""" Unused methods from eynollah """ import numpy as np from shapely import geometry import cv2 def color_images_diva(seg, n_classes): """ XXX unused """ ann_u = range(n_classes) if len(np.shape(seg)) == 3: seg = seg[:, :, 0] seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(float) # colors=sns.color_palette("hls", n_classes) colors = [[1, 0, 0], [8, 0, 0], [2, 0, 0], [4, 0, 0]] for c in ann_u: c = int(c) segl = seg == c seg_img[:, :, 0][seg == c] = colors[c][0] # segl*(colors[c][0]) seg_img[:, :, 1][seg == c] = colors[c][1] # seg_img[:,:,1]=segl*(colors[c][1]) seg_img[:, :, 2][seg == c] = colors[c][2] # seg_img[:,:,2]=segl*(colors[c][2]) return seg_img def find_polygons_size_filter(contours, median_area, scaler_up=1.2, scaler_down=0.8): """ XXX unused """ found_polygons_early = list() for c in contours: if len(c) < 3: # A polygon cannot have less than 3 points continue polygon = geometry.Polygon([point[0] for point in c]) area = polygon.area # Check that polygon has area greater than minimal area if area >= median_area * scaler_down and area <= median_area * scaler_up: found_polygons_early.append(np.array([point for point in polygon.exterior.coords], dtype=np.uint)) return found_polygons_early def resize_ann(seg_in, input_height, input_width): """ XXX unused """ return cv2.resize(seg_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST) def get_one_hot(seg, input_height, input_width, n_classes): seg = seg[:, :, 0] seg_f = np.zeros((input_height, input_width, n_classes)) for j in range(n_classes): seg_f[:, :, j] = (seg == j).astype(int) return seg_f def color_images(seg, n_classes): ann_u = range(n_classes) if len(np.shape(seg)) == 3: seg = seg[:, :, 0] seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(np.uint8) colors = sns.color_palette("hls", n_classes) for c in ann_u: c = int(c) segl = seg == c seg_img[:, :, 0] = segl * c seg_img[:, :, 1] = segl * c seg_img[:, :, 2] = segl * c return seg_img def cleaning_probs(probs, sigma): # Smooth if sigma > 0.0: return cv2.GaussianBlur(probs, (int(3 * sigma) * 2 + 1, int(3 * sigma) * 2 + 1), sigma) elif sigma == 0.0: return cv2.fastNlMeansDenoising((probs * 255).astype(np.uint8), h=20) / 255 else: # Negative sigma, do not do anything return probs def early_deskewing_slope_calculation_based_on_lines(region_pre_p): # lines are labels by 6 in this model seperators_closeup = ((region_pre_p[:, :, :] == 6)) * 1 seperators_closeup = seperators_closeup.astype(np.uint8) imgray = cv2.cvtColor(seperators_closeup, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_lines, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_lines) slope_lines_org_hor = slope_lines_org[slope_lines == 0] args = np.array(range(len(slope_lines))) len_x = seperators_closeup.shape[1] / 4.0 args_hor = args[slope_lines == 0] dist_x_hor = dist_x[slope_lines == 0] x_min_main_hor = x_min_main[slope_lines == 0] x_max_main_hor = x_max_main[slope_lines == 0] cy_main_hor = cy_main[slope_lines == 0] args_hor = args_hor[dist_x_hor >= len_x / 2.0] x_max_main_hor = x_max_main_hor[dist_x_hor >= len_x / 2.0] x_min_main_hor = x_min_main_hor[dist_x_hor >= len_x / 2.0] cy_main_hor = cy_main_hor[dist_x_hor >= len_x / 2.0] slope_lines_org_hor = slope_lines_org_hor[dist_x_hor >= len_x / 2.0] slope_lines_org_hor = slope_lines_org_hor[np.abs(slope_lines_org_hor) < 1.2] slope_mean_hor = np.mean(slope_lines_org_hor) if np.abs(slope_mean_hor) > 1.2: slope_mean_hor = 0 # deskewed_new=rotate_image(image_regions_eraly_p[:,:,:],slope_mean_hor) args_ver = args[slope_lines == 1] y_min_main_ver = y_min_main[slope_lines == 1] y_max_main_ver = y_max_main[slope_lines == 1] x_min_main_ver = x_min_main[slope_lines == 1] x_max_main_ver = x_max_main[slope_lines == 1] cx_main_ver = cx_main[slope_lines == 1] dist_y_ver = y_max_main_ver - y_min_main_ver len_y = seperators_closeup.shape[0] / 3.0 return slope_mean_hor, cx_main_ver, dist_y_ver def boosting_text_only_regions_by_header(textregion_pre_np, img_only_text): result = ((img_only_text[:, :] == 1) | (textregion_pre_np[:, :, 0] == 2)) * 1 return result def return_rotated_contours(slope, img_patch): dst = rotate_image(img_patch, slope) dst = dst.astype(np.uint8) dst = dst[:, :, 0] dst[dst != 0] = 1 imgray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(imgray, 0, 255, 0) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) return contours def get_textlines_for_each_textregions(self, textline_mask_tot, boxes): textline_mask_tot = cv2.erode(textline_mask_tot, self.kernel, iterations=1) self.area_of_cropped = [] self.all_text_region_raw = [] for jk in range(len(boxes)): crop_img, crop_coor = crop_image_inside_box(boxes[jk], np.repeat(textline_mask_tot[:, :, np.newaxis], 3, axis=2)) crop_img = crop_img.astype(np.uint8) self.all_text_region_raw.append(crop_img[:, :, 0]) self.area_of_cropped.append(crop_img.shape[0] * crop_img.shape[1]) def deskew_region_prediction(regions_prediction, slope): image_regions_deskewd = np.zeros(regions_prediction[:, :].shape) for ind in np.unique(regions_prediction[:, :]): interest_reg = (regions_prediction[:, :] == ind) * 1 interest_reg = interest_reg.astype(np.uint8) deskewed_new = rotate_image(interest_reg, slope) deskewed_new = deskewed_new[:, :] deskewed_new[deskewed_new != 0] = ind image_regions_deskewd = image_regions_deskewd + deskewed_new return image_regions_deskewd def deskew_erarly(textline_mask): textline_mask_org = np.copy(textline_mask) # print(textline_mask.shape,np.unique(textline_mask),'hizzzzz') # slope_new=0#deskew_images(img_patch) textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255 textline_mask = textline_mask.astype(np.uint8) kernel = np.ones((5, 5), np.uint8) imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # print(hirarchy) commenst_contours = filter_contours_area_of_image(thresh, contours, hirarchy, max_area=0.01, min_area=0.003) main_contours = filter_contours_area_of_image(thresh, contours, hirarchy, max_area=1, min_area=0.003) interior_contours = filter_contours_area_of_image_interiors(thresh, contours, hirarchy, max_area=1, min_area=0) img_comm = np.zeros(thresh.shape) img_comm_in = cv2.fillPoly(img_comm, pts=main_contours, color=(255, 255, 255)) ###img_comm_in=cv2.fillPoly(img_comm, pts =interior_contours, color=(0,0,0)) img_comm_in = np.repeat(img_comm_in[:, :, np.newaxis], 3, axis=2) img_comm_in = img_comm_in.astype(np.uint8) imgray = cv2.cvtColor(img_comm_in, cv2.COLOR_BGR2GRAY) ##imgray = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) ##mask = cv2.inRange(imgray, lower_blue, upper_blue) ret, thresh = cv2.threshold(imgray, 0, 255, 0) # print(np.unique(mask)) ##ret, thresh = cv2.threshold(imgray, 0, 255, 0) ##plt.imshow(thresh) ##plt.show() contours, hirarchy = cv2.findContours(thresh.copy(), cv2.cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) areas = [cv2.contourArea(contours[jj]) for jj in range(len(contours))] median_area = np.mean(areas) contours_slope = contours # self.find_polugons_size_filter(contours,median_area=median_area,scaler_up=100,scaler_down=0.5) if len(contours_slope) > 0: for jv in range(len(contours_slope)): new_poly = list(contours_slope[jv]) if jv == 0: merged_all = new_poly else: merged_all = merged_all + new_poly merge = np.array(merged_all) img_in = np.zeros(textline_mask.shape) img_p_in = cv2.fillPoly(img_in, pts=[merge], color=(255, 255, 255)) ##plt.imshow(img_p_in) ##plt.show() rect = cv2.minAreaRect(merge) box = cv2.boxPoints(rect) box = np.int0(box) indexes = [0, 1, 2, 3] x_list = box[:, 0] y_list = box[:, 1] index_y_sort = np.argsort(y_list) index_upper_left = index_y_sort[np.argmin(x_list[index_y_sort[0:2]])] index_upper_right = index_y_sort[np.argmax(x_list[index_y_sort[0:2]])] index_lower_left = index_y_sort[np.argmin(x_list[index_y_sort[2:]]) + 2] index_lower_right = index_y_sort[np.argmax(x_list[index_y_sort[2:]]) + 2] alpha1 = float(box[index_upper_right][1] - box[index_upper_left][1]) / (float(box[index_upper_right][0] - box[index_upper_left][0])) alpha2 = float(box[index_lower_right][1] - box[index_lower_left][1]) / (float(box[index_lower_right][0] - box[index_lower_left][0])) slope_true = (alpha1 + alpha2) / 2.0 # slope=0#slope_true/np.pi*180 # if abs(slope)>=1: # slope=0 # dst=rotate_image(textline_mask,slope_true) # dst=dst[:,:,0] # dst[dst!=0]=1 image_regions_deskewd = np.zeros(textline_mask_org[:, :].shape) for ind in np.unique(textline_mask_org[:, :]): interest_reg = (textline_mask_org[:, :] == ind) * 1 interest_reg = interest_reg.astype(np.uint8) deskewed_new = rotate_image(interest_reg, slope_true) deskewed_new = deskewed_new[:, :] deskewed_new[deskewed_new != 0] = ind image_regions_deskewd = image_regions_deskewd + deskewed_new return image_regions_deskewd, slope_true def get_all_image_patches_coordination(self, image_page): self.all_box_coord = [] for jk in range(len(self.boxes)): _, crop_coor = crop_image_inside_box(self.boxes[jk], image_page) self.all_box_coord.append(crop_coor) def find_num_col_olddd(self, regions_without_seperators, sigma_, multiplier=3.8): regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=1) meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1] first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0) last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0) last_nonzero = len(regions_without_seperators_0) - last_nonzero y = regions_without_seperators_0 # [first_nonzero:last_nonzero] y_help = np.zeros(len(y) + 20) y_help[10 : len(y) + 10] = y x = np.array(range(len(y))) zneg_rev = -y_help + np.max(y_help) zneg = np.zeros(len(zneg_rev) + 20) zneg[10 : len(zneg_rev) + 10] = zneg_rev z = gaussian_filter1d(y, sigma_) zneg = gaussian_filter1d(zneg, sigma_) peaks_neg, _ = find_peaks(zneg, height=0) peaks, _ = find_peaks(z, height=0) peaks_neg = peaks_neg - 10 - 10 last_nonzero = last_nonzero - 0 # 100 first_nonzero = first_nonzero + 0 # +100 peaks_neg = peaks_neg[(peaks_neg > first_nonzero) & (peaks_neg < last_nonzero)] peaks = peaks[(peaks > 0.06 * regions_without_seperators.shape[1]) & (peaks < 0.94 * regions_without_seperators.shape[1])] interest_pos = z[peaks] interest_pos = interest_pos[interest_pos > 10] interest_neg = z[peaks_neg] if interest_neg[0] < 0.1: interest_neg = interest_neg[1:] if interest_neg[len(interest_neg) - 1] < 0.1: interest_neg = interest_neg[: len(interest_neg) - 1] min_peaks_pos = np.min(interest_pos) min_peaks_neg = 0 # np.min(interest_neg) dis_talaei = (min_peaks_pos - min_peaks_neg) / multiplier grenze = min_peaks_pos - dis_talaei # np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0 interest_neg_fin = interest_neg # [(interest_neg= top) & ((matrix_of_orders[:, 3] < down))] cxs_in = matrix_of_orders[:, 2][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))] sorted_inside = np.argsort(cxs_in) ind_in_int = indexes_in[sorted_inside] for j in range(len(ind_in_int)): final_indexers_sorted.append(int(ind_in_int[j])) return final_indexers_sorted, matrix_of_orders def remove_headers_and_mains_intersection(seperators_closeup_n, img_revised_tab, boxes): for ind in range(len(boxes)): asp = np.zeros((img_revised_tab[:, :, 0].shape[0], seperators_closeup_n[:, :, 0].shape[1])) asp[int(boxes[ind][2]) : int(boxes[ind][3]), int(boxes[ind][0]) : int(boxes[ind][1])] = img_revised_tab[int(boxes[ind][2]) : int(boxes[ind][3]), int(boxes[ind][0]) : int(boxes[ind][1]), 0] head_patch_con = (asp[:, :] == 2) * 1 main_patch_con = (asp[:, :] == 1) * 1 # print(head_patch_con) head_patch_con = head_patch_con.astype(np.uint8) main_patch_con = main_patch_con.astype(np.uint8) head_patch_con = np.repeat(head_patch_con[:, :, np.newaxis], 3, axis=2) main_patch_con = np.repeat(main_patch_con[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(head_patch_con, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_head_patch_con, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_head_patch_con = return_parent_contours(contours_head_patch_con, hiearchy) imgray = cv2.cvtColor(main_patch_con, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_main_patch_con, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_main_patch_con = return_parent_contours(contours_main_patch_con, hiearchy) y_patch_head_min, y_patch_head_max, _ = find_features_of_contours(contours_head_patch_con) y_patch_main_min, y_patch_main_max, _ = find_features_of_contours(contours_main_patch_con) for i in range(len(y_patch_head_min)): for j in range(len(y_patch_main_min)): if y_patch_head_max[i] > y_patch_main_min[j] and y_patch_head_min[i] < y_patch_main_min[j]: y_down = y_patch_head_max[i] y_up = y_patch_main_min[j] patch_intersection = np.zeros(asp.shape) patch_intersection[y_up:y_down, :] = asp[y_up:y_down, :] head_patch_con = (patch_intersection[:, :] == 2) * 1 main_patch_con = (patch_intersection[:, :] == 1) * 1 head_patch_con = head_patch_con.astype(np.uint8) main_patch_con = main_patch_con.astype(np.uint8) head_patch_con = np.repeat(head_patch_con[:, :, np.newaxis], 3, axis=2) main_patch_con = np.repeat(main_patch_con[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(head_patch_con, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_head_patch_con, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_head_patch_con = return_parent_contours(contours_head_patch_con, hiearchy) imgray = cv2.cvtColor(main_patch_con, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_main_patch_con, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_main_patch_con = return_parent_contours(contours_main_patch_con, hiearchy) _, _, areas_head = find_features_of_contours(contours_head_patch_con) _, _, areas_main = find_features_of_contours(contours_main_patch_con) if np.sum(areas_head) > np.sum(areas_main): img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0][img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0] == 1] = 2 else: img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0][img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0] == 2] = 1 elif y_patch_head_min[i] < y_patch_main_max[j] and y_patch_head_max[i] > y_patch_main_max[j]: y_down = y_patch_main_max[j] y_up = y_patch_head_min[i] patch_intersection = np.zeros(asp.shape) patch_intersection[y_up:y_down, :] = asp[y_up:y_down, :] head_patch_con = (patch_intersection[:, :] == 2) * 1 main_patch_con = (patch_intersection[:, :] == 1) * 1 head_patch_con = head_patch_con.astype(np.uint8) main_patch_con = main_patch_con.astype(np.uint8) head_patch_con = np.repeat(head_patch_con[:, :, np.newaxis], 3, axis=2) main_patch_con = np.repeat(main_patch_con[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(head_patch_con, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_head_patch_con, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_head_patch_con = return_parent_contours(contours_head_patch_con, hiearchy) imgray = cv2.cvtColor(main_patch_con, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_main_patch_con, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_main_patch_con = return_parent_contours(contours_main_patch_con, hiearchy) _, _, areas_head = find_features_of_contours(contours_head_patch_con) _, _, areas_main = find_features_of_contours(contours_main_patch_con) if np.sum(areas_head) > np.sum(areas_main): img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0][img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0] == 1] = 2 else: img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0][img_revised_tab[y_up:y_down, int(boxes[ind][0]) : int(boxes[ind][1]), 0] == 2] = 1 # print(np.unique(patch_intersection) ) ##plt.figure(figsize=(20,20)) ##plt.imshow(patch_intersection) ##plt.show() else: pass return img_revised_tab def tear_main_texts_on_the_boundaries_of_boxes(img_revised_tab, boxes): for i in range(len(boxes)): img_revised_tab[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][1] - 10) : int(boxes[i][1]), 0][img_revised_tab[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][1] - 10) : int(boxes[i][1]), 0] == 1] = 0 img_revised_tab[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][1] - 10) : int(boxes[i][1]), 1][img_revised_tab[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][1] - 10) : int(boxes[i][1]), 1] == 1] = 0 img_revised_tab[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][1] - 10) : int(boxes[i][1]), 2][img_revised_tab[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][1] - 10) : int(boxes[i][1]), 2] == 1] = 0 return img_revised_tab def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(self, regions_pre_p): seperators_closeup = ((regions_pre_p[:, :] == 6)) * 1 seperators_closeup = seperators_closeup.astype(np.uint8) kernel = np.ones((5, 5), np.uint8) seperators_closeup = cv2.dilate(seperators_closeup, kernel, iterations=1) seperators_closeup = cv2.erode(seperators_closeup, kernel, iterations=1) seperators_closeup = cv2.erode(seperators_closeup, kernel, iterations=1) seperators_closeup = cv2.dilate(seperators_closeup, kernel, iterations=1) if len(seperators_closeup.shape) == 2: seperators_closeup_n = np.zeros((seperators_closeup.shape[0], seperators_closeup.shape[1], 3)) seperators_closeup_n[:, :, 0] = seperators_closeup seperators_closeup_n[:, :, 1] = seperators_closeup seperators_closeup_n[:, :, 2] = seperators_closeup else: seperators_closeup_n = seperators_closeup[:, :, :] # seperators_closeup=seperators_closeup.astype(np.uint8) seperators_closeup_n = seperators_closeup_n.astype(np.uint8) imgray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_lines, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_lines) dist_y = np.abs(y_max_main - y_min_main) slope_lines_org_hor = slope_lines_org[slope_lines == 0] args = np.array(range(len(slope_lines))) len_x = seperators_closeup.shape[1] * 0 len_y = seperators_closeup.shape[0] * 0.01 args_hor = args[slope_lines == 0] dist_x_hor = dist_x[slope_lines == 0] dist_y_hor = dist_y[slope_lines == 0] x_min_main_hor = x_min_main[slope_lines == 0] x_max_main_hor = x_max_main[slope_lines == 0] cy_main_hor = cy_main[slope_lines == 0] y_min_main_hor = y_min_main[slope_lines == 0] y_max_main_hor = y_max_main[slope_lines == 0] args_hor = args_hor[dist_x_hor >= len_x] x_max_main_hor = x_max_main_hor[dist_x_hor >= len_x] x_min_main_hor = x_min_main_hor[dist_x_hor >= len_x] cy_main_hor = cy_main_hor[dist_x_hor >= len_x] y_min_main_hor = y_min_main_hor[dist_x_hor >= len_x] y_max_main_hor = y_max_main_hor[dist_x_hor >= len_x] slope_lines_org_hor = slope_lines_org_hor[dist_x_hor >= len_x] dist_y_hor = dist_y_hor[dist_x_hor >= len_x] dist_x_hor = dist_x_hor[dist_x_hor >= len_x] args_ver = args[slope_lines == 1] dist_y_ver = dist_y[slope_lines == 1] dist_x_ver = dist_x[slope_lines == 1] x_min_main_ver = x_min_main[slope_lines == 1] x_max_main_ver = x_max_main[slope_lines == 1] y_min_main_ver = y_min_main[slope_lines == 1] y_max_main_ver = y_max_main[slope_lines == 1] cx_main_ver = cx_main[slope_lines == 1] args_ver = args_ver[dist_y_ver >= len_y] x_max_main_ver = x_max_main_ver[dist_y_ver >= len_y] x_min_main_ver = x_min_main_ver[dist_y_ver >= len_y] cx_main_ver = cx_main_ver[dist_y_ver >= len_y] y_min_main_ver = y_min_main_ver[dist_y_ver >= len_y] y_max_main_ver = y_max_main_ver[dist_y_ver >= len_y] dist_x_ver = dist_x_ver[dist_y_ver >= len_y] dist_y_ver = dist_y_ver[dist_y_ver >= len_y] img_p_in_ver = np.zeros(seperators_closeup_n[:, :, 2].shape) for jv in range(len(args_ver)): img_p_in_ver = cv2.fillPoly(img_p_in_ver, pts=[contours_lines[args_ver[jv]]], color=(1, 1, 1)) img_in_hor = np.zeros(seperators_closeup_n[:, :, 2].shape) for jv in range(len(args_hor)): img_p_in_hor = cv2.fillPoly(img_in_hor, pts=[contours_lines[args_hor[jv]]], color=(1, 1, 1)) all_args_uniq = contours_in_same_horizon(cy_main_hor) # print(all_args_uniq,'all_args_uniq') if len(all_args_uniq) > 0: if type(all_args_uniq[0]) is list: contours_new = [] for dd in range(len(all_args_uniq)): merged_all = None some_args = args_hor[all_args_uniq[dd]] some_cy = cy_main_hor[all_args_uniq[dd]] some_x_min = x_min_main_hor[all_args_uniq[dd]] some_x_max = x_max_main_hor[all_args_uniq[dd]] img_in = np.zeros(seperators_closeup_n[:, :, 2].shape) for jv in range(len(some_args)): img_p_in = cv2.fillPoly(img_p_in_hor, pts=[contours_lines[some_args[jv]]], color=(1, 1, 1)) img_p_in[int(np.mean(some_cy)) - 5 : int(np.mean(some_cy)) + 5, int(np.min(some_x_min)) : int(np.max(some_x_max))] = 1 else: img_p_in = seperators_closeup else: img_p_in = seperators_closeup sep_ver_hor = img_p_in + img_p_in_ver sep_ver_hor_cross = (sep_ver_hor == 2) * 1 sep_ver_hor_cross = np.repeat(sep_ver_hor_cross[:, :, np.newaxis], 3, axis=2) sep_ver_hor_cross = sep_ver_hor_cross.astype(np.uint8) imgray = cv2.cvtColor(sep_ver_hor_cross, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_cross, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cx_cross, cy_cross, _, _, _, _, _ = find_new_features_of_contoures(contours_cross) for ii in range(len(cx_cross)): sep_ver_hor[int(cy_cross[ii]) - 15 : int(cy_cross[ii]) + 15, int(cx_cross[ii]) + 5 : int(cx_cross[ii]) + 40] = 0 sep_ver_hor[int(cy_cross[ii]) - 15 : int(cy_cross[ii]) + 15, int(cx_cross[ii]) - 40 : int(cx_cross[ii]) - 4] = 0 img_p_in[:, :] = sep_ver_hor[:, :] if len(img_p_in.shape) == 2: seperators_closeup_n = np.zeros((img_p_in.shape[0], img_p_in.shape[1], 3)) seperators_closeup_n[:, :, 0] = img_p_in seperators_closeup_n[:, :, 1] = img_p_in seperators_closeup_n[:, :, 2] = img_p_in else: seperators_closeup_n = img_p_in[:, :, :] # seperators_closeup=seperators_closeup.astype(np.uint8) seperators_closeup_n = seperators_closeup_n.astype(np.uint8) imgray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_lines, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_lines) dist_y = np.abs(y_max_main - y_min_main) slope_lines_org_hor = slope_lines_org[slope_lines == 0] args = np.array(range(len(slope_lines))) len_x = seperators_closeup.shape[1] * 0.04 len_y = seperators_closeup.shape[0] * 0.08 args_hor = args[slope_lines == 0] dist_x_hor = dist_x[slope_lines == 0] dist_y_hor = dist_y[slope_lines == 0] x_min_main_hor = x_min_main[slope_lines == 0] x_max_main_hor = x_max_main[slope_lines == 0] cy_main_hor = cy_main[slope_lines == 0] y_min_main_hor = y_min_main[slope_lines == 0] y_max_main_hor = y_max_main[slope_lines == 0] args_hor = args_hor[dist_x_hor >= len_x] x_max_main_hor = x_max_main_hor[dist_x_hor >= len_x] x_min_main_hor = x_min_main_hor[dist_x_hor >= len_x] cy_main_hor = cy_main_hor[dist_x_hor >= len_x] y_min_main_hor = y_min_main_hor[dist_x_hor >= len_x] y_max_main_hor = y_max_main_hor[dist_x_hor >= len_x] slope_lines_org_hor = slope_lines_org_hor[dist_x_hor >= len_x] dist_y_hor = dist_y_hor[dist_x_hor >= len_x] dist_x_hor = dist_x_hor[dist_x_hor >= len_x] args_ver = args[slope_lines == 1] dist_y_ver = dist_y[slope_lines == 1] dist_x_ver = dist_x[slope_lines == 1] x_min_main_ver = x_min_main[slope_lines == 1] x_max_main_ver = x_max_main[slope_lines == 1] y_min_main_ver = y_min_main[slope_lines == 1] y_max_main_ver = y_max_main[slope_lines == 1] cx_main_ver = cx_main[slope_lines == 1] args_ver = args_ver[dist_y_ver >= len_y] x_max_main_ver = x_max_main_ver[dist_y_ver >= len_y] x_min_main_ver = x_min_main_ver[dist_y_ver >= len_y] cx_main_ver = cx_main_ver[dist_y_ver >= len_y] y_min_main_ver = y_min_main_ver[dist_y_ver >= len_y] y_max_main_ver = y_max_main_ver[dist_y_ver >= len_y] dist_x_ver = dist_x_ver[dist_y_ver >= len_y] dist_y_ver = dist_y_ver[dist_y_ver >= len_y] matrix_of_lines_ch = np.zeros((len(cy_main_hor) + len(cx_main_ver), 10)) matrix_of_lines_ch[: len(cy_main_hor), 0] = args_hor matrix_of_lines_ch[len(cy_main_hor) :, 0] = args_ver matrix_of_lines_ch[len(cy_main_hor) :, 1] = cx_main_ver matrix_of_lines_ch[: len(cy_main_hor), 