textline(
# areas_main=np.array([cv2.contourArea(all_found_textline_polygons[int(region_final)][0][j] ) for j in range(len(all_found_textline_polygons[int(region_final)]))])
# cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
# cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# print(cx_t,'print')
try:
# print(all_found_textline_polygons[j_cont][0])
cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[int(region_final)])
cx_t, cy_t, _, _, _, _, _ = find_new_features_of_contours(all_found_textline_polygons[int(region_final)])
# print(all_box_coord[j_cont])
# print(cx_t)
# print(cy_t)
@ -454,7 +453,7 @@ def adhere_drop_capital_region_into_corresponding_textline(
#####try:
#####if len(contours_new_parent)==1:
######print(all_found_textline_polygons[j_cont][0])
#####cx_t, cy_t = find_center_of_contours(all_found_textline_polygons[j_cont])
#####cx_t,cy_t ,_, _, _ ,_,_= find_new_features_of_contours(all_found_textline_polygons[j_cont])
######print(all_box_coord[j_cont])
######print(cx_t)
######print(cy_t)

View file

@ -10,6 +10,7 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1]))
mask_marginals=mask_marginals.astype(np.uint8)
text_with_lines=text_with_lines.astype(np.uint8)
##text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
@ -25,12 +26,8 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
text_with_lines=resize_image(text_with_lines,int(text_with_lines.shape[0]*1.8),text_with_lines.shape[1])
text_with_lines=cv2.erode(text_with_lines,kernel,iterations=7)
text_with_lines=resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
if light_version:
kernel_hor = np.ones((1, 5), dtype=np.uint8)
text_with_lines = cv2.erode(text_with_lines,kernel_hor,iterations=6)
text_with_lines_y=text_with_lines.sum(axis=0)
text_with_lines_y_eroded=text_with_lines_eroded.sum(axis=0)
@ -43,10 +40,8 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
elif thickness_along_y_percent>=30 and thickness_along_y_percent<50:
min_textline_thickness=20
else:
if light_version:
min_textline_thickness=45
else:
min_textline_thickness=40
min_textline_thickness=40
if thickness_along_y_percent>=14:
@ -76,7 +71,7 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
peaks, _ = find_peaks(text_with_lines_y_rev, height=0)
peaks=np.array(peaks)
peaks=peaks[(peaks>first_nonzero) & (peaks < last_nonzero)]
peaks=peaks[(peaks>first_nonzero) & ((peaks<last_nonzero))]
peaks=peaks[region_sum_0[peaks]<min_textline_thickness ]
@ -99,8 +94,6 @@ def get_marginals(text_with_lines, text_regions, num_col, slope_deskew, light_ve
except:
point_left=first_nonzero
if point_left == first_nonzero and point_right == last_nonzero:
return text_regions
if point_right>=mask_marginals.shape[1]:

File diff suppressed because it is too large Load diff

View file

@ -1,45 +0,0 @@
from multiprocessing import shared_memory
from contextlib import contextmanager
from functools import wraps
import numpy as np
@contextmanager
def share_ndarray(array: np.ndarray):
size = np.dtype(array.dtype).itemsize * np.prod(array.shape)
shm = shared_memory.SharedMemory(create=True, size=size)
try:
shared_array = np.ndarray(array.shape, dtype=array.dtype, buffer=shm.buf)
shared_array[:] = array[:]
shared_array.flags["WRITEABLE"] = False
yield dict(shape=array.shape, dtype=array.dtype, name=shm.name)
finally:
shm.close()
shm.unlink()
@contextmanager
def ndarray_shared(array: dict):
shm = shared_memory.SharedMemory(name=array['name'])
try:
array = np.ndarray(array['shape'], dtype=array['dtype'], buffer=shm.buf)
yield array
finally:
shm.close()
def wrap_ndarray_shared(kw=None):
def wrapper(f):
if kw is None:
@wraps(f)
def shared_func(array, *args, **kwargs):
with ndarray_shared(array) as ndarray:
return f(ndarray, *args, **kwargs)
return shared_func
else:
@wraps(f)
def shared_func(*args, **kwargs):
array = kwargs.pop(kw)
with ndarray_shared(array) as ndarray:
kwargs[kw] = ndarray
return f(*args, **kwargs)
return shared_func
return wrapper

