def seperate_lines(img_patch, contour_text_interest, thetha, x_help, y_help): (h, w) = img_patch.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, -thetha, 1.0) x_d = M[0, 2] y_d = M[1, 2] thetha = thetha / 180.0 * np.pi rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]]) contour_text_interest_copy = contour_text_interest.copy() x_cont = contour_text_interest[:, 0, 0] y_cont = contour_text_interest[:, 0, 1] x_cont = x_cont - np.min(x_cont) y_cont = y_cont - np.min(y_cont) x_min_cont = 0 x_max_cont = img_patch.shape[1] y_min_cont = 0 y_max_cont = img_patch.shape[0] xv = np.linspace(x_min_cont, x_max_cont, 1000) textline_patch_sum_along_width = img_patch.sum(axis=1) first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None)) y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero] y_padded = np.zeros(len(y) + 40) y_padded[20 : len(y) + 20] = y x = np.array(range(len(y))) peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0) if 1 > 0: try: y_padded_smoothed_e = gaussian_filter1d(y_padded, 2) y_padded_up_to_down_e = -y_padded + np.max(y_padded) y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40) y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2) peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0) peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0) neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e]) arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3] diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted) arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted))) arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1] peaks_new = peaks_e[:] peaks_neg_new = peaks_neg_e[:] clusters_to_be_deleted = [] if len(arg_diff_cluster) > 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1]) clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] for m in range(len(clusters_to_be_deleted)): min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]]) max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]]) peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0)) for m1 in range(len(clusters_to_be_deleted[m])): peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]] peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]] peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]] peaks_new_tot = [] for i1 in peaks_new: peaks_new_tot.append(i1) for i1 in peaks_new_extra: peaks_new_tot.append(i1) peaks_new_tot = np.sort(peaks_new_tot) else: peaks_new_tot = peaks_e[:] textline_con, hierachy = return_contours_of_image(img_patch) textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008) y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil) sigma_gaus = int(y_diff_mean * (7.0 / 40.0)) # print(sigma_gaus,'sigma_gaus') except: sigma_gaus = 12 if sigma_gaus < 3: sigma_gaus = 3 # print(sigma_gaus,'sigma') y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus) y_padded_up_to_down = -y_padded + np.max(y_padded) y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40) y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus) peaks, _ = find_peaks(y_padded_smoothed, height=0) peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0) try: neg_peaks_max = np.max(y_padded_smoothed[peaks]) arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42] diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted) arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted))) arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1] except: arg_neg_must_be_deleted = [] arg_diff_cluster = [] try: peaks_new = peaks[:] peaks_neg_new = peaks_neg[:] clusters_to_be_deleted = [] if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1]) clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[:]) if len(arg_neg_must_be_deleted) == 1: clusters_to_be_deleted.append(arg_neg_must_be_deleted) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] for m in range(len(clusters_to_be_deleted)): min_cluster = np.min(peaks[clusters_to_be_deleted[m]]) max_cluster = np.max(peaks[clusters_to_be_deleted[m]]) peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0)) for m1 in range(len(clusters_to_be_deleted[m])): peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]] peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]] peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]] peaks_new_tot = [] for i1 in peaks_new: peaks_new_tot.append(i1) for i1 in peaks_new_extra: peaks_new_tot.append(i1) peaks_new_tot = np.sort(peaks_new_tot) ##plt.plot(y_padded_up_to_down_padded) ##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*') ##plt.show() ##plt.plot(y_padded_up_to_down_padded) ##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*') ##plt.show() ##plt.plot(y_padded_smoothed) ##plt.plot(peaks,y_padded_smoothed[peaks],'*') ##plt.show() ##plt.plot(y_padded_smoothed) ##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*') ##plt.show() peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] else: peaks_new_tot = peaks[:] peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] except: pass mean_value_of_peaks = np.mean(y_padded_smoothed[peaks]) std_value_of_peaks = np.std(y_padded_smoothed[peaks]) peaks_values = y_padded_smoothed[peaks] peaks_neg = peaks_neg - 20 - 20 peaks = peaks - 20 for jj in range(len(peaks_neg)): if peaks_neg[jj] > len(x) - 1: peaks_neg[jj] = len(x) - 1 for jj in range(len(peaks)): if peaks[jj] > len(x) - 1: peaks[jj] = len(x) - 1 textline_boxes = [] textline_boxes_rot = [] if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3: for jj in range(len(peaks)): if jj == (len(peaks) - 1): dis_to_next_up = abs(peaks[jj] - peaks_neg[jj]) dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1]) if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0: point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = y_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) else: point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = y_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2) else: dis_to_next_up = abs(peaks[jj] - peaks_neg[jj]) dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1]) if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0: point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) else: point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2) if point_down_narrow >= img_patch.shape[0]: point_down_narrow = img_patch.shape[0] - 2 distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = np.array(distances) xvinside = xv[distances >= 0] if len(xvinside) == 0: x_min = x_min_cont x_max = x_max_cont else: x_min = np.min(xvinside) # max(x_min_interest,x_min_cont) x_max = np.max(xvinside) # min(x_max_interest,x_max_cont) p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)]) p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)]) p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)]) p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 x_min_rot1 = x_min_rot1 - x_help x_max_rot2 = x_max_rot2 - x_help x_max_rot3 = x_max_rot3 - x_help x_min_rot4 = x_min_rot4 - x_help point_up_rot1 = point_up_rot1 - y_help point_up_rot2 = point_up_rot2 - y_help point_down_rot3 = point_down_rot3 - y_help point_down_rot4 = point_down_rot4 - y_help textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]])) elif len(peaks) < 1: pass elif len(peaks) == 1: distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[0] + first_nonzero), True) for mj in range(len(xv))] distances = np.array(distances) xvinside = xv[distances >= 0] if len(xvinside) == 0: x_min = x_min_cont x_max = x_max_cont else: x_min = np.min(xvinside) # max(x_min_interest,x_min_cont) x_max = np.max(xvinside) # min(x_max_interest,x_max_cont) # x_min = x_min_cont # x_max = x_max_cont y_min = y_min_cont y_max = y_max_cont p1 = np.dot(rotation_matrix, [int(x_min), int(y_min)]) p2 = np.dot(rotation_matrix, [int(x_max), int(y_min)]) p3 = np.dot(rotation_matrix, [int(x_max), int(y_max)]) p4 = np.dot(rotation_matrix, [int(x_min), int(y_max)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 x_min_rot1 = x_min_rot1 - x_help x_max_rot2 = x_max_rot2 - x_help x_max_rot3 = x_max_rot3 - x_help x_min_rot4 = x_min_rot4 - x_help point_up_rot1 = point_up_rot1 - y_help point_up_rot2 = point_up_rot2 - y_help point_down_rot3 = point_down_rot3 - y_help point_down_rot4 = point_down_rot4 - y_help textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(y_min)], [int(x_max), int(y_min)], [int(x_max), int(y_max)], [int(x_min), int(y_max)]])) elif len(peaks) == 2: dis_to_next = np.abs(peaks[1] - peaks[0]) for jj in range(len(peaks)): if jj == 0: point_up = 0 # peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next) if point_up < 0: point_up = 1 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next) elif jj == 1: point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next) if point_down >= img_patch.shape[0]: point_down = img_patch.shape[0] - 2 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next) distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = np.array(distances) xvinside = xv[distances >= 0] if len(xvinside) == 0: x_min = x_min_cont x_max = x_max_cont else: x_min = np.min(xvinside) x_max = np.max(xvinside) p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)]) p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)]) p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)]) p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 x_min_rot1 = x_min_rot1 - x_help x_max_rot2 = x_max_rot2 - x_help x_max_rot3 = x_max_rot3 - x_help x_min_rot4 = x_min_rot4 - x_help point_up_rot1 = point_up_rot1 - y_help point_up_rot2 = point_up_rot2 - y_help point_down_rot3 = point_down_rot3 - y_help point_down_rot4 = point_down_rot4 - y_help textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]])) else: for jj in range(len(peaks)): if jj == 0: dis_to_next = peaks[jj + 1] - peaks[jj] # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next) point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next) if point_up < 0: point_up = 1 # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next) point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next) elif jj == len(peaks) - 1: dis_to_next = peaks[jj] - peaks[jj - 1] # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next) point_down = peaks[jj] + first_nonzero + int(1.0 / 1.7 * dis_to_next) if point_down >= img_patch.shape[0]: point_down = img_patch.shape[0] - 2 # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next) point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next) else: dis_to_next_down = peaks[jj + 1] - peaks[jj] dis_to_next_up = peaks[jj] - peaks[jj - 1] point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up) point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down) distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = np.array(distances) xvinside = xv[distances >= 0] if len(xvinside) == 0: x_min = x_min_cont x_max = x_max_cont else: x_min = np.min(xvinside) # max(x_min_interest,x_min_cont) x_max = np.max(xvinside) # min(x_max_interest,x_max_cont) p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)]) p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)]) p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)]) p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 x_min_rot1 = x_min_rot1 - x_help x_max_rot2 = x_max_rot2 - x_help x_max_rot3 = x_max_rot3 - x_help x_min_rot4 = x_min_rot4 - x_help point_up_rot1 = point_up_rot1 - y_help point_up_rot2 = point_up_rot2 - y_help point_down_rot3 = point_down_rot3 - y_help point_down_rot4 = point_down_rot4 - y_help textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]])) return peaks, textline_boxes_rot def seperate_lines_vertical(img_patch, contour_text_interest, thetha): thetha = thetha + 90 (h, w) = img_patch.