2] = x_min_main_hor matrix_of_lines_ch[len(cy_main_hor) :, 2] = x_min_main_ver matrix_of_lines_ch[: len(cy_main_hor), 3] = x_max_main_hor matrix_of_lines_ch[len(cy_main_hor) :, 3] = x_max_main_ver matrix_of_lines_ch[: len(cy_main_hor), 4] = dist_x_hor matrix_of_lines_ch[len(cy_main_hor) :, 4] = dist_x_ver matrix_of_lines_ch[: len(cy_main_hor), 5] = cy_main_hor matrix_of_lines_ch[: len(cy_main_hor), 6] = y_min_main_hor matrix_of_lines_ch[len(cy_main_hor) :, 6] = y_min_main_ver matrix_of_lines_ch[: len(cy_main_hor), 7] = y_max_main_hor matrix_of_lines_ch[len(cy_main_hor) :, 7] = y_max_main_ver matrix_of_lines_ch[: len(cy_main_hor), 8] = dist_y_hor matrix_of_lines_ch[len(cy_main_hor) :, 8] = dist_y_ver matrix_of_lines_ch[len(cy_main_hor) :, 9] = 1 return matrix_of_lines_ch, seperators_closeup_n def image_change_background_pixels_to_zero(self, image_page): image_back_zero = np.zeros((image_page.shape[0], image_page.shape[1])) image_back_zero[:, :] = image_page[:, :, 0] image_back_zero[:, :][image_back_zero[:, :] == 0] = -255 image_back_zero[:, :][image_back_zero[:, :] == 255] = 0 image_back_zero[:, :][image_back_zero[:, :] == -255] = 255 return image_back_zero def return_boxes_of_images_by_order_of_reading_without_seperator(spliter_y_new, image_p_rev, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n): boxes = [] # here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \ # holes in the text and also finding spliter which covers more than one columns. for i in range(len(spliter_y_new) - 1): # print(spliter_y_new[i],spliter_y_new[i+1]) matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])] # print(len( matrix_new[:,9][matrix_new[:,9]==1] )) # print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa') # check to see is there any vertical seperator to find holes. if np.abs(spliter_y_new[i + 1] - spliter_y_new[i]) > 1.0 / 3.0 * regions_without_seperators.shape[0]: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )): # org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30) # org_img_dichte=org_img_dichte-np.min(org_img_dichte) ##plt.figure(figsize=(20,20)) ##plt.plot(org_img_dichte) ##plt.show() ###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.) num_col, peaks_neg_fin = find_num_col_only_image(image_p_rev[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=2.4) # num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0) x_min_hor_some = matrix_new[:, 2][(matrix_new[:, 9] == 0)] x_max_hor_some = matrix_new[:, 3][(matrix_new[:, 9] == 0)] cy_hor_some = matrix_new[:, 5][(matrix_new[:, 9] == 0)] arg_org_hor_some = matrix_new[:, 0][(matrix_new[:, 9] == 0)] peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1]) start_index_of_hor, newest_peaks, arg_min_hor_sort, lines_length_dels, lines_indexes_deleted = return_hor_spliter_by_index_for_without_verticals(peaks_neg_tot, x_min_hor_some, x_max_hor_some) arg_org_hor_some_sort = arg_org_hor_some[arg_min_hor_sort] start_index_of_hor_with_subset = [start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # start_index_of_hor[lines_length_dels>0] arg_min_hor_sort_with_subset = [arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] lines_indexes_deleted_with_subset = [lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] lines_length_dels_with_subset = [lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] arg_org_hor_some_sort_subset = [arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0] # lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0] # lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0] # print(len(arg_min_hor_sort),len(arg_org_hor_some_sort),'vizzzzzz') vahid_subset = np.zeros((len(start_index_of_hor_with_subset), len(start_index_of_hor_with_subset))) - 1 for kkk1 in range(len(start_index_of_hor_with_subset)): # print(lines_indexes_deleted,'hiii') index_del_sub = np.unique(lines_indexes_deleted_with_subset[kkk1]) for kkk2 in range(len(start_index_of_hor_with_subset)): if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]): vahid_subset[kkk1, kkk2] = kkk1 else: pass # print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0])) # check the len of matrix if it has no length means that there is no spliter at all if len(vahid_subset > 0): # print('hihoo') # find parenets args line_int = np.zeros(vahid_subset.shape[0]) childs_id = [] arg_child = [] for li in range(vahid_subset.shape[0]): if np.all(vahid_subset[:, li] == -1): line_int[li] = -1 else: line_int[li] = 1 # childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1] # helpi=[] # for nad in range(len(childs_args_in)): # helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]]) arg_child.append(arg_min_hor_sort_with_subset[li]) arg_parent = [arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1] start_index_of_hor_parent = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1] # arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1] # arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1] # arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1] start_index_of_hor_child = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] != -1] cy_hor_some_sort = cy_hor_some[arg_parent] newest_y_spliter_tot = [] for tj in range(len(newest_peaks) - 1): newest_y_spliter = [] newest_y_spliter.append(spliter_y_new[i]) if tj in np.unique(start_index_of_hor_parent): cy_help = np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent) == tj] cy_help_sort = np.sort(cy_help) # print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha') for mj in range(len(cy_help_sort)): newest_y_spliter.append(cy_help_sort[mj]) newest_y_spliter.append(spliter_y_new[i + 1]) newest_y_spliter_tot.append(newest_y_spliter) else: line_int = [] newest_y_spliter_tot = [] for tj in range(len(newest_peaks) - 1): newest_y_spliter = [] newest_y_spliter.append(spliter_y_new[i]) newest_y_spliter.append(spliter_y_new[i + 1]) newest_y_spliter_tot.append(newest_y_spliter) # if line_int is all -1 means that big spliters have no child and we can easily go through if np.all(np.array(line_int) == -1): for j in range(len(newest_peaks) - 1): newest_y_spliter = newest_y_spliter_tot[j] for n in range(len(newest_y_spliter) - 1): # print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa') ##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]]) ##plt.show() # print(matrix_new[:,0][ (matrix_new[:,9]==1 )]) for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]: pass ###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)]) # print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1]) matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )): # num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3) num_col_sub, peaks_neg_fin_sub = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.4) else: peaks_neg_fin_sub = [] peaks_sub = [] peaks_sub.append(newest_peaks[j]) for kj in range(len(peaks_neg_fin_sub)): peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j]) peaks_sub.append(newest_peaks[j + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for kh in range(len(peaks_sub) - 1): boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]]) else: for j in range(len(newest_peaks) - 1): newest_y_spliter = newest_y_spliter_tot[j] if j in start_index_of_hor_parent: x_min_ch = x_min_hor_some[arg_child] x_max_ch = x_max_hor_some[arg_child] cy_hor_some_sort_child = cy_hor_some[arg_child] cy_hor_some_sort_child = np.sort(cy_hor_some_sort_child) for n in range(len(newest_y_spliter) - 1): cy_child_in = cy_hor_some_sort_child[(cy_hor_some_sort_child > newest_y_spliter[n]) & (cy_hor_some_sort_child < newest_y_spliter[n + 1])] if len(cy_child_in) > 0: ###num_col_ch, peaks_neg_ch=find_num_col( regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3) num_col_ch, peaks_neg_ch = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.3) peaks_neg_ch = peaks_neg_ch[:] + newest_peaks[j] peaks_neg_ch_tot = return_points_with_boundies(peaks_neg_ch, newest_peaks[j], newest_peaks[j + 1]) ss_in_ch, nst_p_ch, arg_n_ch, lines_l_del_ch, lines_in_del_ch = return_hor_spliter_by_index_for_without_verticals(peaks_neg_ch_tot, x_min_ch, x_max_ch) newest_y_spliter_ch_tot = [] for tjj in range(len(nst_p_ch) - 1): newest_y_spliter_new = [] newest_y_spliter_new.append(newest_y_spliter[n]) if tjj in np.unique(ss_in_ch): # print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha') for mjj in range(len(cy_child_in)): newest_y_spliter_new.append(cy_child_in[mjj]) newest_y_spliter_new.append(newest_y_spliter[n + 1]) newest_y_spliter_ch_tot.append(newest_y_spliter_new) for jn in range(len(nst_p_ch) - 1): newest_y_spliter_h = newest_y_spliter_ch_tot[jn] for nd in range(len(newest_y_spliter_h) - 1): matrix_new_new2 = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter_h[nd]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter_h[nd + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < nst_p_ch[jn + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > nst_p_ch[jn])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if 1 > 0: # len( matrix_new_new2[:,9][matrix_new_new2[:,9]==1] )>0 and np.max(matrix_new_new2[:,8][matrix_new_new2[:,9]==1])>=0.2*(np.abs(newest_y_spliter_h[nd+1]-newest_y_spliter_h[nd] )): # num_col_sub_ch, peaks_neg_fin_sub_ch=find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]):int(newest_y_spliter_h[nd+1]),nst_p_ch[jn]:nst_p_ch[jn+1]],multiplier=2.3) num_col_sub_ch, peaks_neg_fin_sub_ch = find_num_col_only_image(image_p_rev[int(newest_y_spliter_h[nd]) : int(newest_y_spliter_h[nd + 1]), nst_p_ch[jn] : nst_p_ch[jn + 1]], multiplier=2.3) # print(peaks_neg_fin_sub_ch,'gada kutullllllll') else: peaks_neg_fin_sub_ch = [] peaks_sub_ch = [] peaks_sub_ch.append(nst_p_ch[jn]) for kjj in range(len(peaks_neg_fin_sub_ch)): peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj] + nst_p_ch[jn]) peaks_sub_ch.append(nst_p_ch[jn + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for khh in range(len(peaks_sub_ch) - 1): boxes.append([peaks_sub_ch[khh], peaks_sub_ch[khh + 1], newest_y_spliter_h[nd], newest_y_spliter_h[nd + 1]]) else: matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )): ###num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3) num_col_sub, peaks_neg_fin_sub = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.3) else: peaks_neg_fin_sub = [] peaks_sub = [] peaks_sub.append(newest_peaks[j]) for kj in range(len(peaks_neg_fin_sub)): peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j]) peaks_sub.append(newest_peaks[j + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for kh in range(len(peaks_sub) - 1): boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]]) else: for n in range(len(newest_y_spliter) - 1): for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]: pass # plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)]) # print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1]) matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )): ###num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.0) num_col_sub, peaks_neg_fin_sub = find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=2.3) else: peaks_neg_fin_sub = [] peaks_sub = [] peaks_sub.append(newest_peaks[j]) for kj in range(len(peaks_neg_fin_sub)): peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j]) peaks_sub.append(newest_peaks[j + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for kh in range(len(peaks_sub) - 1): boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]]) else: boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]]) return boxes def return_region_segmentation_after_implementing_not_head_maintext_parallel(image_regions_eraly_p, boxes): image_revised = np.zeros((image_regions_eraly_p.shape[0], image_regions_eraly_p.shape[1])) for i in range(len(boxes)): image_box = image_regions_eraly_p[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1])] image_box = np.array(image_box) # plt.imshow(image_box) # plt.show() # print(int(boxes[i][2]),int(boxes[i][3]),int(boxes[i][0]),int(boxes[i][1]),'addaa') image_box = implent_law_head_main_not_parallel(image_box) image_box = implent_law_head_main_not_parallel(image_box) image_box = implent_law_head_main_not_parallel(image_box) image_revised[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1])] = image_box[:, :] return image_revised def return_boxes_of_images_by_order_of_reading_2cols(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n): boxes = [] # here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \ # holes in the text and also finding spliter which covers more than one columns. for i in range(len(spliter_y_new) - 1): # print(spliter_y_new[i],spliter_y_new[i+1]) matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])] # print(len( matrix_new[:,9][matrix_new[:,9]==1] )) # print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa') # check to see is there any vertical seperator to find holes. if 1 > 0: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )): # print(int(spliter_y_new[i]),int(spliter_y_new[i+1]),'burayaaaa galimiirrrrrrrrrrrrrrrrrrrrrrrrrrr') # org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30) # org_img_dichte=org_img_dichte-np.min(org_img_dichte) ##plt.figure(figsize=(20,20)) ##plt.plot(org_img_dichte) ##plt.show() ###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.) try: num_col, peaks_neg_fin = find_num_col(regions_without_seperators[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=7.0) except: peaks_neg_fin = [] num_col = 0 peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1]) for kh in range(len(peaks_neg_tot) - 1): boxes.append([peaks_neg_tot[kh], peaks_neg_tot[kh + 1], spliter_y_new[i], spliter_y_new[i + 1]]) else: boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]]) return boxes def return_boxes_of_images_by_order_of_reading(spliter_y_new, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n): boxes = [] # here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \ # holes in the text and also finding spliter which covers more than one columns. for i in range(len(spliter_y_new) - 1): # print(spliter_y_new[i],spliter_y_new[i+1]) matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])] # print(len( matrix_new[:,9][matrix_new[:,9]==1] )) # print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa') # check to see is there any vertical seperator to find holes. if len(matrix_new[:, 9][matrix_new[:, 9] == 1]) > 0 and np.max(matrix_new[:, 8][matrix_new[:, 9] == 1]) >= 0.1 * (np.abs(spliter_y_new[i + 1] - spliter_y_new[i])): # org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30) # org_img_dichte=org_img_dichte-np.min(org_img_dichte) ##plt.figure(figsize=(20,20)) ##plt.plot(org_img_dichte) ##plt.show() ###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.) num_col, peaks_neg_fin = find_num_col(regions_without_seperators[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=7.0) # num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0) x_min_hor_some = matrix_new[:, 2][(matrix_new[:, 9] == 0)] x_max_hor_some = matrix_new[:, 3][(matrix_new[:, 9] == 0)] cy_hor_some = matrix_new[:, 5][(matrix_new[:, 9] == 0)] arg_org_hor_some = matrix_new[:, 0][(matrix_new[:, 9] == 0)] peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1]) start_index_of_hor, newest_peaks, arg_min_hor_sort, lines_length_dels, lines_indexes_deleted = return_hor_spliter_by_index(peaks_neg_tot, x_min_hor_some, x_max_hor_some) arg_org_hor_some_sort = arg_org_hor_some[arg_min_hor_sort] start_index_of_hor_with_subset = [start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # start_index_of_hor[lines_length_dels>0] arg_min_hor_sort_with_subset = [arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] lines_indexes_deleted_with_subset = [lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] lines_length_dels_with_subset = [lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] arg_org_hor_some_sort_subset = [arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0] # lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0] # lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0] vahid_subset = np.zeros((len(start_index_of_hor_with_subset), len(start_index_of_hor_with_subset))) - 1 for kkk1 in range(len(start_index_of_hor_with_subset)): index_del_sub = np.unique(lines_indexes_deleted_with_subset[kkk1]) for kkk2 in range(len(start_index_of_hor_with_subset)): if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]): vahid_subset[kkk1, kkk2] = kkk1 else: pass # print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0])) # print(vahid_subset,'zartt222') # check the len of matrix if it has no length means that there is no spliter at all if len(vahid_subset > 0): # print('hihoo') # find parenets args line_int = np.zeros(vahid_subset.shape[0]) childs_id = [] arg_child = [] for li in range(vahid_subset.shape[0]): # print(vahid_subset[:,li]) if np.all(vahid_subset[:, li] == -1): line_int[li] = -1 else: line_int[li] = 1 # childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1] # helpi=[] # for nad in range(len(childs_args_in)): # helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]]) arg_child.append(arg_min_hor_sort_with_subset[li]) # line_int=vahid_subset[0,:] # print(arg_child,line_int[0],'zartt33333') arg_parent = [arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1] start_index_of_hor_parent = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1] # arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1] # arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1] # arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1] start_index_of_hor_child = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] != -1] cy_hor_some_sort = cy_hor_some[arg_parent] # print(start_index_of_hor, lines_length_dels ,lines_indexes_deleted,'zartt') # args_indexes=np.array(range(len(start_index_of_hor) )) newest_y_spliter_tot = [] for tj in range(len(newest_peaks) - 1): newest_y_spliter = [] newest_y_spliter.append(spliter_y_new[i]) if tj in np.unique(start_index_of_hor_parent): ##print(cy_hor_some_sort) cy_help = np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent) == tj] cy_help_sort = np.sort(cy_help) # print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha') for mj in range(len(cy_help_sort)): newest_y_spliter.append(cy_help_sort[mj]) newest_y_spliter.append(spliter_y_new[i + 1]) newest_y_spliter_tot.append(newest_y_spliter) else: line_int = [] newest_y_spliter_tot = [] for tj in range(len(newest_peaks) - 1): newest_y_spliter = [] newest_y_spliter.append(spliter_y_new[i]) newest_y_spliter.append(spliter_y_new[i + 1]) newest_y_spliter_tot.append(newest_y_spliter) # if line_int is all -1 means that big spliters have no child and we can easily go through if np.all(np.array(line_int) == -1): for j in range(len(newest_peaks) - 1): newest_y_spliter = newest_y_spliter_tot[j] for n in range(len(newest_y_spliter) - 1): # print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa') ##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]]) ##plt.show() # print(matrix_new[:,0][ (matrix_new[:,9]==1 )]) for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]: pass ###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)]) # print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1]) matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if len(matrix_new_new[:, 9][matrix_new_new[:, 9] == 1]) > 0 and np.max(matrix_new_new[:, 8][matrix_new_new[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter[n + 1] - newest_y_spliter[n])): num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0) else: peaks_neg_fin_sub = [] peaks_sub = [] peaks_sub.append(newest_peaks[j]) for kj in range(len(peaks_neg_fin_sub)): peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j]) peaks_sub.append(newest_peaks[j + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for kh in range(len(peaks_sub) - 1): boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]]) else: for j in range(len(newest_peaks) - 1): newest_y_spliter = newest_y_spliter_tot[j] if j in start_index_of_hor_parent: x_min_ch = x_min_hor_some[arg_child] x_max_ch = x_max_hor_some[arg_child] cy_hor_some_sort_child = cy_hor_some[arg_child] cy_hor_some_sort_child = np.sort(cy_hor_some_sort_child) # print(cy_hor_some_sort_child,'ychilds') for n in range(len(newest_y_spliter) - 1): cy_child_in = cy_hor_some_sort_child[(cy_hor_some_sort_child > newest_y_spliter[n]) & (cy_hor_some_sort_child < newest_y_spliter[n + 1])] if len(cy_child_in) > 0: num_col_ch, peaks_neg_ch = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0) # print(peaks_neg_ch,'mizzzz') # peaks_neg_ch=[] # for djh in range(len(peaks_neg_ch)): # peaks_neg_ch.append( peaks_neg_ch[djh]+newest_peaks[j] ) peaks_neg_ch_tot = return_points_with_boundies(peaks_neg_ch, newest_peaks[j], newest_peaks[j + 1]) ss_in_ch, nst_p_ch, arg_n_ch, lines_l_del_ch, lines_in_del_ch = return_hor_spliter_by_index(peaks_neg_ch_tot, x_min_ch, x_max_ch) newest_y_spliter_ch_tot = [] for tjj in range(len(nst_p_ch) - 1): newest_y_spliter_new = [] newest_y_spliter_new.append(newest_y_spliter[n]) if tjj in np.unique(ss_in_ch): # print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha') for mjj in range(len(cy_child_in)): newest_y_spliter_new.append(cy_child_in[mjj]) newest_y_spliter_new.append(newest_y_spliter[n + 1]) newest_y_spliter_ch_tot.append(newest_y_spliter_new) for jn in range(len(nst_p_ch) - 1): newest_y_spliter_h = newest_y_spliter_ch_tot[jn] for nd in range(len(newest_y_spliter_h) - 1): matrix_new_new2 = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter_h[nd]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter_h[nd + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < nst_p_ch[jn + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > nst_p_ch[jn])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if len(matrix_new_new2[:, 9][matrix_new_new2[:, 9] == 1]) > 0 and np.max(matrix_new_new2[:, 8][matrix_new_new2[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter_h[nd + 1] - newest_y_spliter_h[nd])): num_col_sub_ch, peaks_neg_fin_sub_ch = find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]) : int(newest_y_spliter_h[nd + 1]), nst_p_ch[jn] : nst_p_ch[jn + 1]], multiplier=5.0) else: peaks_neg_fin_sub_ch = [] peaks_sub_ch = [] peaks_sub_ch.append(nst_p_ch[jn]) for kjj in range(len(peaks_neg_fin_sub_ch)): peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj] + nst_p_ch[jn]) peaks_sub_ch.append(nst_p_ch[jn + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for khh in range(len(peaks_sub_ch) - 1): boxes.append([peaks_sub_ch[khh], peaks_sub_ch[khh + 1], newest_y_spliter_h[nd], newest_y_spliter_h[nd + 1]]) else: matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if len(matrix_new_new[:, 9][matrix_new_new[:, 9] == 1]) > 0 and np.max(matrix_new_new[:, 8][matrix_new_new[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter[n + 1] - newest_y_spliter[n])): num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0) else: peaks_neg_fin_sub = [] peaks_sub = [] peaks_sub.append(newest_peaks[j]) for kj in range(len(peaks_neg_fin_sub)): peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j]) peaks_sub.append(newest_peaks[j + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for kh in range(len(peaks_sub) - 1): boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]]) else: for n in range(len(newest_y_spliter) - 1): # plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)]) # print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1]) matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])] # print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada') if len(matrix_new_new[:, 9][matrix_new_new[:, 