View file

@ -1,510 +0,0 @@
import math
import copy
import numpy as np
import cv2
import tensorflow as tf
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
from PIL import Image, ImageDraw, ImageFont
from Bio import pairwise2
from .resize import resize_image
def decode_batch_predictions(pred, num_to_char, max_len = 128):
# input_len is the product of the batch size and the
# number of time steps.
input_len = np.ones(pred.shape[0]) * pred.shape[1]
# Decode CTC predictions using greedy search.
# decoded is a tuple with 2 elements.
decoded = tf.keras.backend.ctc_decode(pred,
input_length = input_len,
beam_width = 100)
# The outputs are in the first element of the tuple.
# Additionally, the first element is actually a list,
# therefore we take the first element of that list as well.
#print(decoded,'decoded')
decoded = decoded[0][0][:, :max_len]
#print(decoded, decoded.shape,'decoded')
output = []
for d in decoded:
# Convert the predicted indices to the corresponding chars.
d = tf.strings.reduce_join(num_to_char(d))
d = d.numpy().decode("utf-8")
output.append(d)
return output
def distortion_free_resize(image, img_size):
w, h = img_size
image = tf.image.resize(image, size=(h, w), preserve_aspect_ratio=True)
# Check tha amount of padding needed to be done.
pad_height = h - tf.shape(image)[0]
pad_width = w - tf.shape(image)[1]
# Only necessary if you want to do same amount of padding on both sides.
if pad_height % 2 != 0:
height = pad_height // 2
pad_height_top = height + 1
pad_height_bottom = height
else:
pad_height_top = pad_height_bottom = pad_height // 2
if pad_width % 2 != 0:
width = pad_width // 2
pad_width_left = width + 1
pad_width_right = width
else:
pad_width_left = pad_width_right = pad_width // 2
image = tf.pad(
image,
paddings=[
[pad_height_top, pad_height_bottom],
[pad_width_left, pad_width_right],
[0, 0],
],
)
image = tf.transpose(image, (1, 0, 2))
image = tf.image.flip_left_right(image)
return image
def return_start_and_end_of_common_text_of_textline_ocr_without_common_section(textline_image):
width = np.shape(textline_image)[1]
height = np.shape(textline_image)[0]
common_window = int(0.06*width)
width1 = int ( width/2. - common_window )
width2 = int ( width/2. + common_window )
img_sum = np.sum(textline_image[:,:,0], axis=0)
sum_smoothed = gaussian_filter1d(img_sum, 3)
peaks_real, _ = find_peaks(sum_smoothed, height=0)
if len(peaks_real)>70:
peaks_real = peaks_real[(peaks_real<width2) & (peaks_real>width1)]
arg_max = np.argmax(sum_smoothed[peaks_real])
peaks_final = peaks_real[arg_max]
return peaks_final
else:
return None
# Function to fit text inside the given area
def fit_text_single_line(draw, text, font_path, max_width, max_height):
initial_font_size = 50
font_size = initial_font_size
while font_size > 10: # Minimum font size
font = ImageFont.truetype(font_path, font_size)
text_bbox = draw.textbbox((0, 0), text, font=font) # Get text bounding box
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
if text_width <= max_width and text_height <= max_height:
return font # Return the best-fitting font
font_size -= 2 # Reduce font size and retry
return ImageFont.truetype(font_path, 10) # Smallest font fallback
def return_textlines_split_if_needed(textline_image, textline_image_bin=None):
split_point = return_start_and_end_of_common_text_of_textline_ocr_without_common_section(textline_image)
if split_point:
image1 = textline_image[:, :split_point,:]# image.crop((0, 0, width2, height))
image2 = textline_image[:, split_point:,:]#image.crop((width1, 0, width, height))
if textline_image_bin is not None:
image1_bin = textline_image_bin[:, :split_point,:]# image.crop((0, 0, width2, height))
image2_bin = textline_image_bin[:, split_point:,:]#image.crop((width1, 0, width, height))
return [image1, image2], [image1_bin, image2_bin]
else:
return [image1, image2], None
else:
return None, None
def preprocess_and_resize_image_for_ocrcnn_model(img, image_height, image_width):
if img.shape[0]==0 or img.shape[1]==0:
img_fin = np.ones((image_height, image_width, 3))
else:
ratio = image_height /float(img.shape[0])
w_ratio = int(ratio * img.shape[1])
if w_ratio <= image_width:
width_new = w_ratio
else:
width_new = image_width
if width_new == 0:
width_new = img.shape[1]
img = resize_image(img, image_height, width_new)
img_fin = np.ones((image_height, image_width, 3))*255
img_fin[:,:width_new,:] = img[:,:,:]
img_fin = img_fin / 255.
return img_fin
def get_deskewed_contour_and_bb_and_image(contour, image, deskew_angle):
(h_in, w_in) = image.shape[:2]
center = (w_in // 2, h_in // 2)
rotation_matrix = cv2.getRotationMatrix2D(center, deskew_angle, 1.0)
cos_angle = abs(rotation_matrix[0, 0])
sin_angle = abs(rotation_matrix[0, 1])
new_w = int((h_in * sin_angle) + (w_in * cos_angle))
new_h = int((h_in * cos_angle) + (w_in * sin_angle))
rotation_matrix[0, 2] += (new_w / 2) - center[0]
rotation_matrix[1, 2] += (new_h / 2) - center[1]
deskewed_image = cv2.warpAffine(image, rotation_matrix, (new_w, new_h))
contour_points = np.array(contour, dtype=np.float32)
transformed_points = cv2.transform(np.array([contour_points]), rotation_matrix)[0]
x, y, w, h = cv2.boundingRect(np.array(transformed_points, dtype=np.int32))
cropped_textline = deskewed_image[y:y+h, x:x+w]
return cropped_textline
def rotate_image_with_padding(image, angle, border_value=(0,0,0)):
# Get image dimensions
(h, w) = image.shape[:2]
# Calculate the center of the image
center = (w // 2, h // 2)
# Get the rotation matrix
rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)
# Compute the new bounding dimensions
cos = abs(rotation_matrix[0, 0])
sin = abs(rotation_matrix[0, 1])
new_w = int((h * sin) + (w * cos))
new_h = int((h * cos) + (w * sin))
# Adjust the rotation matrix to account for translation
rotation_matrix[0, 2] += (new_w / 2) - center[0]
rotation_matrix[1, 2] += (new_h / 2) - center[1]
# Perform the rotation
try:
rotated_image = cv2.warpAffine(image, rotation_matrix, (new_w, new_h), borderValue=border_value)
except:
rotated_image = np.copy(image)
return rotated_image
def get_orientation_moments(contour):
moments = cv2.moments(contour)
if moments["mu20"] - moments["mu02"] == 0: # Avoid division by zero
return 90 if moments["mu11"] > 0 else -90
else:
angle = 0.5 * np.arctan2(2 * moments["mu11"], moments["mu20"] - moments["mu02"])
return np.degrees(angle) # Convert radians to degrees
def get_orientation_moments_of_mask(mask):
mask=mask.astype('uint8')
contours, _ = cv2.findContours(mask[:,:,0], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
largest_contour = max(contours, key=cv2.contourArea) if contours else None
moments = cv2.moments(largest_contour)
if moments["mu20"] - moments["mu02"] == 0: # Avoid division by zero
return 90 if moments["mu11"] > 0 else -90
else:
angle = 0.5 * np.arctan2(2 * moments["mu11"], moments["mu20"] - moments["mu02"])
return np.degrees(angle) # Convert radians to degrees
def get_contours_and_bounding_boxes(mask):
# Find contours in the binary mask
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
largest_contour = max(contours, key=cv2.contourArea) if contours else None
# Get the bounding rectangle for the contour
x, y, w, h = cv2.boundingRect(largest_contour)
#bounding_boxes.append((x, y, w, h))
return x, y, w, h
def return_splitting_point_of_image(image_to_spliited):
width = np.shape(image_to_spliited)[1]
height = np.shape(image_to_spliited)[0]
common_window = int(0.03*width)
width1 = int ( common_window)
width2 = int ( width - common_window )
img_sum = np.sum(image_to_spliited[:,:,0], axis=0)
sum_smoothed = gaussian_filter1d(img_sum, 1)
peaks_real, _ = find_peaks(sum_smoothed, height=0)
peaks_real = peaks_real[(peaks_real<width2) & (peaks_real>width1)]
arg_sort = np.argsort(sum_smoothed[peaks_real])
peaks_sort_4 = peaks_real[arg_sort][::-1][:3]
return np.sort(peaks_sort_4)
