import cv2 import numpy as np from shapely import geometry from .rotate import rotate_image, rotation_image_new from multiprocessing import Process, Queue, cpu_count from multiprocessing import Pool def contours_in_same_horizon(cy_main_hor): X1 = np.zeros((len(cy_main_hor), len(cy_main_hor))) X2 = np.zeros((len(cy_main_hor), len(cy_main_hor))) X1[0::1, :] = cy_main_hor[:] X2 = X1.T X_dif = np.abs(X2 - X1) args_help = np.array(range(len(cy_main_hor))) all_args = [] for i in range(len(cy_main_hor)): list_h = list(args_help[X_dif[i, :] <= 20]) list_h.append(i) if len(list_h) > 1: all_args.append(list(set(list_h))) return np.unique(np.array(all_args, dtype=object)) def find_contours_mean_y_diff(contours_main): M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))] cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] return np.mean(np.diff(np.sort(np.array(cy_main)))) def get_text_region_boxes_by_given_contours(contours): kernel = np.ones((5, 5), np.uint8) boxes = [] contours_new = [] for jj in range(len(contours)): x, y, w, h = cv2.boundingRect(contours[jj]) boxes.append([x, y, w, h]) contours_new.append(contours[jj]) del contours return boxes, contours_new def filter_contours_area_of_image(image, contours, hierarchy, max_area, min_area): found_polygons_early = list() jv = 0 for c in contours: if len(c) < 3: # A polygon cannot have less than 3 points continue polygon = geometry.Polygon([point[0] for point in c]) area = polygon.area if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and hierarchy[0][jv][3] == -1: # and hierarchy[0][jv][3]==-1 : found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.uint)) jv += 1 return found_polygons_early def filter_contours_area_of_image_tables(image, contours, hierarchy, max_area, min_area): found_polygons_early = list() jv = 0 for c in contours: if len(c) < 3: # A polygon cannot have less than 3 points continue polygon = geometry.Polygon([point[0] for point in c]) # area = cv2.contourArea(c) area = polygon.area ##print(np.prod(thresh.shape[:2])) # Check that polygon has area greater than minimal area # print(hierarchy[0][jv][3],hierarchy ) if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]): # and hierarchy[0][jv][3]==-1 : # print(c[0][0][1]) found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.int32)) jv += 1 return found_polygons_early def find_new_features_of_contours(contours_main): areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))]) M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))] cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] try: x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))]) argmin_x_main = np.array([np.argmin(contours_main[j][:, 0, 0]) for j in range(len(contours_main))]) x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 0] for j in range(len(contours_main))]) y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 1] for j in range(len(contours_main))]) x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))]) y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))]) y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))]) except: x_min_main = np.array([np.min(contours_main[j][:, 0]) for j in range(len(contours_main))]) argmin_x_main = np.array([np.argmin(contours_main[j][:, 0]) for j in range(len(contours_main))]) x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0] for j in range(len(contours_main))]) y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 1] for j in range(len(contours_main))]) x_max_main = np.array([np.max(contours_main[j][:, 0]) for j in range(len(contours_main))]) y_min_main = np.array([np.min(contours_main[j][:, 1]) for j in range(len(contours_main))]) y_max_main = np.array([np.max(contours_main[j][:, 1]) for j in range(len(contours_main))]) # dis_x=np.abs(x_max_main-x_min_main) return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin def find_features_of_contours(contours_main): areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))]) M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))] cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))] cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))] x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))]) x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))]) y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))]) y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))]) return y_min_main, y_max_main def return_parent_contours(contours, hierarchy): contours_parent = [contours[i] for i in range(len(contours)) if hierarchy[0][i][3] == -1] return contours_parent def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 else: cnts_images = (region_pre_p[:, :] == pixel) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_imgs = return_parent_contours(contours_imgs, hierarchy) contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=min_area) return contours_imgs def do_work_of_contours_in_image(queue_of_all_params, contours_per_process, indexes_r_con_per_pro, img, slope_first): cnts_org_per_each_subprocess = [] index_by_text_region_contours = [] for mv in range(len(contours_per_process)): index_by_text_region_contours.append(indexes_r_con_per_pro[mv]) img_copy = np.zeros(img.shape) img_copy = cv2.fillPoly(img_copy, pts=[contours_per_process[mv]], color=(1, 1, 1)) img_copy = rotation_image_new(img_copy, -slope_first) img_copy = img_copy.astype(np.uint8) imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) cnts_org_per_each_subprocess.append(cont_int[0]) queue_of_all_params.put([ cnts_org_per_each_subprocess, index_by_text_region_contours]) def get_textregion_contours_in_org_image_multi(cnts, img, slope_first): num_cores = cpu_count() queue_of_all_params = Queue() processes = [] nh = np.linspace(0, len(cnts), num_cores + 1) indexes_by_text_con = np.array(range(len(cnts))) for i in range(num_cores): contours_per_process = cnts[int(nh[i]) : int(nh[i + 1])] indexes_text_con_per_process = indexes_by_text_con[int(nh[i]) : int(nh[i + 1])] processes.append(Process(target=do_work_of_contours_in_image, args=(queue_of_all_params, contours_per_process, indexes_text_con_per_process, img,slope_first ))) for i in range(num_cores): processes[i].start() cnts_org = [] all_index_text_con = [] for i in range(num_cores): list_all_par = queue_of_all_params.get(True) contours_for_sub_process = list_all_par[0] indexes_for_sub_process = list_all_par[1] for j in range(len(contours_for_sub_process)): cnts_org.append(contours_for_sub_process[j]) all_index_text_con.append(indexes_for_sub_process[j]) for i in range(num_cores): processes[i].join() print(all_index_text_con) return cnts_org def loop_contour_image(index_l, cnts,img, slope_first): img_copy = np.zeros(img.shape) img_copy = cv2.fillPoly(img_copy, pts=[cnts[index_l]], color=(1, 1, 1)) # plt.imshow(img_copy) # plt.show() # print(img.shape,'img') img_copy = rotation_image_new(img_copy, -slope_first) ##print(img_copy.shape,'img_copy') # plt.imshow(img_copy) # plt.show() img_copy = img_copy.astype(np.uint8) imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) # print(np.shape(cont_int[0])) return cont_int[0] def get_textregion_contours_in_org_image_multi2(cnts, img, slope_first): cnts_org = [] # print(cnts,'cnts') with Pool(cpu_count()) as p: cnts_org = p.starmap(loop_contour_image, [(index_l,cnts, img,slope_first) for index_l in range(len(cnts))]) print(len(cnts_org),'lendiha') return cnts_org def get_textregion_contours_in_org_image(cnts, img, slope_first): cnts_org = [] # print(cnts,'cnts') for i in range(len(cnts)): img_copy = np.zeros(img.shape) img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1)) # plt.imshow(img_copy) # plt.show() # print(img.shape,'img') img_copy = rotation_image_new(img_copy, -slope_first) ##print(img_copy.shape,'img_copy') # plt.imshow(img_copy) # plt.show() img_copy = img_copy.astype(np.uint8) imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) # print(np.shape(cont_int[0])) cnts_org.append(cont_int[0]) return cnts_org def get_textregion_contours_in_org_image_light(cnts, img, slope_first): h_o = img.shape[0] w_o = img.shape[1] img = cv2.resize(img, (int(img.shape[1]/3.), int(img.shape[0]/3.)), interpolation=cv2.INTER_NEAREST) ##cnts = list( (np.array(cnts)/2).astype(np.int16) ) #cnts = cnts/2 cnts = [(i/ 3).astype(np.int32) for i in cnts] cnts_org = [] #print(cnts,'cnts') for i in range(len(cnts)): img_copy = np.zeros(img.shape) img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1)) # plt.imshow(img_copy) # plt.show() # print(img.shape,'img') img_copy = rotation_image_new(img_copy, -slope_first) ##print(img_copy.shape,'img_copy') # plt.imshow(img_copy) # plt.show() img_copy = img_copy.astype(np.uint8) imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1]) cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0]) # print(np.shape(cont_int[0])) cnts_org.append(cont_int[0]*3) return cnts_org def return_contours_of_interested_textline(region_pre_p, pixel): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 else: cnts_images = (region_pre_p[:, :] == pixel) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_imgs = return_parent_contours(contours_imgs, hierarchy) contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=0.000000003) return contours_imgs def return_contours_of_image(image): if len(image.shape) == 2: image = np.repeat(image[:, :, np.newaxis], 3, axis=2) image = image.astype(np.uint8) else: image = image.astype(np.uint8) imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours, hierarchy def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 else: cnts_images = (region_pre_p[:, :] == pixel) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_imgs = return_parent_contours(contours_imgs, hierarchy) contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=1, min_area=min_size) return contours_imgs def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area): # pixels of images are identified by 5 if len(region_pre_p.shape) == 3: cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 else: cnts_images = (region_pre_p[:, :] == pixel) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_imgs = return_parent_contours(contours_imgs, hierarchy) contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hierarchy, max_area=max_area, min_area=min_area) img_ret = np.zeros((region_pre_p.shape[0], region_pre_p.shape[1], 3)) img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1)) return img_ret[:, :, 0]