9] == 1]) > 0 and np.max(matrix_new_new[:, 8][matrix_new_new[:, 9] == 1]) >= 0.2 * (np.abs(newest_y_spliter[n + 1] - newest_y_spliter[n])): num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0) else: peaks_neg_fin_sub = [] peaks_sub = [] peaks_sub.append(newest_peaks[j]) for kj in range(len(peaks_neg_fin_sub)): peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j]) peaks_sub.append(newest_peaks[j + 1]) # peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1]) for kh in range(len(peaks_sub) - 1): boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]]) else: boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]]) return boxes def return_boxes_of_images_by_order_of_reading_without_seperators_2cols(spliter_y_new, image_p_rev, regions_without_seperators, matrix_of_lines_ch, seperators_closeup_n): boxes = [] # here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \ # holes in the text and also finding spliter which covers more than one columns. for i in range(len(spliter_y_new) - 1): # print(spliter_y_new[i],spliter_y_new[i+1]) matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])] # print(len( matrix_new[:,9][matrix_new[:,9]==1] )) # print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa') # check to see is there any vertical seperator to find holes. if np.abs(spliter_y_new[i + 1] - spliter_y_new[i]) > 1.0 / 3.0 * regions_without_seperators.shape[0]: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )): # org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30) # org_img_dichte=org_img_dichte-np.min(org_img_dichte) ##plt.figure(figsize=(20,20)) ##plt.plot(org_img_dichte) ##plt.show() ###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.) try: num_col, peaks_neg_fin = find_num_col_only_image(image_p_rev[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=2.4) except: peaks_neg_fin = [] num_col = 0 peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, seperators_closeup_n[:, :, 0].shape[1]) for kh in range(len(peaks_neg_tot) - 1): boxes.append([peaks_neg_tot[kh], peaks_neg_tot[kh + 1], spliter_y_new[i], spliter_y_new[i + 1]]) else: boxes.append([0, seperators_closeup_n[:, :, 0].shape[1], spliter_y_new[i], spliter_y_new[i + 1]]) return boxes def add_tables_heuristic_to_layout(image_regions_eraly_p, boxes, slope_mean_hor, spliter_y, peaks_neg_tot, image_revised): image_revised_1 = delete_seperator_around(spliter_y, peaks_neg_tot, image_revised) img_comm_e = np.zeros(image_revised_1.shape) img_comm = np.repeat(img_comm_e[:, :, np.newaxis], 3, axis=2) for indiv in np.unique(image_revised_1): # print(indiv,'indd') image_col = (image_revised_1 == indiv) * 255 img_comm_in = np.repeat(image_col[:, :, np.newaxis], 3, axis=2) img_comm_in = img_comm_in.astype(np.uint8) imgray = cv2.cvtColor(img_comm_in, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) main_contours = filter_contours_area_of_image_tables(thresh, contours, hirarchy, max_area=1, min_area=0.0001) img_comm = cv2.fillPoly(img_comm, pts=main_contours, color=(indiv, indiv, indiv)) ###img_comm_in=cv2.fillPoly(img_comm, pts =interior_contours, color=(0,0,0)) # img_comm=np.repeat(img_comm[:, :, np.newaxis], 3, axis=2) img_comm = img_comm.astype(np.uint8) if not isNaN(slope_mean_hor): image_revised_last = np.zeros((image_regions_eraly_p.shape[0], image_regions_eraly_p.shape[1], 3)) for i in range(len(boxes)): image_box = img_comm[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1]), :] image_box_tabels_1 = (image_box[:, :, 0] == 7) * 1 contours_tab, _ = return_contours_of_image(image_box_tabels_1) contours_tab = filter_contours_area_of_image_tables(image_box_tabels_1, contours_tab, _, 1, 0.001) image_box_tabels_1 = (image_box[:, :, 0] == 6) * 1 image_box_tabels_and_m_text = ((image_box[:, :, 0] == 7) | (image_box[:, :, 0] == 1)) * 1 image_box_tabels_and_m_text = image_box_tabels_and_m_text.astype(np.uint8) image_box_tabels_1 = image_box_tabels_1.astype(np.uint8) image_box_tabels_1 = cv2.dilate(image_box_tabels_1, self.kernel, iterations=5) contours_table_m_text, _ = return_contours_of_image(image_box_tabels_and_m_text) image_box_tabels = np.repeat(image_box_tabels_1[:, :, np.newaxis], 3, axis=2) image_box_tabels = image_box_tabels.astype(np.uint8) imgray = cv2.cvtColor(image_box_tabels, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_line, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) y_min_main_line, y_max_main_line, _ = find_features_of_contours(contours_line) # _,_,y_min_main_line ,y_max_main_line,x_min_main_line,x_max_main_line=find_new_features_of_contoures(contours_line) y_min_main_tab, y_max_main_tab, _ = find_features_of_contours(contours_tab) cx_tab_m_text, cy_tab_m_text, x_min_tab_m_text, x_max_tab_m_text, y_min_tab_m_text, y_max_tab_m_text = find_new_features_of_contoures(contours_table_m_text) cx_tabl, cy_tabl, x_min_tabl, x_max_tabl, y_min_tabl, y_max_tabl, _ = find_new_features_of_contoures(contours_tab) if len(y_min_main_tab) > 0: y_down_tabs = [] y_up_tabs = [] for i_t in range(len(y_min_main_tab)): y_down_tab = [] y_up_tab = [] for i_l in range(len(y_min_main_line)): if y_min_main_tab[i_t] > y_min_main_line[i_l] and y_max_main_tab[i_t] > y_min_main_line[i_l] and y_min_main_tab[i_t] > y_max_main_line[i_l] and y_max_main_tab[i_t] > y_min_main_line[i_l]: pass elif y_min_main_tab[i_t] < y_max_main_line[i_l] and y_max_main_tab[i_t] < y_max_main_line[i_l] and y_max_main_tab[i_t] < y_min_main_line[i_l] and y_min_main_tab[i_t] < y_min_main_line[i_l]: pass elif np.abs(y_max_main_line[i_l] - y_min_main_line[i_l]) < 100: pass else: y_up_tab.append(np.min([y_min_main_line[i_l], y_min_main_tab[i_t]])) y_down_tab.append(np.max([y_max_main_line[i_l], y_max_main_tab[i_t]])) if len(y_up_tab) == 0: for v_n in range(len(cx_tab_m_text)): if cx_tabl[i_t] <= x_max_tab_m_text[v_n] and cx_tabl[i_t] >= x_min_tab_m_text[v_n] and cy_tabl[i_t] <= y_max_tab_m_text[v_n] and cy_tabl[i_t] >= y_min_tab_m_text[v_n] and cx_tabl[i_t] != cx_tab_m_text[v_n] and cy_tabl[i_t] != cy_tab_m_text[v_n]: y_up_tabs.append(y_min_tab_m_text[v_n]) y_down_tabs.append(y_max_tab_m_text[v_n]) # y_up_tabs.append(y_min_main_tab[i_t]) # y_down_tabs.append(y_max_main_tab[i_t]) else: y_up_tabs.append(np.min(y_up_tab)) y_down_tabs.append(np.max(y_down_tab)) else: y_down_tabs = [] y_up_tabs = [] pass for ii in range(len(y_up_tabs)): image_box[y_up_tabs[ii] : y_down_tabs[ii], :, 0] = 7 image_revised_last[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1]), :] = image_box[:, :, :] else: for i in range(len(boxes)): image_box = img_comm[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1]), :] image_revised_last[int(boxes[i][2]) : int(boxes[i][3]), int(boxes[i][0]) : int(boxes[i][1]), :] = image_box[:, :, :] ##plt.figure(figsize=(20,20)) ##plt.imshow(image_box[:,:,0]) ##plt.show() return image_revised_last def get_regions_from_xy_2models_ens(self, img): img_org = np.copy(img) img_height_h = img_org.shape[0] img_width_h = img_org.shape[1] model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) gaussian_filter = False patches = False binary = False ratio_x = 1 ratio_y = 1 img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) prediction_regions_long = self.do_prediction(patches, img, model_region) prediction_regions_long = resize_image(prediction_regions_long, img_height_h, img_width_h) gaussian_filter = False patches = True binary = False ratio_x = 1 ratio_y = 1.2 median_blur = False img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_org_y = self.do_prediction(patches, img, model_region) prediction_regions_org_y = resize_image(prediction_regions_org_y, img_height_h, img_width_h) # plt.imshow(prediction_regions_org[:,:,0]) # plt.show() # sys.exit() prediction_regions_org_y = prediction_regions_org_y[:, :, 0] mask_zeros_y = (prediction_regions_org_y[:, :] == 0) * 1 ratio_x = 1.2 ratio_y = 1 median_blur = False img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_org = self.do_prediction(patches, img, model_region) prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h) # plt.imshow(prediction_regions_org[:,:,0]) # plt.show() # sys.exit() prediction_regions_org = prediction_regions_org[:, :, 0] prediction_regions_org[(prediction_regions_org[:, :] == 1) & (mask_zeros_y[:, :] == 1)] = 0 prediction_regions_org[(prediction_regions_long[:, :, 0] == 1) & (prediction_regions_org[:, :] == 2)] = 1 session_region.close() del model_region del session_region gc.collect() return prediction_regions_org def resize_and_enhance_image(self, is_image_enhanced): dpi = self.check_dpi() img = cv2.imread(self.image_dir) img = img.astype(np.uint8) # sys.exit() print(dpi) if dpi < 298: if img.shape[0] < 1000: img_h_new = int(img.shape[0] * 3) img_w_new = int(img.shape[1] * 3) if img_h_new < 2800: img_h_new = 3000 img_w_new = int(img.shape[1] / float(img.shape[0]) * 3000) elif img.shape[0] >= 1000 and img.shape[0] < 2000: img_h_new = int(img.shape[0] * 2) img_w_new = int(img.shape[1] * 2) if img_h_new < 2800: img_h_new = 3000 img_w_new = int(img.shape[1] / float(img.shape[0]) * 3000) else: img_h_new = int(img.shape[0] * 1.5) img_w_new = int(img.shape[1] * 1.5) img_new = resize_image(img, img_h_new, img_w_new) image_res = self.predict_enhancement(img_new) # cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif",self.image) # self.image=self.image.astype(np.uint16) # self.scale_x=1 # self.scale_y=1 # self.height_org = self.image.shape[0] # self.width_org = self.image.shape[1] is_image_enhanced = True else: is_image_enhanced = False image_res = np.copy(img) return is_image_enhanced, img, image_res def resize_and_enhance_image_new(self, is_image_enhanced): # self.check_dpi() img = cv2.imread(self.image_dir) img = img.astype(np.uint8) # sys.exit() image_res = np.copy(img) return is_image_enhanced, img, image_res def get_image_and_scales_deskewd(self, img_deskewd): self.image = img_deskewd self.image_org = np.copy(self.image) self.height_org = self.image.shape[0] self.width_org = self.image.shape[1] self.img_hight_int = int(self.image.shape[0] * 1) self.img_width_int = int(self.image.shape[1] * 1) self.scale_y = self.img_hight_int / float(self.image.shape[0]) self.scale_x = self.img_width_int / float(self.image.shape[1]) self.image = resize_image(self.image, self.img_hight_int, self.img_width_int) def extract_drop_capital_13(self, img, patches, cols): img_height_h = img.shape[0] img_width_h = img.shape[1] patches = False img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully_np) img_1 = img[: int(img.shape[0] / 3.0), :, :] img_2 = img[int(img.shape[0] / 3.0) : int(2 * img.shape[0] / 3.0), :, :] img_3 = img[int(2 * img.shape[0] / 3.0) :, :, :] # img_1 = otsu_copy_binary(img_1)#otsu_copy(img) # img_1 = img_1.astype(np.uint16) plt.imshow(img_1) plt.show() # img_2 = otsu_copy_binary(img_2)#otsu_copy(img) # img_2 = img_2.astype(np.uint16) plt.imshow(img_2) plt.show() # img_3 = otsu_copy_binary(img_3)#otsu_copy(img) # img_3 = img_3.astype(np.uint16) plt.imshow(img_3) plt.show() prediction_regions_1 = self.do_prediction(patches, img_1, model_region) plt.imshow(prediction_regions_1) plt.show() prediction_regions_2 = self.do_prediction(patches, img_2, model_region) plt.imshow(prediction_regions_2) plt.show() prediction_regions_3 = self.do_prediction(patches, img_3, model_region) plt.imshow(prediction_regions_3) plt.show() prediction_regions = np.zeros((img_height_h, img_width_h)) prediction_regions[: int(img.shape[0] / 3.0), :] = prediction_regions_1[:, :, 0] prediction_regions[int(img.shape[0] / 3.0) : int(2 * img.shape[0] / 3.0), :] = prediction_regions_2[:, :, 0] prediction_regions[int(2 * img.shape[0] / 3.0) :, :] = prediction_regions_3[:, :, 0] session_region.close() del img_1 del img_2 del img_3 del prediction_regions_1 del prediction_regions_2 del prediction_regions_3 del model_region del session_region del img gc.collect() return