def break_curved_line_into_small_pieces_and_then_merge(img_curved, mask_curved, img_bin_curved=None):
peaks_4 = return_splitting_point_of_image(img_curved)
if len(peaks_4)>0:
imgs_tot = []
for ind in range(len(peaks_4)+1):
if ind==0:
img = img_curved[:, :peaks_4[ind], :]
if img_bin_curved is not None:
img_bin = img_bin_curved[:, :peaks_4[ind], :]
mask = mask_curved[:, :peaks_4[ind], :]
elif ind==len(peaks_4):
img = img_curved[:, peaks_4[ind-1]:, :]
if img_bin_curved is not None:
img_bin = img_bin_curved[:, peaks_4[ind-1]:, :]
mask = mask_curved[:, peaks_4[ind-1]:, :]
else:
img = img_curved[:, peaks_4[ind-1]:peaks_4[ind], :]
if img_bin_curved is not None:
img_bin = img_bin_curved[:, peaks_4[ind-1]:peaks_4[ind], :]
mask = mask_curved[:, peaks_4[ind-1]:peaks_4[ind], :]
or_ma = get_orientation_moments_of_mask(mask)
if img_bin_curved is not None:
imgs_tot.append([img, mask, or_ma, img_bin] )
else:
imgs_tot.append([img, mask, or_ma] )
w_tot_des_list = []
w_tot_des = 0
imgs_deskewed_list = []
imgs_bin_deskewed_list = []
for ind in range(len(imgs_tot)):
img_in = imgs_tot[ind][0]
mask_in = imgs_tot[ind][1]
ori_in = imgs_tot[ind][2]
if img_bin_curved is not None:
img_bin_in = imgs_tot[ind][3]
if abs(ori_in)<45:
img_in_des = rotate_image_with_padding(img_in, ori_in, border_value=(255,255,255) )
if img_bin_curved is not None:
img_bin_in_des = rotate_image_with_padding(img_bin_in, ori_in, border_value=(255,255,255) )
mask_in_des = rotate_image_with_padding(mask_in, ori_in)
mask_in_des = mask_in_des.astype('uint8')
#new bounding box
x_n, y_n, w_n, h_n = get_contours_and_bounding_boxes(mask_in_des[:,:,0])
if w_n==0 or h_n==0:
img_in_des = np.copy(img_in)
if img_bin_curved is not None:
img_bin_in_des = np.copy(img_bin_in)
w_relative = int(32 * img_in_des.shape[1]/float(img_in_des.shape[0]) )
if w_relative==0:
w_relative = img_in_des.shape[1]
img_in_des = resize_image(img_in_des, 32, w_relative)
if img_bin_curved is not None:
img_bin_in_des = resize_image(img_bin_in_des, 32, w_relative)
else:
mask_in_des = mask_in_des[y_n:y_n+h_n, x_n:x_n+w_n, :]
img_in_des = img_in_des[y_n:y_n+h_n, x_n:x_n+w_n, :]
if img_bin_curved is not None:
img_bin_in_des = img_bin_in_des[y_n:y_n+h_n, x_n:x_n+w_n, :]
w_relative = int(32 * img_in_des.shape[1]/float(img_in_des.shape[0]) )
if w_relative==0:
w_relative = img_in_des.shape[1]
img_in_des = resize_image(img_in_des, 32, w_relative)
if img_bin_curved is not None:
img_bin_in_des = resize_image(img_bin_in_des, 32, w_relative)
else:
img_in_des = np.copy(img_in)
if img_bin_curved is not None:
img_bin_in_des = np.copy(img_bin_in)
w_relative = int(32 * img_in_des.shape[1]/float(img_in_des.shape[0]) )
if w_relative==0:
w_relative = img_in_des.shape[1]
img_in_des = resize_image(img_in_des, 32, w_relative)
if img_bin_curved is not None:
img_bin_in_des = resize_image(img_bin_in_des, 32, w_relative)
w_tot_des+=img_in_des.shape[1]
w_tot_des_list.append(img_in_des.shape[1])
imgs_deskewed_list.append(img_in_des)
if img_bin_curved is not None:
imgs_bin_deskewed_list.append(img_bin_in_des)
img_final_deskewed = np.zeros((32, w_tot_des, 3))+255
if img_bin_curved is not None:
img_bin_final_deskewed = np.zeros((32, w_tot_des, 3))+255
else:
img_bin_final_deskewed = None
w_indexer = 0
for ind in range(len(w_tot_des_list)):
img_final_deskewed[:,w_indexer:w_indexer+w_tot_des_list[ind],:] = imgs_deskewed_list[ind][:,:,:]
if img_bin_curved is not None:
img_bin_final_deskewed[:,w_indexer:w_indexer+w_tot_des_list[ind],:] = imgs_bin_deskewed_list[ind][:,:,:]
w_indexer = w_indexer+w_tot_des_list[ind]
return img_final_deskewed, img_bin_final_deskewed
else:
return img_curved, img_bin_curved
def return_textline_contour_with_added_box_coordinate(textline_contour, box_ind):
textline_contour[:,0] = textline_contour[:,0] + box_ind[2]
textline_contour[:,1] = textline_contour[:,1] + box_ind[0]
return textline_contour
def return_rnn_cnn_ocr_of_given_textlines(image,
all_found_textline_polygons,
all_box_coord,
prediction_model,
b_s_ocr, num_to_char,
textline_light=False,
curved_line=False):
max_len = 512
padding_token = 299
image_width = 512#max_len * 4
image_height = 32
ind_tot = 0
#cv2.imwrite('./img_out.png', image_page)
ocr_all_textlines = []
cropped_lines_region_indexer = []
cropped_lines_meging_indexing = []
cropped_lines = []
indexer_text_region = 0
for indexing, ind_poly_first in enumerate(all_found_textline_polygons):
#ocr_textline_in_textregion = []
if len(ind_poly_first)==0:
cropped_lines_region_indexer.append(indexer_text_region)
cropped_lines_meging_indexing.append(0)
img_fin = np.ones((image_height, image_width, 3))*1
cropped_lines.append(img_fin)
else:
for indexing2, ind_poly in enumerate(ind_poly_first):
cropped_lines_region_indexer.append(indexer_text_region)
if not (textline_light or curved_line):
ind_poly = copy.deepcopy(ind_poly)
box_ind = all_box_coord[indexing]
ind_poly = return_textline_contour_with_added_box_coordinate(ind_poly, box_ind)
#print(ind_poly_copy)
ind_poly[ind_poly<0] = 0
x, y, w, h = cv2.boundingRect(ind_poly)
w_scaled = w * image_height/float(h)
mask_poly = np.zeros(image.shape)
img_poly_on_img = np.copy(image)
mask_poly = cv2.fillPoly(mask_poly, pts=[ind_poly], color=(1, 1, 1))
mask_poly = mask_poly[y:y+h, x:x+w, :]
img_crop = img_poly_on_img[y:y+h, x:x+w, :]
img_crop[mask_poly==0] = 255
if w_scaled < 640:#1.5*image_width:
img_fin = preprocess_and_resize_image_for_ocrcnn_model(img_crop, image_height, image_width)
cropped_lines.append(img_fin)
cropped_lines_meging_indexing.append(0)
else:
splited_images, splited_images_bin = return_textlines_split_if_needed(img_crop, None)
if splited_images:
img_fin = preprocess_and_resize_image_for_ocrcnn_model(splited_images[0],
image_height,
image_width)
cropped_lines.append(img_fin)
cropped_lines_meging_indexing.append(1)
img_fin = preprocess_and_resize_image_for_ocrcnn_model(splited_images[1],
image_height,
image_width)
cropped_lines.append(img_fin)
cropped_lines_meging_indexing.append(-1)
else:
img_fin = preprocess_and_resize_image_for_ocrcnn_model(img_crop,
image_height,
image_width)
cropped_lines.append(img_fin)
cropped_lines_meging_indexing.append(0)
indexer_text_region+=1
extracted_texts = []
n_iterations = math.ceil(len(cropped_lines) / b_s_ocr)
for i in range(n_iterations):
if i==(n_iterations-1):
n_start = i*b_s_ocr
imgs = cropped_lines[n_start:]
imgs = np.array(imgs)
imgs = imgs.reshape(imgs.shape[0], image_height, image_width, 3)
else:
n_start = i*b_s_ocr
n_end = (i+1)*b_s_ocr
imgs = cropped_lines[n_start:n_end]
imgs = np.array(imgs).reshape(b_s_ocr, image_height, image_width, 3)
preds = prediction_model.predict(imgs, verbose=0)
pred_texts = decode_batch_predictions(preds, num_to_char)
for ib in range(imgs.shape[0]):
pred_texts_ib = pred_texts[ib].replace("[UNK]", "")
extracted_texts.append(pred_texts_ib)
extracted_texts_merged = [extracted_texts[ind]
if cropped_lines_meging_indexing[ind]==0
else extracted_texts[ind]+" "+extracted_texts[ind+1]
if cropped_lines_meging_indexing[ind]==1
else None
for ind in range(len(cropped_lines_meging_indexing))]
extracted_texts_merged = [ind for ind in extracted_texts_merged if ind is not None]
unique_cropped_lines_region_indexer = np.unique(cropped_lines_region_indexer)
ocr_all_textlines = []
for ind in unique_cropped_lines_region_indexer:
ocr_textline_in_textregion = []
extracted_texts_merged_un = np.array(extracted_texts_merged)[np.array(cropped_lines_region_indexer)==ind]
for it_ind, text_textline in enumerate(extracted_texts_merged_un):
ocr_textline_in_textregion.append(text_textline)
ocr_all_textlines.append(ocr_textline_in_textregion)
return ocr_all_textlines
def biopython_align(str1, str2):
alignments = pairwise2.align.globalms(str1, str2, 2, -1, -2, -2)
best_alignment = alignments[0] # Get the best alignment
return best_alignment.seqA, best_alignment.seqB