prediction_regions def extract_only_text_regions(self, img, patches): model_region, session_region = self.start_new_session_and_model(self.model_only_text) img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint8) img_org = np.copy(img) img_h = img_org.shape[0] img_w = img_org.shape[1] img = resize_image(img_org, int(img_org.shape[0] * 1), int(img_org.shape[1] * 1)) prediction_regions1 = self.do_prediction(patches, img, model_region) prediction_regions1 = resize_image(prediction_regions1, img_h, img_w) # prediction_regions1 = cv2.dilate(prediction_regions1, self.kernel, iterations=4) # prediction_regions1 = cv2.erode(prediction_regions1, self.kernel, iterations=7) # prediction_regions1 = cv2.dilate(prediction_regions1, self.kernel, iterations=2) img = resize_image(img_org, int(img_org.shape[0] * 1), int(img_org.shape[1] * 1)) prediction_regions2 = self.do_prediction(patches, img, model_region) prediction_regions2 = resize_image(prediction_regions2, img_h, img_w) # prediction_regions2 = cv2.dilate(prediction_regions2, self.kernel, iterations=2) prediction_regions2 = cv2.erode(prediction_regions2, self.kernel, iterations=2) prediction_regions2 = cv2.dilate(prediction_regions2, self.kernel, iterations=2) # prediction_regions=( (prediction_regions2[:,:,0]==1) & (prediction_regions1[:,:,0]==1) ) # prediction_regions=(prediction_regions1[:,:,0]==1) session_region.close() del model_region del session_region gc.collect() return prediction_regions1[:, :, 0] def extract_binarization(self, img, patches): model_bin, session_bin = self.start_new_session_and_model(self.model_binafrization) img_h = img.shape[0] img_w = img.shape[1] img = resize_image(img, int(img.shape[0] * 1), int(img.shape[1] * 1)) prediction_regions = self.do_prediction(patches, img, model_bin) res = (prediction_regions[:, :, 0] != 0) * 1 img_fin = np.zeros((res.shape[0], res.shape[1], 3)) res[:, :][res[:, :] == 0] = 2 res = res - 1 res = res * 255 img_fin[:, :, 0] = res img_fin[:, :, 1] = res img_fin[:, :, 2] = res session_bin.close() del model_bin del session_bin gc.collect() # plt.imshow(img_fin[:,:,0]) # plt.show() return img_fin def get_text_region_contours_and_boxes(self, image): rgb_class_of_texts = (1, 1, 1) mask_texts = np.all(image == rgb_class_of_texts, axis=-1) image = np.repeat(mask_texts[:, :, np.newaxis], 3, axis=2) * 255 image = image.astype(np.uint8) image = cv2.morphologyEx(image, cv2.MORPH_OPEN, self.kernel) image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, self.kernel) imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(imgray, 0, 255, 0) contours, hirarchy = cv2.findContours(thresh.copy(), cv2.cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) main_contours = filter_contours_area_of_image(thresh, contours, hirarchy, max_area=1, min_area=0.00001) self.boxes = [] for jj in range(len(main_contours)): x, y, w, h = cv2.boundingRect(main_contours[jj]) self.boxes.append([x, y, w, h]) return main_contours def textline_contours_to_get_slope_correctly(self, textline_mask, img_patch, contour_interest): slope_new = 0 # deskew_images(img_patch) textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255 textline_mask = textline_mask.astype(np.uint8) textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_OPEN, self.kernel) textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, self.kernel) textline_mask = cv2.erode(textline_mask, self.kernel, iterations=1) imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(imgray, 0, 255, 0) thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, self.kernel) thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, self.kernel) contours, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) main_contours = filter_contours_area_of_image_tables(thresh, contours, hirarchy, max_area=1, min_area=0.003) textline_maskt = textline_mask[:, :, 0] textline_maskt[textline_maskt != 0] = 1 peaks_point, _ = seperate_lines(textline_maskt, contour_interest, slope_new) mean_dis = np.mean(np.diff(peaks_point)) len_x = thresh.shape[1] slope_lines = [] contours_slope_new = [] for kk in range(len(main_contours)): if len(main_contours[kk].shape) == 2: xminh = np.min(main_contours[kk][:, 0]) xmaxh = np.max(main_contours[kk][:, 0]) yminh = np.min(main_contours[kk][:, 1]) ymaxh = np.max(main_contours[kk][:, 1]) elif len(main_contours[kk].shape) == 3: xminh = np.min(main_contours[kk][:, 0, 0]) xmaxh = np.max(main_contours[kk][:, 0, 0]) yminh = np.min(main_contours[kk][:, 0, 1]) ymaxh = np.max(main_contours[kk][:, 0, 1]) if ymaxh - yminh <= mean_dis and (xmaxh - xminh) >= 0.3 * len_x: # xminh>=0.05*len_x and xminh<=0.4*len_x and xmaxh<=0.95*len_x and xmaxh>=0.6*len_x: contours_slope_new.append(main_contours[kk]) rows, cols = thresh.shape[:2] [vx, vy, x, y] = cv2.fitLine(main_contours[kk], cv2.DIST_L2, 0, 0.01, 0.01) slope_lines.append((vy / vx) / np.pi * 180) if len(slope_lines) >= 2: slope = np.mean(slope_lines) # slope_true/np.pi*180 else: slope = 999 else: slope = 0 return slope def return_deskew_slope_new(self, img_patch, sigma_des): max_x_y = max(img_patch.shape[0], img_patch.shape[1]) ##img_patch=resize_image(img_patch,max_x_y,max_x_y) img_patch_copy = np.zeros((img_patch.shape[0], img_patch.shape[1])) img_patch_copy[:, :] = img_patch[:, :] # img_patch_org[:,:,0] img_patch_padded = np.zeros((int(max_x_y * (1.4)), int(max_x_y * (1.4)))) img_patch_padded_center_p = int(img_patch_padded.shape[0] / 2.0) len_x_org_patch_half = int(img_patch_copy.shape[1] / 2.0) len_y_org_patch_half = int(img_patch_copy.shape[0] / 2.0) img_patch_padded[img_patch_padded_center_p - len_y_org_patch_half : img_patch_padded_center_p - len_y_org_patch_half + img_patch_copy.shape[0], img_patch_padded_center_p - len_x_org_patch_half : img_patch_padded_center_p - len_x_org_patch_half + img_patch_copy.shape[1]] = img_patch_copy[:, :] # img_patch_padded[ int( img_patch_copy.shape[0]*(.1)):int( img_patch_copy.shape[0]*(.1))+img_patch_copy.shape[0] , int( img_patch_copy.shape[1]*(.8)):int( img_patch_copy.shape[1]*(.8))+img_patch_copy.shape[1] ]=img_patch_copy[:,:] angles = np.linspace(-25, 25, 80) res = [] num_of_peaks = [] index_cor = [] var_res = [] # plt.imshow(img_patch) # plt.show() indexer = 0 for rot in angles: # print(rot,'rot') img_rotated = rotate_image(img_patch_padded, rot) img_rotated[img_rotated != 0] = 1 # plt.imshow(img_rotated) # plt.show() try: neg_peaks, var_spectrum = self.get_standard_deviation_of_summed_textline_patch_along_width(img_rotated, sigma_des, 20.3) res_me = np.mean(neg_peaks) if res_me == 0: res_me = VERY_LARGE_NUMBER else: pass res_num = len(neg_peaks) except: res_me = VERY_LARGE_NUMBER res_num = 0 var_spectrum = 0 if isNaN(res_me): pass else: res.append(res_me) var_res.append(var_spectrum) num_of_peaks.append(res_num) index_cor.append(indexer) indexer = indexer + 1 try: var_res = np.array(var_res) # print(var_res) ang_int = angles[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] except: ang_int = 0 if abs(ang_int) > 15: angles = np.linspace(-90, -50, 30) res = [] num_of_peaks = [] index_cor = [] var_res = [] # plt.imshow(img_patch) # plt.show() indexer = 0 for rot in angles: # print(rot,'rot') img_rotated = rotate_image(img_patch_padded, rot) img_rotated[img_rotated != 0] = 1 # plt.imshow(img_rotated) # plt.show() try: neg_peaks, var_spectrum = self.get_standard_deviation_of_summed_textline_patch_along_width(img_rotated, sigma_des, 20.3) res_me = np.mean(neg_peaks) if res_me == 0: res_me = VERY_LARGE_NUMBER else: pass res_num = len(neg_peaks) except: res_me = VERY_LARGE_NUMBER res_num = 0 var_spectrum = 0 if isNaN(res_me): pass else: res.append(res_me) var_res.append(var_spectrum) num_of_peaks.append(res_num) index_cor.append(indexer) indexer = indexer + 1 try: var_res = np.array(var_res) # print(var_res) ang_int = angles[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin] except: ang_int = 0 return ang_int def get_slopes_and_deskew(self, contours, textline_mask_tot): slope_biggest = 0 # return_deskew_slop(img_int_p,sigma_des, dir_of_all=self.dir_of_all, f_name=self.f_name) num_cores = cpu_count() q = Queue() poly = Queue() box_sub = Queue() processes = [] nh = np.linspace(0, len(self.boxes), num_cores + 1) for i in range(num_cores): boxes_per_process = self.boxes[int(nh[i]) : int(nh[i + 1])] contours_per_process = contours[int(nh[i]) : int(nh[i + 1])] processes.append(Process(target=self.do_work_of_slopes, args=(q, poly, box_sub, boxes_per_process, textline_mask_tot, contours_per_process))) for i in range(num_cores): processes[i].start() self.slopes = [] self.all_found_texline_polygons = [] self.boxes = [] for i in range(num_cores): slopes_for_sub_process = q.get(True) boxes_for_sub_process = box_sub.get(True) polys_for_sub_process = poly.get(True) for j in range(len(slopes_for_sub_process)): self.slopes.append(slopes_for_sub_process[j]) self.all_found_texline_polygons.append(polys_for_sub_process[j]) self.boxes.append(boxes_for_sub_process[j]) for i in range(num_cores): processes[i].join() def write_into_page_xml_only_textlines(self, contours, page_coord, all_found_texline_polygons, all_box_coord, dir_of_image): found_polygons_text_region = contours # create the file structure data = ET.Element("PcGts") data.set("xmlns", "http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15") data.set("xmlns:xsi", "http://www.w3.org/2001/XMLSchema-instance") data.set("xsi:schemaLocation", "http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15") metadata = ET.SubElement(data, "Metadata") author = ET.SubElement(metadata, "Creator") author.text = "SBB_QURATOR" created = ET.SubElement(metadata, "Created") created.text = "2019-06-17T18:15:12" changetime = ET.SubElement(metadata, "LastChange") changetime.text = "2019-06-17T18:15:12" page = ET.SubElement(data, "Page") page.set("imageFilename", self.image_dir) page.set("imageHeight", str(self.height_org)) page.set("imageWidth", str(self.width_org)) page.set("type", "content") page.set("readingDirection", "left-to-right") page.set("textLineOrder", "top-to-bottom") page_print_sub = ET.SubElement(page, "PrintSpace") coord_page = ET.SubElement(page_print_sub, "Coords") points_page_print = "" for lmm in range(len(self.cont_page[0])): if len(self.cont_page[0][lmm]) == 2: points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0]) / self.scale_x)) points_page_print = points_page_print + "," points_page_print = points_page_print + str(int((self.cont_page[0][lmm][1]) / self.scale_y)) else: points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0][0]) / self.scale_x)) points_page_print = points_page_print + "," points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0][1]) / self.scale_y)) if lmm < (len(self.cont_page[0]) - 1): points_page_print = points_page_print + " " coord_page.set("points", points_page_print) if len(contours) > 0: id_indexer = 0 id_indexer_l = 0 for mm in range(len(found_polygons_text_region)): textregion = ET.SubElement(page, "TextRegion") textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 textregion.set("type", "paragraph") # if mm==0: # textregion.set('type','header') # else: # textregion.set('type','paragraph') coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_text_region[mm])): if len(found_polygons_text_region[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_text_region[mm]) - 1): points_co = points_co + " " # print(points_co) coord_text.set("points", points_co) for j in range(len(all_found_texline_polygons[mm])): textline = ET.SubElement(textregion, "TextLine") textline.set("id", "l" + str(id_indexer_l)) id_indexer_l += 1 coord = ET.SubElement(textline, "Coords") texteq = ET.SubElement(textline, "TextEquiv") uni = ET.SubElement(texteq, "Unicode") uni.text = " " # points = ET.SubElement(coord, 'Points') points_co = "" for l in range(len(all_found_texline_polygons[mm][j])): # point = ET.SubElement(coord, 'Point') # point.set('x',str(found_polygons[j][l][0])) # point.set('y',str(found_polygons[j][l][1])) if len(all_found_texline_polygons[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][1] + page_coord[0]) / self.scale_y)) if l < (len(all_found_texline_polygons[mm][j]) - 1): points_co = points_co + " " # print(points_co) coord.set("points", points_co) texteqreg = ET.SubElement(textregion, "TextEquiv") unireg = ET.SubElement(texteqreg, "Unicode") unireg.text = " " # print(dir_of_image) print(self.f_name) # print(os.path.join(dir_of_image, self.f_name) + ".xml") tree = ET.ElementTree(data) tree.write(os.path.join(dir_of_image, self.f_name) + ".xml") def return_teilwiese_deskewed_lines(self, text_regions_p, textline_rotated): kernel = np.ones((5, 5), np.uint8) textline_rotated = cv2.erode(textline_rotated, kernel, iterations=1) textline_rotated_new = np.zeros(textline_rotated.shape) rgb_m = 1 rgb_h = 2 cnt_m, boxes_m = return_contours_of_interested_region_and_bounding_box(text_regions_p, rgb_m) cnt_h, boxes_h = return_contours_of_interested_region_and_bounding_box(text_regions_p, rgb_h) areas_cnt_m = np.array([cv2.contourArea(cnt_m[j]) for j in range(len(cnt_m))]) argmax = np.argmax(areas_cnt_m) # plt.imshow(textline_rotated[ boxes_m[argmax][1]:boxes_m[argmax][1]+boxes_m[argmax][3] ,boxes_m[argmax][0]:boxes_m[argmax][0]+boxes_m[argmax][2]]) # plt.show() for argmax in range(len(boxes_m)): textline_text_region = textline_rotated[boxes_m[argmax][1] : boxes_m[argmax][1] + boxes_m[argmax][3], boxes_m[argmax][0] : boxes_m[argmax][0] + boxes_m[argmax][2]] textline_text_region_revised = self.seperate_lines_new(textline_text_region, 0) # except: # textline_text_region_revised=textline_rotated[ boxes_m[argmax][1]:boxes_m[argmax][1]+boxes_m[argmax][3] ,boxes_m[argmax][0]:boxes_m[argmax][0]+boxes_m[argmax][2] ] textline_rotated_new[boxes_m[argmax][1] : boxes_m[argmax][1] + boxes_m[argmax][3], boxes_m[argmax][0] : boxes_m[argmax][0] + boxes_m[argmax][2]] = textline_text_region_revised[:, :] # textline_rotated_new[textline_rotated_new>0]=1 # textline_rotated_new[textline_rotated_new<0]=0 # plt.imshow(textline_rotated_new) # plt.show() def get_regions_from_xy_neu(self, img): img_org = np.copy(img) img_height_h = img_org.shape[0] img_width_h = img_org.shape[1] model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p) gaussian_filter = False patches = True binary = True ratio_x = 1 ratio_y = 1 median_blur = False img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_org = self.do_prediction(patches, img, model_region) prediction_regions_org = resize_image(prediction_regions_org, img_height_h, img_width_h) # plt.imshow(prediction_regions_org[:,:,0]) # plt.show() # sys.exit() prediction_regions_org = prediction_regions_org[:, :, 0] gaussian_filter = False patches = False binary = False ratio_x = 1 ratio_y = 1 median_blur = False img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_orgt = self.do_prediction(patches, img, model_region) prediction_regions_orgt = resize_image(prediction_regions_orgt, img_height_h, img_width_h) # plt.imshow(prediction_regions_orgt[:,:,0]) # plt.show() # sys.exit() prediction_regions_orgt = prediction_regions_orgt[:, :, 0] mask_texts_longshot = (prediction_regions_orgt[:, :] == 1) * 1 mask_texts_longshot = np.uint8(mask_texts_longshot) # mask_texts_longshot = cv2.dilate(mask_texts_longshot[:,:], self.kernel, iterations=2) pixel_img = 1 polygons_of_only_texts_longshot = return_contours_of_interested_region(mask_texts_longshot, pixel_img) longshot_true = np.zeros(mask_texts_longshot.shape) # text_regions_p_true[:,:]=text_regions_p_1[:,:] longshot_true = cv2.fillPoly(longshot_true, pts=polygons_of_only_texts_longshot, color=(1, 1, 1)) # plt.imshow(longshot_true) # plt.show() gaussian_filter = False patches = False binary = False ratio_x = 1 ratio_y = 1 median_blur = False img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) one_third_upper_ny = int(img.shape[0] / 3.0) img = img[0:one_third_upper_ny, :, :] if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_longshot_one_third = self.do_prediction(patches, img, model_region) prediction_regions_longshot_one_third = resize_image(prediction_regions_longshot_one_third, one_third_upper_ny, img_width_h) img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) img = img[one_third_upper_ny : int(2 * one_third_upper_ny), :, :] if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_longshot_one_third_middle = self.do_prediction(patches, img, model_region) prediction_regions_longshot_one_third_middle = resize_image(prediction_regions_longshot_one_third_middle, one_third_upper_ny, img_width_h) img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) img = img[int(2 * one_third_upper_ny) :, :, :] if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_longshot_one_third_down = self.do_prediction(patches, img, model_region) prediction_regions_longshot_one_third_down = resize_image(prediction_regions_longshot_one_third_down, img_height_h - int(2 * one_third_upper_ny), img_width_h) # plt.imshow(prediction_regions_org[:,:,0]) # plt.show() # sys.exit() prediction_regions_longshot = np.zeros((img_height_h, img_width_h)) # prediction_regions_longshot=prediction_regions_longshot[:,:,0] # prediction_regions_longshot[0:one_third_upper_ny,:]=prediction_regions_longshot_one_third[:,:,0] # prediction_regions_longshot[one_third_upper_ny:int(2*one_third_upper_ny):,:]=prediction_regions_longshot_one_third_middle[:,:,0] # prediction_regions_longshot[int(2*one_third_upper_ny):,:]=prediction_regions_longshot_one_third_down[:,:,0] prediction_regions_longshot = longshot_true[:, :] # plt.imshow(prediction_regions_longshot) # plt.show() gaussian_filter = False patches = True binary = False ratio_x = 1 # 1.1 ratio_y = 1 median_blur = False # img= resize_image(img_org, int(img_org.shape[0]*0.8), int(img_org.shape[1]*1.6)) img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions = self.do_prediction(patches, img, model_region) text_region1 = resize_image(prediction_regions, img_height_h, img_width_h) # plt.imshow(text_region1[:,:,0]) # plt.show() ratio_x = 1 ratio_y = 1.2 # 1.3 binary = False median_blur = False img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions = self.do_prediction(patches, img, model_region) text_region2 = resize_image(prediction_regions, img_height_h, img_width_h) # plt.imshow(text_region2[:,:,0]) # plt.show() session_region.close() del model_region del session_region gc.collect() # text_region1=text_region1[:,:,0] # text_region2=text_region2[:,:,0] # text_region1[(text_region1[:,:]==2) & (text_region2[:,:]==1)]=1 mask_zeros_from_1 = (text_region2[:, :, 0] == 0) * 1 # mask_text_from_1=(text_region1[:,:,0]==1)*1 mask_img_text_region1 = (text_region1[:, :, 0] == 2) * 1 text_region2_1st_channel = text_region1[:, :, 0] text_region2_1st_channel[mask_zeros_from_1 == 1] = 0 ##text_region2_1st_channel[mask_img_text_region1[:,:]==1]=2 # text_region2_1st_channel[(mask_text_from_1==1) & (text_region2_1st_channel==2)]=1 mask_lines1 = (text_region1[:, :, 0] == 3) * 1 mask_lines2 = (text_region2[:, :, 0] == 3) * 1 mask_lines2[mask_lines1[:, :] == 1] = 1 # plt.imshow(text_region2_1st_channel) # plt.show() text_region2_1st_channel = cv2.erode(text_region2_1st_channel[:, :], self.kernel, iterations=4) # plt.imshow(text_region2_1st_channel) # plt.show() text_region2_1st_channel = cv2.dilate(text_region2_1st_channel[:, :], self.kernel, iterations=4) text_region2_1st_channel[mask_lines2[:, :] == 1] = 3 # text_region2_1st_channel[ (prediction_regions_org[:,:]==1) & (text_region2_1st_channel[:,:]==2)]=1 # only in the case of model 3 text_region2_1st_channel[(prediction_regions_longshot[:, :] == 1) & (text_region2_1st_channel[:, :] == 2)] = 1 text_region2_1st_channel[(prediction_regions_org[:, :] == 2) & (text_region2_1st_channel[:, :] == 0)] = 2 # text_region2_1st_channel[prediction_regions_org[:,:]==0]=0 # plt.imshow(text_region2_1st_channel) # plt.show() # text_region2_1st_channel[:,:400]=0 mask_texts_only = (text_region2_1st_channel[:, :] == 1) * 1 mask_images_only = (text_region2_1st_channel[:, :] == 2) * 1 mask_lines_only = (text_region2_1st_channel[:, :] == 3) * 1 pixel_img = 1 polygons_of_only_texts = return_contours_of_interested_region(mask_texts_only, pixel_img) polygons_of_only_images = return_contours_of_interested_region(mask_images_only, pixel_img) polygons_of_only_lines = return_contours_of_interested_region(mask_lines_only, pixel_img) text_regions_p_true = np.zeros(text_region2_1st_channel.shape) # text_regions_p_true[:,:]=text_regions_p_1[:,:] text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts=polygons_of_only_lines, color=(3, 3, 3)) text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts=polygons_of_only_images, color=(2, 2, 2)) text_regions_p_true = cv2.fillPoly(text_regions_p_true, pts=polygons_of_only_texts, color=(1, 1, 1)) ##print(np.unique(text_regions_p_true)) # text_regions_p_true_3d=np.repeat(text_regions_p_1[:, :, np.newaxis], 3, axis=2) # text_regions_p_true_3d=text_regions_p_true_3d.astype(np.uint8) return text_regions_p_true # text_region2_1st_channel def get_regions_from_xy(self, img): img_org = np.copy(img) img_height_h = img_org.shape[0] img_width_h = img_org.shape[1] model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p) gaussian_filter = False patches = True binary = True ratio_x = 1 ratio_y = 1 median_blur = False if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions_org = self.do_prediction(patches, img, model_region) ###plt.imshow(prediction_regions_org[:,:,0]) ###plt.show() ##sys.exit() prediction_regions_org = prediction_regions_org[:, :, 0] gaussian_filter = False patches = True binary = False ratio_x = 1.1 ratio_y = 1 median_blur = False # img= resize_image(img_org, int(img_org.shape[0]*0.8), int(img_org.shape[1]*1.6)) img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions = self.do_prediction(patches, img, model_region) text_region1 = resize_image(prediction_regions, img_height_h, img_width_h) ratio_x = 1 ratio_y = 1.1 binary = False median_blur = False img = resize_image(img_org, int(img_org.shape[0] * ratio_y), int(img_org.shape[1] * ratio_x)) if binary: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint16) if median_blur: img = cv2.medianBlur(img, 5) if gaussian_filter: img = cv2.GaussianBlur(img, (5, 5), 0) img = img.astype(np.uint16) prediction_regions = self.do_prediction(patches, img, model_region) text_region2 = resize_image(prediction_regions, img_height_h, img_width_h) session_region.close() del model_region del session_region gc.collect() mask_zeros_from_1 = (text_region1[:, :, 0] == 0) * 1 # mask_text_from_1=(text_region1[:,:,0]==1)*1 mask_img_text_region1 = (text_region1[:, :, 0] == 2) * 1 text_region2_1st_channel = text_region2[:, :, 0] text_region2_1st_channel[mask_zeros_from_1 == 1] = 0 text_region2_1st_channel[mask_img_text_region1[:, :] == 1] = 2 # text_region2_1st_channel[(mask_text_from_1==1) & (text_region2_1st_channel==2)]=1 mask_lines1 = (text_region1[:, :, 0] == 3) * 1 mask_lines2 = (text_region2[:, :, 0] == 3) * 1 mask_lines2[mask_lines1[:, :] == 1] = 1 ##plt.imshow(text_region2_1st_channel) ##plt.show() text_region2_1st_channel = cv2.erode(text_region2_1st_channel[:, :], self.kernel, iterations=5) ##plt.imshow(text_region2_1st_channel) ##plt.show() text_region2_1st_channel = cv2.dilate(text_region2_1st_channel[:, :], self.kernel, iterations=5) text_region2_1st_channel[mask_lines2[:, :] == 1] = 3 text_region2_1st_channel[(prediction_regions_org[:, :] == 1) & (text_region2_1st_channel[:, :] == 2)] = 1 text_region2_1st_channel[prediction_regions_org[:, :] == 3] = 3 ##plt.imshow(text_region2_1st_channel) ##plt.show() return text_region2_1st_channel def do_work_of_textline_seperation(self, queue_of_all_params, polygons_per_process, index_polygons_per_process, con_par_org, textline_mask_tot, mask_texts_only, num_col, scale_par, boxes_text): textregions_cnt_tot_per_process = [] textlines_cnt_tot_per_process = [] index_polygons_per_process_per_process = [] polygons_per_par_process_per_process = [] textline_cnt_seperated = np.zeros(textline_mask_tot.shape) for iiii in range(len(polygons_per_process)): # crop_img,crop_coor=crop_image_inside_box(boxes_text[mv],image_page_rotated) # arg_max=np.argmax(areas_cnt_only_text) textregions_cnt_tot_per_process.append(polygons_per_process[iiii] / scale_par) textline_region_in_image = np.zeros(textline_mask_tot.shape) cnt_o_t_max = polygons_per_process[iiii] x, y, w, h = cv2.boundingRect(cnt_o_t_max) mask_biggest = np.zeros(mask_texts_only.shape) mask_biggest = cv2.fillPoly(mask_biggest, pts=[cnt_o_t_max], color=(1, 1, 1)) mask_region_in_patch_region = mask_biggest[y : y + h, x : x + w] textline_biggest_region = mask_biggest * textline_mask_tot textline_rotated_seperated = self.seperate_lines_new2(textline_biggest_region[y : y + h, x : x + w], 0, num_col) # new line added ##print(np.shape(textline_rotated_seperated),np.shape(mask_biggest)) textline_rotated_seperated[mask_region_in_patch_region[:, :] != 1] = 0 # till here textline_cnt_seperated[y : y + h, x : x + w] = textline_rotated_seperated textline_region_in_image[y : y + h, x : x + w] = textline_rotated_seperated # plt.imshow(textline_region_in_image) # plt.show() # plt.imshow(textline_cnt_seperated) # plt.show() pixel_img = 1 cnt_textlines_in_image = return_contours_of_interested_textline(textline_region_in_image, pixel_img) textlines_cnt_per_region = [] for jjjj in range(len(cnt_textlines_in_image)): mask_biggest2 = np.zeros(mask_texts_only.shape) mask_biggest2 = cv2.fillPoly(mask_biggest2, pts=[cnt_textlines_in_image[jjjj]], color=(1, 1, 1)) if num_col + 1 == 1: mask_biggest2 = cv2.dilate(mask_biggest2, self.kernel, iterations=5) else: mask_biggest2 = cv2.dilate(mask_biggest2, self.kernel, iterations=4) pixel_img = 1 cnt_textlines_in_image_ind = return_contours_of_interested_textline(mask_biggest2, pixel_img) try: textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0] / scale_par) except: pass # print(len(cnt_textlines_in_image_ind)) # plt.imshow(mask_biggest2) # plt.show() textlines_cnt_tot_per_process.append(textlines_cnt_per_region) index_polygons_per_process_per_process.append(index_polygons_per_process[iiii]) polygons_per_par_process_per_process.append(con_par_org[iiii]) queue_of_all_params.put([index_polygons_per_process_per_process, polygons_per_par_process_per_process, textregions_cnt_tot_per_process, textlines_cnt_tot_per_process]) def seperate_lines_new(img_path, thetha, num_col, dir_of_all, f_name): if num_col == 1: num_patches = int(img_path.shape[1] / 200.0) else: num_patches = int(img_path.shape[1] / 100.0) # num_patches=int(img_path.shape[1]/200.) if num_patches == 0: num_patches = 1 (h, w) = img_path.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, -thetha, 1.0) x_d = M[0, 2] y_d = M[1, 2] thetha = thetha / 180.0 * np.pi rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]]) x_min_cont = 0 x_max_cont = img_path.shape[1] y_min_cont = 0 y_max_cont = img_path.shape[0] xv = np.linspace(x_min_cont, x_max_cont, 1000) mada_n = img_path.sum(axis=1) ##plt.plot(mada_n) ##plt.show() first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None)) y = mada_n[:] # [first_nonzero:last_nonzero] y_help = np.zeros(len(y) + 40) y_help[20 : len(y) + 20] = y x = np.array(range(len(y))) peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0) if len(peaks_real) <= 2 and len(peaks_real) > 1: sigma_gaus = 10 else: sigma_gaus = 6 z = gaussian_filter1d(y_help, sigma_gaus) zneg_rev = -y_help + np.max(y_help) zneg = np.zeros(len(zneg_rev) + 40) zneg[20 : len(zneg_rev) + 20] = zneg_rev zneg = gaussian_filter1d(zneg, sigma_gaus) peaks, _ = find_peaks(z, height=0) peaks_neg, _ = find_peaks(zneg, height=0) for nn in range(len(peaks_neg)): if peaks_neg[nn] > len(z) - 1: peaks_neg[nn] = len(z) - 1 if peaks_neg[nn] < 0: peaks_neg[nn] = 0 diff_peaks = np.abs(np.diff(peaks_neg)) cut_off = 20 peaks_neg_true = [] forest = [] for i in range(len(peaks_neg)): if i == 0: forest.append(peaks_neg[i]) if i < (len(peaks_neg) - 1): if diff_peaks[i] <= cut_off: forest.append(peaks_neg[i + 1]) if diff_peaks[i] > cut_off: # print(forest[np.argmin(z[forest]) ] ) if not isNaN(forest[np.argmin(z[forest])]): # print(len(z),forest) peaks_neg_true.append(forest[np.argmin(z[forest])]) forest = [] forest.append(peaks_neg[i + 1]) if i == (len(peaks_neg) - 1): # print(print(forest[np.argmin(z[forest]) ] )) if not isNaN(forest[np.argmin(z[forest])]): peaks_neg_true.append(forest[np.argmin(z[forest])]) peaks_neg_true = np.array(peaks_neg_true) """ #plt.figure(figsize=(40,40)) #plt.subplot(1,2,1) #plt.title('Textline segmentation von Textregion') #plt.imshow(img_path) #plt.xlabel('X') #plt.ylabel('Y') #plt.subplot(1,2,2) #plt.title('Dichte entlang X') #base = pyplot.gca().transData #rot = transforms.Affine2D().rotate_deg(90) #plt.plot(zneg,np.array(range(len(zneg)))) #plt.plot(zneg[peaks_neg_true],peaks_neg_true,'*') #plt.gca().invert_yaxis() #plt.xlabel('Dichte') #plt.ylabel('Y') ##plt.plot([0,len(y)], [grenze,grenze]) #plt.show() """ peaks_neg_true = peaks_neg_true - 20 - 20 peaks = peaks - 20 # dis_up=peaks_neg_true[14]-peaks_neg_true[0] # dis_down=peaks_neg_true[18]-peaks_neg_true[14] img_patch_ineterst = img_path[:, :] # [peaks_neg_true[14]-dis_up:peaks_neg_true[15]+dis_down ,:] ##plt.imshow(img_patch_ineterst) ##plt.show() length_x = int(img_path.shape[1] / float(num_patches)) margin = int(0.04 * length_x) width_mid = length_x - 2 * margin nxf = img_path.shape[1] / float(width_mid) if nxf > int(nxf): nxf = int(nxf) + 1 else: nxf = int(nxf) slopes_tile_wise = [] for i in range(nxf): if i == 0: index_x_d = i * width_mid index_x_u = index_x_d + length_x elif i > 0: index_x_d = i * width_mid index_x_u = index_x_d + length_x if index_x_u > img_path.shape[1]: index_x_u = img_path.shape[1] index_x_d = img_path.shape[1] - length_x # img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] img_xline = img_patch_ineterst[:, index_x_d:index_x_u] sigma = 2 try: slope_xline = return_deskew_slop(img_xline, sigma, dir_of_all=dir_of_all, f_name=f_name) except: slope_xline = 0 slopes_tile_wise.append(slope_xline) # print(slope_xline,'xlineeee') img_line_rotated = rotate_image(img_xline, slope_xline) img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1 """ xline=np.linspace(0,img_path.shape[1],nx) slopes_tile_wise=[] for ui in range( nx-1 ): img_xline=img_patch_ineterst[:,int(xline[ui]):int(xline[ui+1])] ##plt.imshow(img_xline) ##plt.show() sigma=3 try: slope_xline=return_deskew_slop(img_xline,sigma, dir_of_all=self.dir_of_all, f_name=self.f_name) except: slope_xline=0 slopes_tile_wise.append(slope_xline) print(slope_xline,'xlineeee') img_line_rotated=rotate_image(img_xline,slope_xline) ##plt.imshow(img_line_rotated) ##plt.show() """ # dis_up=peaks_neg_true[14]-peaks_neg_true[0] # dis_down=peaks_neg_true[18]-peaks_neg_true[14] img_patch_ineterst = img_path[:, :] # [peaks_neg_true[14]-dis_up:peaks_neg_true[14]+dis_down ,:] img_patch_ineterst_revised = np.zeros(img_patch_ineterst.shape) for i in range(nxf): if i == 0: index_x_d = i * width_mid index_x_u = index_x_d + length_x elif i > 0: index_x_d = i * width_mid index_x_u = index_x_d + length_x if index_x_u > img_path.shape[1]: index_x_u = img_path.shape[1] index_x_d = img_path.shape[1] - length_x img_xline = img_patch_ineterst[:, index_x_d:index_x_u] img_int = np.zeros((img_xline.shape[0], img_xline.shape[1])) img_int[:, :] = img_xline[:, :] # img_patch_org[:,:,0] img_resized = np.zeros((int(img_int.shape[0] * (1.2)), int(img_int.shape[1] * (3)))) img_resized[int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0], int(img_int.shape[1] * (1)) : int(img_int.shape[1] * (1)) + img_int.shape[1]] = img_int[:, :] ##plt.imshow(img_xline) ##plt.show() img_line_rotated = rotate_image(img_resized, slopes_tile_wise[i]) img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1 img_patch_seperated = seperate_lines_new_inside_teils(img_line_rotated, 0) ##plt.imshow(img_patch_seperated) ##plt.show() img_patch_seperated_returned = rotate_image(img_patch_seperated, -slopes_tile_wise[i]) img_patch_seperated_returned[:, :][img_patch_seperated_returned[:, :] != 0] = 1 img_patch_seperated_returned_true_size = img_patch_seperated_returned[int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0], int(img_int.shape[1] * (1)) : int(img_int.shape[1] * (1)) + img_int.shape[1]] img_patch_seperated_returned_true_size = img_patch_seperated_returned_true_size[:, margin : length_x - margin] img_patch_ineterst_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_seperated_returned_true_size """ for ui in range( nx-1 ): img_xline=img_patch_ineterst[:,int(xline[ui]):int(xline[ui+1])] img_int=np.zeros((img_xline.shape[0],img_xline.shape[1])) img_int[:,:]=img_xline[:,:]#img_patch_org[:,:,0] img_resized=np.zeros((int( img_int.shape[0]*(1.2) ) , int( img_int.shape[1]*(3) ) )) img_resized[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]=img_int[:,:] ##plt.imshow(img_xline) ##plt.show() img_line_rotated=rotate_image(img_resized,slopes_tile_wise[ui]) #img_patch_seperated = seperate_lines_new_inside_teils(img_line_rotated,0) img_patch_seperated = seperate_lines_new_inside_teils(img_line_rotated,0) img_patch_seperated_returned=rotate_image(img_patch_seperated,-slopes_tile_wise[ui]) ##plt.imshow(img_patch_seperated) ##plt.show() print(img_patch_seperated_returned.shape) #plt.imshow(img_patch_seperated_returned[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]) #plt.show() img_patch_ineterst_revised[:,int(xline[ui]):int(xline[ui+1])]=img_patch_seperated_returned[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ] """ # print(img_patch_ineterst_revised.shape,np.unique(img_patch_ineterst_revised)) ##plt.imshow(img_patch_ineterst_revised) ##plt.show() return img_patch_ineterst_revised def return_contours_of_interested_region_and_bounding_box(region_pre_p, pixel): # pixels of images are identified by 5 cnts_images = (region_pre_p[:, :, 0] == pixel) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_imgs = return_parent_contours(contours_imgs, hiearchy) contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=0.0003) boxes = [] for jj in range(len(contours_imgs)): x, y, w, h = cv2.boundingRect(contours_imgs[jj]) boxes.append([int(x), int(y), int(w), int(h)]) return contours_imgs, boxes def return_bonding_box_of_contours(cnts): boxes_tot = [] for i in range(len(cnts)): x, y, w, h = cv2.boundingRect(cnts[i]) box = [x, y, w, h] boxes_tot.append(box) return boxes_tot def find_features_of_contours(contours_main): areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))]) M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))] cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))] x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))]) x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))]) y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))]) y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))]) return y_min_main, y_max_main, areas_main def filter_contours_area_of_image_interiors(image, contours, hirarchy, max_area, min_area): found_polygons_early = list() jv = 0 for c in contours: if len(c) < 3: # A polygon cannot have less than 3 points continue polygon = geometry.Polygon([point[0] for point in c]) area = polygon.area if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and hirarchy[0][jv][3] != -1: # print(c[0][0][1]) found_polygons_early.append(np.array([point for point in polygon.exterior.coords], dtype=np.uint)) jv += 1 return found_polygons_early