View file

@ -46,26 +46,24 @@ def create_page_xml(imageFilename, height, width):
))
return pcgts
def xml_reading_order(page, order_of_texts, id_of_marginalia_left, id_of_marginalia_right):
def xml_reading_order(page, order_of_texts, id_of_marginalia):
region_order = ReadingOrderType()
og = OrderedGroupType(id="ro357564684568544579089")
page.set_ReadingOrder(region_order)
region_order.set_OrderedGroup(og)
region_counter = EynollahIdCounter()
for id_marginal in id_of_marginalia_left:
og.add_RegionRefIndexed(RegionRefIndexedType(index=str(region_counter.get('region')), regionRef=id_marginal))
for idx_textregion, _ in enumerate(order_of_texts):
og.add_RegionRefIndexed(RegionRefIndexedType(index=str(region_counter.get('region')), regionRef=region_counter.region_id(order_of_texts[idx_textregion] + 1)))
region_counter.inc('region')
for idx_textregion in order_of_texts:
og.add_RegionRefIndexed(RegionRefIndexedType(index=str(region_counter.get('region')), regionRef=region_counter.region_id(idx_textregion + 1)))
region_counter.inc('region')
for id_marginal in id_of_marginalia_right:
for id_marginal in id_of_marginalia:
og.add_RegionRefIndexed(RegionRefIndexedType(index=str(region_counter.get('region')), regionRef=id_marginal))
region_counter.inc('region')
def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region_h, indexes_sorted, index_of_types, kind_of_texts, ref_point):
def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region_h, matrix_of_orders, indexes_sorted, index_of_types, kind_of_texts, ref_point):
indexes_sorted = np.array(indexes_sorted)
index_of_types = np.array(index_of_types)
kind_of_texts = np.array(kind_of_texts)
id_of_texts = []
order_of_texts = []

View file

@ -21,7 +21,7 @@ from ocrd_models.ocrd_page import (
)
import numpy as np
class EynollahXmlWriter:
class EynollahXmlWriter():
def __init__(self, *, dir_out, image_filename, curved_line,textline_light, pcgts=None):
self.logger = getLogger('eynollah.writer')
@ -56,30 +56,111 @@ class EynollahXmlWriter:
points_page_print = points_page_print + ' '
return points_page_print[:-1]
def serialize_lines_in_marginal(self, marginal_region, all_found_textline_polygons_marginals, marginal_idx, page_coord, all_box_coord_marginals, slopes_marginals, counter):
for j in range(len(all_found_textline_polygons_marginals[marginal_idx])):
coords = CoordsType()
textline = TextLineType(id=counter.next_line_id, Coords=coords)
marginal_region.add_TextLine(textline)
marginal_region.set_orientation(-slopes_marginals[marginal_idx])
points_co = ''
for l in range(len(all_found_textline_polygons_marginals[marginal_idx][j])):
if not (self.curved_line or self.textline_light):
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) )
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) )
else:
textline_x_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x) )
textline_y_coord = max(0, int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y) )
points_co += str(textline_x_coord)
points_co += ','
points_co += str(textline_y_coord)
if (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) <= 45:
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + page_coord[0]) / self.scale_y))
else:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + page_coord[0]) / self.scale_y))
elif (self.curved_line or self.textline_light) and np.abs(slopes_marginals[marginal_idx]) > 45:
if len(all_found_textline_polygons_marginals[marginal_idx][j][l]) == 2:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
else:
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][0] + all_box_coord_marginals[marginal_idx][2] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((all_found_textline_polygons_marginals[marginal_idx][j][l][0][1] + all_box_coord_marginals[marginal_idx][0] + page_coord[0]) / self.scale_y))
points_co += ' '
coords.set_points(points_co[:-1])
def serialize_lines_in_region(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion):
self.logger.debug('enter serialize_lines_in_region')
for j, polygon_textline in enumerate(all_found_textline_polygons[region_idx]):
for j in range(len(all_found_textline_polygons[region_idx])):
coords = CoordsType()
textline = TextLineType(id=counter.next_line_id, Coords=coords)
if ocr_all_textlines_textregion:
# FIXME: add OCR confidence
textline.set_TextEquiv([TextEquivType(Unicode=ocr_all_textlines_textregion[j])])
textline.set_TextEquiv( [ TextEquivType(Unicode=ocr_all_textlines_textregion[j]) ] )
text_region.add_TextLine(textline)
text_region.set_orientation(-slopes[region_idx])
region_bboxes = all_box_coord[region_idx]
points_co = ''
for point in polygon_textline:
if len(point) != 2:
point = point[0]
point_x = point[0] + page_coord[2]
point_y = point[1] + page_coord[0]
# FIXME: or actually... not self.textline_light and not self.curved_line or np.abs(slopes[region_idx]) > 45?
if not self.textline_light and not (self.curved_line and np.abs(slopes[region_idx]) <= 45):
point_x += region_bboxes[2]
point_y += region_bboxes[0]
point_x = max(0, int(point_x / self.scale_x))
point_y = max(0, int(point_y / self.scale_y))
points_co += str(point_x) + ',' + str(point_y) + ' '
for idx_contour_textline, contour_textline in enumerate(all_found_textline_polygons[region_idx][j]):
if not (self.curved_line or self.textline_light):
if len(contour_textline) == 2:
textline_x_coord = max(0, int((contour_textline[0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
else:
textline_x_coord = max(0, int((contour_textline[0][0] + region_bboxes[2] + page_coord[2]) / self.scale_x))
textline_y_coord = max(0, int((contour_textline[0][1] + region_bboxes[0] + page_coord[0]) / self.scale_y))
points_co += str(textline_x_coord)
points_co += ','
points_co += str(textline_y_coord)
if (self.curved_line or self.textline_light) and np.abs(slopes[region_idx]) <= 45:
if len(contour_textline) == 2:
points_co += str(int((contour_textline[0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[1] + page_coord[0]) / self.scale_y))
else:
points_co += str(int((contour_textline[0][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + page_coord[0])/self.scale_y))
elif (self.curved_line or self.textline_light) and np.abs(slopes[region_idx]) > 45:
if len(contour_textline)==2:
points_co += str(int((contour_textline[0] + region_bboxes[2] + page_coord[2])/self.scale_x))
points_co += ','
points_co += str(int((contour_textline[1] + region_bboxes[0] + page_coord[0])/self.scale_y))
else:
points_co += str(int((contour_textline[0][0] + region_bboxes[2]+page_coord[2])/self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + region_bboxes[0]+page_coord[0])/self.scale_y))
points_co += ' '
coords.set_points(points_co[:-1])
def serialize_lines_in_dropcapital(self, text_region, all_found_textline_polygons, region_idx, page_coord, all_box_coord, slopes, counter, ocr_all_textlines_textregion):
self.logger.debug('enter serialize_lines_in_region')
for j in range(1):
coords = CoordsType()
textline = TextLineType(id=counter.next_line_id, Coords=coords)
if ocr_all_textlines_textregion:
textline.set_TextEquiv( [ TextEquivType(Unicode=ocr_all_textlines_textregion[j]) ] )
text_region.add_TextLine(textline)
#region_bboxes = all_box_coord[region_idx]
points_co = ''
for idx_contour_textline, contour_textline in enumerate(all_found_textline_polygons[j]):
if len(contour_textline) == 2:
points_co += str(int((contour_textline[0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[1] + page_coord[0]) / self.scale_y))
else:
points_co += str(int((contour_textline[0][0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((contour_textline[0][1] + page_coord[0])/self.scale_y))
points_co += ' '
coords.set_points(points_co[:-1])
def write_pagexml(self, pcgts):
@ -87,50 +168,8 @@ class EynollahXmlWriter:
with open(self.output_filename, 'w') as f:
f.write(to_xml(pcgts))
def build_pagexml_no_full_layout(
self, found_polygons_text_region,
page_coord, order_of_texts, id_of_texts,
all_found_textline_polygons,
all_box_coord,
found_polygons_text_region_img,
found_polygons_marginals_left, found_polygons_marginals_right,
all_found_textline_polygons_marginals_left, all_found_textline_polygons_marginals_right,
all_box_coord_marginals_left, all_box_coord_marginals_right,
slopes, slopes_marginals_left, slopes_marginals_right,
cont_page, polygons_seplines,
found_polygons_tables,
**kwargs):
return self.build_pagexml_full_layout(
found_polygons_text_region, [],
page_coord, order_of_texts, id_of_texts,
all_found_textline_polygons, [],
all_box_coord, [],
found_polygons_text_region_img, found_polygons_tables, [],
found_polygons_marginals_left, found_polygons_marginals_right,
all_found_textline_polygons_marginals_left, all_found_textline_polygons_marginals_right,
all_box_coord_marginals_left, all_box_coord_marginals_right,
slopes, [], slopes_marginals_left, slopes_marginals_right,
cont_page, polygons_seplines,
**kwargs)
def build_pagexml_full_layout(
self,
found_polygons_text_region, found_polygons_text_region_h,
page_coord, order_of_texts, id_of_texts,
all_found_textline_polygons, all_found_textline_polygons_h,
all_box_coord, all_box_coord_h,
found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals,
found_polygons_marginals_left,found_polygons_marginals_right,
all_found_textline_polygons_marginals_left, all_found_textline_polygons_marginals_right,
all_box_coord_marginals_left, all_box_coord_marginals_right,
slopes, slopes_h, slopes_marginals_left, slopes_marginals_right,
cont_page, polygons_seplines,
ocr_all_textlines=None, ocr_all_textlines_h=None,
ocr_all_textlines_marginals_left=None, ocr_all_textlines_marginals_right=None,
ocr_all_textlines_drop=None,
conf_contours_textregions=None, conf_contours_textregions_h=None,
skip_layout_reading_order=False):
self.logger.debug('enter build_pagexml')
def build_pagexml_no_full_layout(self, found_polygons_text_region, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, found_polygons_tables, ocr_all_textlines, conf_contours_textregion):
self.logger.debug('enter build_pagexml_no_full_layout')
# create the file structure
pcgts = self.pcgts if self.pcgts else create_page_xml(self.image_filename, self.height_org, self.width_org)
@ -138,116 +177,144 @@ class EynollahXmlWriter:
page.set_Border(BorderType(Coords=CoordsType(points=self.calculate_page_coords(cont_page))))
counter = EynollahIdCounter()
if len(order_of_texts):
if len(found_polygons_text_region) > 0:
_counter_marginals = EynollahIdCounter(region_idx=len(order_of_texts))
id_of_marginalia_left = [_counter_marginals.next_region_id
for _ in found_polygons_marginals_left]
id_of_marginalia_right = [_counter_marginals.next_region_id
for _ in found_polygons_marginals_right]
xml_reading_order(page, order_of_texts, id_of_marginalia_left, id_of_marginalia_right)
id_of_marginalia = [_counter_marginals.next_region_id for _ in found_polygons_marginals]
xml_reading_order(page, order_of_texts, id_of_marginalia)
for mm, region_contour in enumerate(found_polygons_text_region):
textregion = TextRegionType(
id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord,
skip_layout_reading_order))
)
if conf_contours_textregions:
textregion.Coords.set_conf(conf_contours_textregions[mm])
for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord), conf=conf_contours_textregion[mm]),
)
#textregion.set_conf(conf_contours_textregion[mm])
page.add_TextRegion(textregion)
if ocr_all_textlines:
ocr_textlines = ocr_all_textlines[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord,
all_box_coord, slopes, counter, ocr_textlines)
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter, ocr_textlines)
self.logger.debug('len(found_polygons_text_region_h) %s', len(found_polygons_text_region_h))
for mm, region_contour in enumerate(found_polygons_text_region_h):
textregion = TextRegionType(
id=counter.next_region_id, type_='heading',
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
)
if conf_contours_textregions_h:
textregion.Coords.set_conf(conf_contours_textregions_h[mm])
page.add_TextRegion(textregion)
if ocr_all_textlines_h:
ocr_textlines = ocr_all_textlines_h[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord,
all_box_coord_h, slopes_h, counter, ocr_textlines)
for mm, region_contour in enumerate(found_polygons_marginals_left):
marginal = TextRegionType(
id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
)
for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
page.add_TextRegion(marginal)
if ocr_all_textlines_marginals_left:
ocr_textlines = ocr_all_textlines_marginals_left[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(marginal, all_found_textline_polygons_marginals_left, mm, page_coord, all_box_coord_marginals_left, slopes_marginals_left, counter, ocr_textlines)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter)
for mm, region_contour in enumerate(found_polygons_marginals_right):
marginal = TextRegionType(
id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
)
page.add_TextRegion(marginal)
if ocr_all_textlines_marginals_right:
ocr_textlines = ocr_all_textlines_marginals_right[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(marginal, all_found_textline_polygons_marginals_right, mm, page_coord,
all_box_coord_marginals_right, slopes_marginals_right, counter, ocr_textlines)
for mm in range(len(found_polygons_text_region_img)):
img_region = ImageRegionType(id=counter.next_region_id, Coords=CoordsType())
page.add_ImageRegion(img_region)
points_co = ''
for lmm in range(len(found_polygons_text_region_img[mm])):
try:
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += ' '
except:
for mm, region_contour in enumerate(found_polygons_drop_capitals):
dropcapital = TextRegionType(
id=counter.next_region_id, type_='drop-capital',
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))
)
page.add_TextRegion(dropcapital)
all_box_coord_drop = [[0, 0, 0, 0]]
slopes_drop = [0]
if ocr_all_textlines_drop:
ocr_textlines = ocr_all_textlines_drop[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(dropcapital, [[found_polygons_drop_capitals[mm]]], 0, page_coord,
all_box_coord_drop, slopes_drop, counter, ocr_textlines)
points_co += str(int((found_polygons_text_region_img[mm][lmm][0] + page_coord[2])/ self.scale_x ))
points_co += ','
points_co += str(int((found_polygons_text_region_img[mm][lmm][1] + page_coord[0])/ self.scale_y ))
points_co += ' '
for region_contour in found_polygons_text_region_img:
page.add_ImageRegion(
ImageRegionType(id=counter.next_region_id,
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))))
img_region.get_Coords().set_points(points_co[:-1])
for region_contour in polygons_seplines:
page.add_SeparatorRegion(
SeparatorRegionType(id=counter.next_region_id,
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, [0, 0, 0, 0]))))
for region_contour in found_polygons_tables:
page.add_TableRegion(
TableRegionType(id=counter.next_region_id,
Coords=CoordsType(points=self.calculate_polygon_coords(region_contour, page_coord))))
for mm in range(len(polygons_lines_to_be_written_in_xml)):
sep_hor = SeparatorRegionType(id=counter.next_region_id, Coords=CoordsType())
page.add_SeparatorRegion(sep_hor)
points_co = ''
for lmm in range(len(polygons_lines_to_be_written_in_xml[mm])):
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm,0,0] ) / self.scale_x))
points_co += ','
points_co += str(int((polygons_lines_to_be_written_in_xml[mm][lmm,0,1] ) / self.scale_y))
points_co += ' '
sep_hor.get_Coords().set_points(points_co[:-1])
for mm in range(len(found_polygons_tables)):
tab_region = TableRegionType(id=counter.next_region_id, Coords=CoordsType())
page.add_TableRegion(tab_region)
points_co = ''
for lmm in range(len(found_polygons_tables[mm])):
points_co += str(int((found_polygons_tables[mm][lmm,0,0] + page_coord[2]) / self.scale_x))
points_co += ','
points_co += str(int((found_polygons_tables[mm][lmm,0,1] + page_coord[0]) / self.scale_y))
points_co += ' '
tab_region.get_Coords().set_points(points_co[:-1])
return pcgts
def calculate_polygon_coords(self, contour, page_coord, skip_layout_reading_order=False):
def build_pagexml_full_layout(self, found_polygons_text_region, found_polygons_text_region_h, page_coord, order_of_texts, id_of_texts, all_found_textline_polygons, all_found_textline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_textline_polygons_marginals, all_box_coord_marginals, slopes, slopes_h, slopes_marginals, cont_page, polygons_lines_to_be_written_in_xml, ocr_all_textlines, conf_contours_textregion, conf_contours_textregion_h):
self.logger.debug('enter build_pagexml_full_layout')
# create the file structure
pcgts = self.pcgts if self.pcgts else create_page_xml(self.image_filename, self.height_org, self.width_org)
page = pcgts.get_Page()
page.set_Border(BorderType(Coords=CoordsType(points=self.calculate_page_coords(cont_page))))
counter = EynollahIdCounter()
_counter_marginals = EynollahIdCounter(region_idx=len(order_of_texts))
id_of_marginalia = [_counter_marginals.next_region_id for _ in found_polygons_marginals]
xml_reading_order(page, order_of_texts, id_of_marginalia)
for mm in range(len(found_polygons_text_region)):
textregion = TextRegionType(id=counter.next_region_id, type_='paragraph',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region[mm], page_coord), conf=conf_contours_textregion[mm]))
page.add_TextRegion(textregion)
if ocr_all_textlines:
ocr_textlines = ocr_all_textlines[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(textregion, all_found_textline_polygons, mm, page_coord, all_box_coord, slopes, counter, ocr_textlines)
self.logger.debug('len(found_polygons_text_region_h) %s', len(found_polygons_text_region_h))
for mm in range(len(found_polygons_text_region_h)):
textregion = TextRegionType(id=counter.next_region_id, type_='header',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_h[mm], page_coord)))
page.add_TextRegion(textregion)
if ocr_all_textlines:
ocr_textlines = ocr_all_textlines[mm]
else:
ocr_textlines = None
self.serialize_lines_in_region(textregion, all_found_textline_polygons_h, mm, page_coord, all_box_coord_h, slopes_h, counter, ocr_textlines)
for mm in range(len(found_polygons_marginals)):
marginal = TextRegionType(id=counter.next_region_id, type_='marginalia',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_marginals[mm], page_coord)))
page.add_TextRegion(marginal)
self.serialize_lines_in_marginal(marginal, all_found_textline_polygons_marginals, mm, page_coord, all_box_coord_marginals, slopes_marginals, counter)
for mm in range(len(found_polygons_drop_capitals)):
dropcapital = TextRegionType(id=counter.next_region_id, type_='drop-capital',
Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_drop_capitals[mm], page_coord)))
page.add_TextRegion(dropcapital)
###all_box_coord_drop = None
###slopes_drop = None
###self.serialize_lines_in_dropcapital(dropcapital, [found_polygons_drop_capitals[mm]], mm, page_coord, all_box_coord_drop, slopes_drop, counter, ocr_all_textlines_textregion=None)
for mm in range(len(found_polygons_text_region_img)):
page.add_ImageRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_text_region_img[mm], page_coord))))
for mm in range(len(polygons_lines_to_be_written_in_xml)):
page.add_SeparatorRegion(ImageRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(polygons_lines_to_be_written_in_xml[mm], [0 , 0, 0, 0]))))
for mm in range(len(found_polygons_tables)):
page.add_TableRegion(TableRegionType(id=counter.next_region_id, Coords=CoordsType(points=self.calculate_polygon_coords(found_polygons_tables[mm], page_coord))))
return pcgts
def calculate_polygon_coords(self, contour, page_coord):
self.logger.debug('enter calculate_polygon_coords')
coords = ''
for point in contour:
if len(point) != 2:
point = point[0]
point_x = point[0]
point_y = point[1]
if not skip_layout_reading_order:
point_x += page_coord[2]
point_y += page_coord[0]
point_x = int(point_x / self.scale_x)
point_y = int(point_y / self.scale_y)
coords += str(point_x) + ',' + str(point_y) + ' '
for value_bbox in contour:
if len(value_bbox) == 2:
coords += str(int((value_bbox[0] + page_coord[2]) / self.scale_x))
coords += ','
coords += str(int((value_bbox[1] + page_coord[0]) / self.scale_y))
else:
coords += str(int((value_bbox[0][0] + page_coord[2]) / self.scale_x))
coords += ','
coords += str(int((value_bbox[0][1] + page_coord[0]) / self.scale_y))
coords=coords + ' '
return coords[:-1]

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,115 +1,67 @@
from os import environ
from pathlib import Path
import pytest
import logging
from PIL import Image
from eynollah.cli import (
layout as layout_cli,
binarization as binarization_cli,
enhancement as enhancement_cli,
machine_based_reading_order as mbreorder_cli,
ocr as ocr_cli,
)
from eynollah.cli import layout as layout_cli, binarization as binarization_cli
from click.testing import CliRunner
from ocrd_modelfactory import page_from_file
from ocrd_models.constants import NAMESPACES as NS
testdir = Path(__file__).parent.resolve()
MODELS_LAYOUT = environ.get('MODELS_LAYOUT', str(testdir.joinpath('..', 'models_layout_v0_5_0').resolve()))
MODELS_OCR = environ.get('MODELS_OCR', str(testdir.joinpath('..', 'models_ocr_v0_5_1').resolve()))
MODELS_BIN = environ.get('MODELS_BIN', str(testdir.joinpath('..', 'default-2021-03-09').resolve()))
EYNOLLAH_MODELS = environ.get('EYNOLLAH_MODELS', str(testdir.joinpath('..', 'models_eynollah').resolve()))
SBBBIN_MODELS = environ.get('SBBBIN_MODELS', str(testdir.joinpath('..', 'default-2021-03-09').resolve()))
@pytest.mark.parametrize(
"options",
[
def test_run_eynollah_layout_filename(tmp_path, subtests, pytestconfig, caplog):
infile = testdir.joinpath('resources/kant_aufklaerung_1784_0020.tif')
outfile = tmp_path / 'kant_aufklaerung_1784_0020.xml'
args = [
'-m', EYNOLLAH_MODELS,
'-i', str(infile),
'-o', str(outfile.parent),
# subtests write to same location
'--overwrite',
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'eynollah'
runner = CliRunner()
for options in [
[], # defaults
#["--allow_scaling", "--curved-line"],
["--allow_scaling", "--curved-line"],
["--allow_scaling", "--curved-line", "--full-layout"],
["--allow_scaling", "--curved-line", "--full-layout", "--reading_order_machine_based"],
["--allow_scaling", "--curved-line", "--full-layout", "--reading_order_machine_based",
"--textline_light", "--light_version"],
# -ep ...
# -eoi ...
# FIXME: find out whether OCR extra was installed, otherwise skip these
["--do_ocr"],
["--do_ocr", "--light_version", "--textline_light"],
["--do_ocr", "--transformer_ocr"],
#["--do_ocr", "--transformer_ocr", "--light_version", "--textline_light"],
["--do_ocr", "--transformer_ocr", "--light_version", "--textline_light", "--full-layout"],
# --do_ocr
# --skip_layout_and_reading_order
], ids=str)
def test_run_eynollah_layout_filename(tmp_path, pytestconfig, caplog, options):
infile = testdir.joinpath('resources/kant_aufklaerung_1784_0020.tif')
outfile = tmp_path / 'kant_aufklaerung_1784_0020.xml'
args = [
'-m', MODELS_LAYOUT,
'-i', str(infile),
'-o', str(outfile.parent),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'eynollah'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(layout_cli, args + options, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
assert str(infile) in logmsgs
assert outfile.exists()
tree = page_from_file(str(outfile)).etree
regions = tree.xpath("//page:TextRegion", namespaces=NS)
assert len(regions) >= 2, "result is inaccurate"
regions = tree.xpath("//page:SeparatorRegion", namespaces=NS)
assert len(regions) >= 2, "result is inaccurate"
lines = tree.xpath("//page:TextLine", namespaces=NS)
assert len(lines) == 31, "result is inaccurate" # 29 paragraph lines, 1 page and 1 catch-word line
@pytest.mark.parametrize(
"options",
[
["--tables"],
["--tables", "--full-layout"],
["--tables", "--full-layout", "--textline_light", "--light_version"],
], ids=str)
def test_run_eynollah_layout_filename2(tmp_path, pytestconfig, caplog, options):
infile = testdir.joinpath('resources/euler_rechenkunst01_1738_0025.tif')
outfile = tmp_path / 'euler_rechenkunst01_1738_0025.xml'
args = [
'-m', MODELS_LAYOUT,
'-i', str(infile),
'-o', str(outfile.parent),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'eynollah'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(layout_cli, args + options, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
assert str(infile) in logmsgs
assert outfile.exists()
tree = page_from_file(str(outfile)).etree
regions = tree.xpath("//page:TextRegion", namespaces=NS)
assert len(regions) >= 2, "result is inaccurate"
regions = tree.xpath("//page:TableRegion", namespaces=NS)
# model/decoding is not very precise, so (depending on mode) we can get fractures/splits/FP
assert len(regions) >= 1, "result is inaccurate"
regions = tree.xpath("//page:SeparatorRegion", namespaces=NS)
assert len(regions) >= 2, "result is inaccurate"
lines = tree.xpath("//page:TextLine", namespaces=NS)
assert len(lines) >= 2, "result is inaccurate" # mostly table (if detected correctly), but 1 page and 1 catch-word line
]:
with subtests.test(#msg="test CLI",
options=options):
with caplog.filtering(only_eynollah):
result = runner.invoke(layout_cli, args + options, catch_exceptions=False)
print(result)
assert result.exit_code == 0
logmsgs = [logrec.message for logrec in caplog.records]
assert str(infile) in logmsgs
assert outfile.exists()
tree = page_from_file(str(outfile)).etree
regions = tree.xpath("//page:TextRegion", namespaces=NS)
assert len(regions) >= 2, "result is inaccurate"
regions = tree.xpath("//page:SeparatorRegion", namespaces=NS)
assert len(regions) >= 2, "result is inaccurate"
lines = tree.xpath("//page:TextLine", namespaces=NS)
assert len(lines) == 31, "result is inaccurate" # 29 paragraph lines, 1 page and 1 catch-word line
def test_run_eynollah_layout_directory(tmp_path, pytestconfig, caplog):
indir = testdir.joinpath('resources')
outdir = tmp_path
args = [
'-m', MODELS_LAYOUT,
'-m', EYNOLLAH_MODELS,
'-di', str(indir),
'-o', str(outdir),
]
@ -120,232 +72,61 @@ def test_run_eynollah_layout_directory(tmp_path, pytestconfig, caplog):
return logrec.name == 'eynollah'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(layout_cli, args, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
result = runner.invoke(layout_cli, args)
print(result)
assert result.exit_code == 0
logmsgs = [logrec.message for logrec in caplog.records]
assert len([logmsg for logmsg in logmsgs if logmsg.startswith('Job done in')]) == 2
assert any(logmsg for logmsg in logmsgs if logmsg.startswith('All jobs done in'))
assert len(list(outdir.iterdir())) == 2
@pytest.mark.parametrize(
"options",
[
[], # defaults
["--no-patches"],
], ids=str)
def test_run_eynollah_binarization_filename(tmp_path, pytestconfig, caplog, options):
def test_run_eynollah_binarization_filename(tmp_path, subtests, pytestconfig, caplog):
infile = testdir.joinpath('resources/kant_aufklaerung_1784_0020.tif')
outfile = tmp_path.joinpath('kant_aufklaerung_1784_0020.png')
args = [
'-m', MODELS_BIN,
'-i', str(infile),
'-o', str(outfile),
'-m', SBBBIN_MODELS,
str(infile),
str(outfile),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'SbbBinarizer'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(binarization_cli, args + options, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
assert any(True for logmsg in logmsgs if logmsg.startswith('Predicting'))
assert outfile.exists()
with Image.open(infile) as original_img:
original_size = original_img.size
with Image.open(outfile) as binarized_img:
binarized_size = binarized_img.size
assert original_size == binarized_size
for options in [
[], # defaults
["--no-patches"],
]:
with subtests.test(#msg="test CLI",
options=options):
with caplog.filtering(only_eynollah):
result = runner.invoke(binarization_cli, args + options)
print(result)
assert result.exit_code == 0
logmsgs = [logrec.message for logrec in caplog.records]
assert any(True for logmsg in logmsgs if logmsg.startswith('Predicting'))
assert outfile.exists()
with Image.open(infile) as original_img:
original_size = original_img.size
with Image.open(outfile) as binarized_img:
binarized_size = binarized_img.size
assert original_size == binarized_size
def test_run_eynollah_binarization_directory(tmp_path, pytestconfig, caplog):
def test_run_eynollah_binarization_directory(tmp_path, subtests, pytestconfig, caplog):
indir = testdir.joinpath('resources')
outdir = tmp_path
args = [
'-m', MODELS_BIN,
'-m', SBBBIN_MODELS,
'-di', str(indir),
'-o', str(outdir),
'-do', str(outdir),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'SbbBinarizer'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(binarization_cli, args, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
result = runner.invoke(binarization_cli, args)
print(result)
assert result.exit_code == 0
logmsgs = [logrec.message for logrec in caplog.records]
assert len([logmsg for logmsg in logmsgs if logmsg.startswith('Predicting')]) == 2
assert len(list(outdir.iterdir())) == 2
@pytest.mark.parametrize(
"options",
[
[], # defaults
["-sos"],
], ids=str)
def test_run_eynollah_enhancement_filename(tmp_path, pytestconfig, caplog, options):
infile = testdir.joinpath('resources/kant_aufklaerung_1784_0020.tif')
outfile = tmp_path.joinpath('kant_aufklaerung_1784_0020.png')
args = [
'-m', MODELS_LAYOUT,
'-i', str(infile),
'-o', str(outfile.parent),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'enhancement'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(enhancement_cli, args + options, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
assert any(True for logmsg in logmsgs if logmsg.startswith('Image was enhanced')), logmsgs
assert outfile.exists()
with Image.open(infile) as original_img:
original_size = original_img.size
with Image.open(outfile) as enhanced_img:
enhanced_size = enhanced_img.size
assert (original_size == enhanced_size) == ("-sos" in options)
def test_run_eynollah_enhancement_directory(tmp_path, pytestconfig, caplog):
indir = testdir.joinpath('resources')
outdir = tmp_path
args = [
'-m', MODELS_LAYOUT,
'-di', str(indir),
'-o', str(outdir),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'enhancement'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(enhancement_cli, args, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
assert len([logmsg for logmsg in logmsgs if logmsg.startswith('Image was enhanced')]) == 2
assert len(list(outdir.iterdir())) == 2
def test_run_eynollah_mbreorder_filename(tmp_path, pytestconfig, caplog):
infile = testdir.joinpath('resources/kant_aufklaerung_1784_0020.xml')
outfile = tmp_path.joinpath('kant_aufklaerung_1784_0020.xml')
args = [
'-m', MODELS_LAYOUT,
'-i', str(infile),
'-o', str(outfile.parent),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'mbreorder'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(mbreorder_cli, args, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
# FIXME: mbreorder has no logging!
#assert any(True for logmsg in logmsgs if logmsg.startswith('???')), logmsgs
assert outfile.exists()
#in_tree = page_from_file(str(infile)).etree
#in_order = in_tree.xpath("//page:OrderedGroup//@regionRef", namespaces=NS)
out_tree = page_from_file(str(outfile)).etree
out_order = out_tree.xpath("//page:OrderedGroup//@regionRef", namespaces=NS)
#assert len(out_order) >= 2, "result is inaccurate"
#assert in_order != out_order
assert out_order == ['r_1_1', 'r_2_1', 'r_2_2', 'r_2_3']
def test_run_eynollah_mbreorder_directory(tmp_path, pytestconfig, caplog):
indir = testdir.joinpath('resources')
outdir = tmp_path
args = [
'-m', MODELS_LAYOUT,
'-di', str(indir),
'-o', str(outdir),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'mbreorder'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(mbreorder_cli, args, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
# FIXME: mbreorder has no logging!
#assert len([logmsg for logmsg in logmsgs if logmsg.startswith('???')]) == 2
assert len(list(outdir.iterdir())) == 2
@pytest.mark.parametrize(
"options",
[
[], # defaults
["-doit", #str(outrenderfile.parent)],
],
["-trocr"],
], ids=str)
def test_run_eynollah_ocr_filename(tmp_path, pytestconfig, caplog, options):
infile = testdir.joinpath('resources/kant_aufklaerung_1784_0020.tif')
outfile = tmp_path.joinpath('kant_aufklaerung_1784_0020.xml')
outrenderfile = tmp_path.joinpath('render').joinpath('kant_aufklaerung_1784_0020.png')
outrenderfile.parent.mkdir()
args = [
'-m', MODELS_OCR,
'-i', str(infile),
'-dx', str(infile.parent),
'-o', str(outfile.parent),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.DEBUG)
def only_eynollah(logrec):
return logrec.name == 'eynollah'
runner = CliRunner()
if "-doit" in options:
options.insert(options.index("-doit") + 1, str(outrenderfile.parent))
with caplog.filtering(only_eynollah):
result = runner.invoke(ocr_cli, args + options, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
# FIXME: ocr has no logging!
#assert any(True for logmsg in logmsgs if logmsg.startswith('???')), logmsgs
assert outfile.exists()
if "-doit" in options:
assert outrenderfile.exists()
#in_tree = page_from_file(str(infile)).etree
#in_order = in_tree.xpath("//page:OrderedGroup//@regionRef", namespaces=NS)
out_tree = page_from_file(str(outfile)).etree
out_texts = out_tree.xpath("//page:TextLine/page:TextEquiv[last()]/page:Unicode/text()", namespaces=NS)
assert len(out_texts) >= 2, ("result is inaccurate", out_texts)
assert sum(map(len, out_texts)) > 100, ("result is inaccurate", out_texts)
def test_run_eynollah_ocr_directory(tmp_path, pytestconfig, caplog):
indir = testdir.joinpath('resources')
outdir = tmp_path
args = [
'-m', MODELS_OCR,
'-di', str(indir),
'-dx', str(indir),
'-o', str(outdir),
]
if pytestconfig.getoption('verbose') > 0:
args.extend(['-l', 'DEBUG'])
caplog.set_level(logging.INFO)
def only_eynollah(logrec):
return logrec.name == 'eynollah'
runner = CliRunner()
with caplog.filtering(only_eynollah):
result = runner.invoke(ocr_cli, args, catch_exceptions=False)
assert result.exit_code == 0, result.stdout
logmsgs = [logrec.message for logrec in caplog.records]
# FIXME: ocr has no logging!
#assert any(True for logmsg in logmsgs if logmsg.startswith('???')), logmsgs
assert len(list(outdir.iterdir())) == 2

View file

@ -2,5 +2,6 @@ def test_utils_import():
import eynollah.utils
import eynollah.utils.contour
import eynollah.utils.drop_capitals
import eynollah.utils.drop_capitals
import eynollah.utils.is_nan
import eynollah.utils.rotate

View file

View file

@ -1,29 +0,0 @@
# Use NVIDIA base image
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
# Set the working directory
WORKDIR /app
# Set environment variable for GitPython
ENV GIT_PYTHON_REFRESH=quiet
# Install Python and pip
RUN apt-get update && apt-get install -y --fix-broken && \
apt-get install -y \
python3 \
python3-pip \
python3-distutils \
python3-setuptools \
python3-wheel && \
rm -rf /var/lib/apt/lists/*
# Copy and install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application
COPY . .
# Specify the entry point
CMD ["python3", "train.py", "with", "config_params_docker.json"]

View file

@ -1,59 +0,0 @@
# Training eynollah
This README explains the technical details of how to set up and run training, for detailed information on parameterization, see [`docs/train.md`](../docs/train.md)
## Introduction
This folder contains the source code for training an encoder model for document image segmentation.
## Installation
Clone the repository and install eynollah along with the dependencies necessary for training:
```sh
git clone https://github.com/qurator-spk/eynollah
cd eynollah
pip install '.[training]'
```
### Pretrained encoder
Download our pretrained weights and add them to a `train/pretrained_model` folder:
```sh
cd train
wget -O pretrained_model.tar.gz https://zenodo.org/records/17243320/files/pretrained_model_v0_5_1.tar.gz?download=1
tar xf pretrained_model.tar.gz
```
### Binarization training data
A small sample of training data for binarization experiment can be found [on
zenodo](https://zenodo.org/records/17243320/files/training_data_sample_binarization_v0_5_1.tar.gz?download=1),
which contains `images` and `labels` folders.
### Helpful tools
* [`pagexml2img`](https://github.com/qurator-spk/page2img)
> Tool to extract 2-D or 3-D RGB images from PAGE-XML data. In the former case, the output will be 1 2-D image array which each class has filled with a pixel value. In the case of a 3-D RGB image,
each class will be defined with a RGB value and beside images, a text file of classes will also be produced.
* [`cocoSegmentationToPng`](https://github.com/nightrome/cocostuffapi/blob/17acf33aef3c6cc2d6aca46dcf084266c2778cf0/PythonAPI/pycocotools/cocostuffhelper.py#L130)
> Convert COCO GT or results for a single image to a segmentation map and write it to disk.
* [`ocrd-segment-extract-pages`](https://github.com/OCR-D/ocrd_segment/blob/master/ocrd_segment/extract_pages.py)
> Extract region classes and their colours in mask (pseg) images. Allows the color map as free dict parameter, and comes with a default that mimics PageViewer's coloring for quick debugging; it also warns when regions do overlap.
### Train using Docker
Build the Docker image:
```bash
cd train
docker build -t model-training .
```
Run Docker image
```bash
cd train
docker run --gpus all -v $PWD:/entry_point_dir model-training
```

View file

@ -1,58 +0,0 @@
{
"backbone_type" : "transformer",
"task": "segmentation",
"n_classes" : 2,
"n_epochs" : 0,
"input_height" : 448,
"input_width" : 448,
"weight_decay" : 1e-6,
"n_batch" : 1,
"learning_rate": 1e-4,
"patches" : false,
"pretraining" : true,
"augmentation" : true,
"flip_aug" : false,
"blur_aug" : false,
"scaling" : false,
"adding_rgb_background": true,
"adding_rgb_foreground": true,
"add_red_textlines": false,
"channels_shuffling": false,
"degrading": false,
"brightening": false,
"binarization" : true,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": false,
"transformer_num_patches_xy": [56, 56],
"transformer_patchsize_x": 4,
"transformer_patchsize_y": 4,
"transformer_projection_dim": 64,
"transformer_mlp_head_units": [128, 64],
"transformer_layers": 1,
"transformer_num_heads": 1,
"transformer_cnn_first": false,
"blur_k" : ["blur","guass","median"],
"scales" : [0.6, 0.7, 0.8, 0.9],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"shuffle_indexes" : [ [0,2,1], [1,2,0], [1,0,2] , [2,1,0]],
"thetha" : [5, -5],
"number_of_backgrounds_per_image": 2,
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": false,
"data_is_provided": false,
"dir_train": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/train_new",
"dir_eval": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/eval_new",
"dir_output": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/output_new",
"dir_rgb_backgrounds": "/home/vahid/Documents/1_2_test_eynollah/set_rgb_background",
"dir_rgb_foregrounds": "/home/vahid/Documents/1_2_test_eynollah/out_set_rgb_foreground",
"dir_img_bin": "/home/vahid/Documents/test/sbb_pixelwise_segmentation/test_label/pageextractor_test/train_new/images_bin"
}

View file

@ -1,54 +0,0 @@
{
"backbone_type" : "nontransformer",
"task": "segmentation",
"n_classes" : 3,
"n_epochs" : 1,
"input_height" : 672,
"input_width" : 448,
"weight_decay" : 1e-6,
"n_batch" : 4,
"learning_rate": 1e-4,
"patches" : false,
"pretraining" : true,
"augmentation" : false,
"flip_aug" : false,
"blur_aug" : true,
"scaling" : true,
"adding_rgb_background": false,
"adding_rgb_foreground": false,
"add_red_textlines": false,
"channels_shuffling": true,
"degrading": true,
"brightening": true,
"binarization" : false,
"scaling_bluring" : false,
"scaling_binarization" : false,
"scaling_flip" : false,
"rotation": false,
"rotation_not_90": true,
"transformer_num_patches_xy": [14, 21],
"transformer_patchsize_x": 1,
"transformer_patchsize_y": 1,
"transformer_projection_dim": 64,
"transformer_mlp_head_units": [128, 64],
"transformer_layers": 1,
"transformer_num_heads": 1,
"transformer_cnn_first": true,
"blur_k" : ["blur","gauss","median"],
"scales" : [0.6, 0.7, 0.8, 0.9],
"brightness" : [1.3, 1.5, 1.7, 2],
"degrade_scales" : [0.2, 0.4],
"flip_index" : [0, 1, -1],
"shuffle_indexes" : [ [0,2,1], [1,2,0], [1,0,2] , [2,1,0]],
"thetha" : [5, -5],
"number_of_backgrounds_per_image": 2,
"continue_training": false,
"index_start" : 0,
"dir_of_start_model" : " ",
"weighted_loss": false,
"is_loss_soft_dice": true,
"data_is_provided": false,
"dir_train": "/entry_point_dir/train",
"dir_eval": "/entry_point_dir/eval",
"dir_output": "/entry_point_dir/output"
}

View file

@ -1,8 +0,0 @@
{
"use_case": "textline",
"textregions":{ "rest_as_paragraph": 1, "header":2 , "heading":2 , "marginalia":3 },
"imageregion":4,
"separatorregion":5,
"graphicregions" :{"rest_as_decoration":6},
"columns_width":{"1":1000, "2":1300, "3":1600, "4":2000, "5":2300, "6":2500}
}

View file

@ -1,6 +0,0 @@
sacred
seaborn
numpy <1.24.0
tqdm
imutils
scipy

View file

@ -1,3 +0,0 @@
{
"scales" : [ 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]
}