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, -thetha, 1.0) x_d = M[0, 2] y_d = M[1, 2] thetha = thetha / 180.0 * np.pi rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]]) contour_text_interest_copy = contour_text_interest.copy() x_cont = contour_text_interest[:, 0, 0] y_cont = contour_text_interest[:, 0, 1] x_cont = x_cont - np.min(x_cont) y_cont = y_cont - np.min(y_cont) x_min_cont = 0 x_max_cont = img_patch.shape[1] y_min_cont = 0 y_max_cont = img_patch.shape[0] xv = np.linspace(x_min_cont, x_max_cont, 1000) textline_patch_sum_along_width = img_patch.sum(axis=0) first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None)) y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero] y_padded = np.zeros(len(y) + 40) y_padded[20 : len(y) + 20] = y x = np.array(range(len(y))) peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0) if 1 > 0: try: y_padded_smoothed_e = gaussian_filter1d(y_padded, 2) y_padded_up_to_down_e = -y_padded + np.max(y_padded) y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40) y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2) peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0) peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0) neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e]) arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3] diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted) arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted))) arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1] peaks_new = peaks_e[:] peaks_neg_new = peaks_neg_e[:] clusters_to_be_deleted = [] if len(arg_diff_cluster) > 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1]) clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] for m in range(len(clusters_to_be_deleted)): min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]]) max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]]) peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0)) for m1 in range(len(clusters_to_be_deleted[m])): peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]] peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]] peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]] peaks_new_tot = [] for i1 in peaks_new: peaks_new_tot.append(i1) for i1 in peaks_new_extra: peaks_new_tot.append(i1) peaks_new_tot = np.sort(peaks_new_tot) else: peaks_new_tot = peaks_e[:] textline_con, hierachy = return_contours_of_image(img_patch) textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008) y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil) sigma_gaus = int(y_diff_mean * (7.0 / 40.0)) # print(sigma_gaus,'sigma_gaus') except: sigma_gaus = 12 if sigma_gaus < 3: sigma_gaus = 3 # print(sigma_gaus,'sigma') y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus) y_padded_up_to_down = -y_padded + np.max(y_padded) y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40) y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus) peaks, _ = find_peaks(y_padded_smoothed, height=0) peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0) # plt.plot(y_padded_up_to_down_padded) # plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*') # plt.title('negs') # plt.show() # plt.plot(y_padded_smoothed) # plt.plot(peaks,y_padded_smoothed[peaks],'*') # plt.title('poss') # plt.show() neg_peaks_max = np.max(y_padded_up_to_down_padded[peaks_neg]) arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42] diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted) arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted))) arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1] peaks_new = peaks[:] peaks_neg_new = peaks_neg[:] clusters_to_be_deleted = [] if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1]) clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[:]) if len(arg_neg_must_be_deleted) == 1: clusters_to_be_deleted.append(arg_neg_must_be_deleted) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] for m in range(len(clusters_to_be_deleted)): min_cluster = np.min(peaks[clusters_to_be_deleted[m]]) max_cluster = np.max(peaks[clusters_to_be_deleted[m]]) peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0)) for m1 in range(len(clusters_to_be_deleted[m])): peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]] peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]] peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]] peaks_new_tot = [] for i1 in peaks_new: peaks_new_tot.append(i1) for i1 in peaks_new_extra: peaks_new_tot.append(i1) peaks_new_tot = np.sort(peaks_new_tot) peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] else: peaks_new_tot = peaks[:] peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] mean_value_of_peaks = np.mean(y_padded_smoothed[peaks]) std_value_of_peaks = np.std(y_padded_smoothed[peaks]) peaks_values = y_padded_smoothed[peaks] peaks_neg = peaks_neg - 20 - 20 peaks = peaks - 20 for jj in range(len(peaks_neg)): if peaks_neg[jj] > len(x) - 1: peaks_neg[jj] = len(x) - 1 for jj in range(len(peaks)): if peaks[jj] > len(x) - 1: peaks[jj] = len(x) - 1 textline_boxes = [] textline_boxes_rot = [] if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3: # print('11') for jj in range(len(peaks)): if jj == (len(peaks) - 1): dis_to_next_up = abs(peaks[jj] - peaks_neg[jj]) dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1]) if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0: point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = x_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) else: point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = x_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2) else: dis_to_next_up = abs(peaks[jj] - peaks_neg[jj]) dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1]) if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0: point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) else: point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0) point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0) point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2) if point_down_narrow >= img_patch.shape[0]: point_down_narrow = img_patch.shape[0] - 2 distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = np.array(distances) xvinside = xv[distances >= 0] if len(xvinside) == 0: x_min = x_min_cont x_max = x_max_cont else: x_min = np.min(xvinside) # max(x_min_interest,x_min_cont) x_max = np.max(xvinside) # min(x_max_interest,x_max_cont) p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)]) p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)]) p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)]) p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]])) elif len(peaks) < 1: pass elif len(peaks) == 1: x_min = x_min_cont x_max = x_max_cont y_min = y_min_cont y_max = y_max_cont p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)]) p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)]) p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)]) p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(y_min)], [int(x_max), int(y_min)], [int(x_max), int(y_max)], [int(x_min), int(y_max)]])) elif len(peaks) == 2: dis_to_next = np.abs(peaks[1] - peaks[0]) for jj in range(len(peaks)): if jj == 0: point_up = 0 # peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next) if point_up < 0: point_up = 1 point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next) elif jj == 1: point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next) if point_down >= img_patch.shape[0]: point_down = img_patch.shape[0] - 2 point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next) distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = np.array(distances) xvinside = xv[distances >= 0] if len(xvinside) == 0: x_min = x_min_cont x_max = x_max_cont else: x_min = np.min(xvinside) x_max = np.max(xvinside) p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)]) p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)]) p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)]) p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]])) else: for jj in range(len(peaks)): if jj == 0: dis_to_next = peaks[jj + 1] - peaks[jj] # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next) point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next) if point_up < 0: point_up = 1 # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next) point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next) elif jj == len(peaks) - 1: dis_to_next = peaks[jj] - peaks[jj - 1] # point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next) point_down = peaks[jj] + first_nonzero + int(1.0 / 1.7 * dis_to_next) if point_down >= img_patch.shape[0]: point_down = img_patch.shape[0] - 2 # point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next) point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next) else: dis_to_next_down = peaks[jj + 1] - peaks[jj] dis_to_next_up = peaks[jj] - peaks[jj - 1] point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up) point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down) distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))] distances = np.array(distances) xvinside = xv[distances >= 0] if len(xvinside) == 0: x_min = x_min_cont x_max = x_max_cont else: x_min = np.min(xvinside) # max(x_min_interest,x_min_cont) x_max = np.max(xvinside) # min(x_max_interest,x_max_cont) p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)]) p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)]) p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)]) p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)]) x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d if x_min_rot1 < 0: x_min_rot1 = 0 if x_min_rot4 < 0: x_min_rot4 = 0 if point_up_rot1 < 0: point_up_rot1 = 0 if point_up_rot2 < 0: point_up_rot2 = 0 textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]])) textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]])) return peaks, textline_boxes_rot def seperate_lines_new_inside_teils2(img_patch, thetha): (h, w) = img_patch.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, -thetha, 1.0) x_d = M[0, 2] y_d = M[1, 2] thetha = thetha / 180.0 * np.pi rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]]) # contour_text_interest_copy = contour_text_interest.copy() # x_cont = contour_text_interest[:, 0, 0] # y_cont = contour_text_interest[:, 0, 1] # x_cont = x_cont - np.min(x_cont) # y_cont = y_cont - np.min(y_cont) x_min_cont = 0 x_max_cont = img_patch.shape[1] y_min_cont = 0 y_max_cont = img_patch.shape[0] xv = np.linspace(x_min_cont, x_max_cont, 1000) textline_patch_sum_along_width = img_patch.sum(axis=1) first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None)) y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero] y_padded = np.zeros(len(y) + 40) y_padded[20 : len(y) + 20] = y x = np.array(range(len(y))) peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0) if 1 > 0: try: y_padded_smoothed_e = gaussian_filter1d(y_padded, 2) y_padded_up_to_down_e = -y_padded + np.max(y_padded) y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40) y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2) peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0) peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0) neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e]) arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3] diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted) arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted))) arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1] peaks_new = peaks_e[:] peaks_neg_new = peaks_neg_e[:] clusters_to_be_deleted = [] if len(arg_diff_cluster) > 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1]) clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] for m in range(len(clusters_to_be_deleted)): min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]]) max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]]) peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0)) for m1 in range(len(clusters_to_be_deleted[m])): peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]] peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]] peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]] peaks_new_tot = [] for i1 in peaks_new: peaks_new_tot.append(i1) for i1 in peaks_new_extra: peaks_new_tot.append(i1) peaks_new_tot = np.sort(peaks_new_tot) else: peaks_new_tot = peaks_e[:] textline_con, hierachy = return_contours_of_image(img_patch) textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008) y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil) sigma_gaus = int(y_diff_mean * (7.0 / 40.0)) # print(sigma_gaus,'sigma_gaus') except: sigma_gaus = 12 if sigma_gaus < 3: sigma_gaus = 3 # print(sigma_gaus,'sigma') y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus) y_padded_up_to_down = -y_padded + np.max(y_padded) y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40) y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus) peaks, _ = find_peaks(y_padded_smoothed, height=0) peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0) peaks_new = peaks[:] peaks_neg_new = peaks_neg[:] try: neg_peaks_max = np.max(y_padded_smoothed[peaks]) arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.24] diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted) arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted))) arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1] clusters_to_be_deleted = [] if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1]) for i in range(len(arg_diff_cluster) - 1): clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1]) clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :]) elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0: clusters_to_be_deleted.append(arg_neg_must_be_deleted[:]) if len(arg_neg_must_be_deleted) == 1: clusters_to_be_deleted.append(arg_neg_must_be_deleted) if len(clusters_to_be_deleted) > 0: peaks_new_extra = [] for m in range(len(clusters_to_be_deleted)): min_cluster = np.min(peaks[clusters_to_be_deleted[m]]) max_cluster = np.max(peaks[clusters_to_be_deleted[m]]) peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0)) for m1 in range(len(clusters_to_be_deleted[m])): peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]] peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]] peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]] peaks_new_tot = [] for i1 in peaks_new: peaks_new_tot.append(i1) for i1 in peaks_new_extra: peaks_new_tot.append(i1) peaks_new_tot = np.sort(peaks_new_tot) # plt.plot(y_padded_up_to_down_padded) # plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*') # plt.show() # plt.plot(y_padded_up_to_down_padded) # plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*') # plt.show() # plt.plot(y_padded_smoothed) # plt.plot(peaks,y_padded_smoothed[peaks],'*') # plt.show() # plt.plot(y_padded_smoothed) # plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*') # plt.show() peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] except: pass else: peaks_new_tot = peaks[:] peaks = peaks_new_tot[:] peaks_neg = peaks_neg_new[:] mean_value_of_peaks = np.mean(y_padded_smoothed[peaks]) std_value_of_peaks = np.std(y_padded_smoothed[peaks]) peaks_values = y_padded_smoothed[peaks] ###peaks_neg = peaks_neg - 20 - 20 ###peaks = peaks - 20 peaks_neg_true = peaks_neg[:] peaks_pos_true = peaks[:] if len(peaks_neg_true) > 0: peaks_neg_true = np.array(peaks_neg_true) peaks_neg_true = peaks_neg_true - 20 - 20 # print(peaks_neg_true) for i in range(len(peaks_neg_true)): img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0 else: pass if len(peaks_pos_true) > 0: peaks_pos_true = np.array(peaks_pos_true) peaks_pos_true = peaks_pos_true - 20 for i in range(len(peaks_pos_true)): ##img_patch[peaks_pos_true[i]-8:peaks_pos_true[i]+8,:]=1 img_patch[peaks_pos_true[i] - 6 : peaks_pos_true[i] + 6, :] = 1 else: pass kernel = np.ones((5, 5), np.uint8) # img_patch = cv2.erode(img_patch,kernel,iterations = 3) #######################img_patch = cv2.erode(img_patch,kernel,iterations = 2) img_patch = cv2.erode(img_patch, kernel, iterations=1) return img_patch def seperate_lines_new_inside_teils(img_path, thetha): (h, w) = img_path.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, -thetha, 1.0) x_d = M[0, 2] y_d = M[1, 2] thetha = thetha / 180.0 * np.pi rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]]) x_min_cont = 0 x_max_cont = img_path.shape[1] y_min_cont = 0 y_max_cont = img_path.shape[0] xv = np.linspace(x_min_cont, x_max_cont, 1000) mada_n = img_path.sum(axis=1) ##plt.plot(mada_n) ##plt.show() first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None)) y = mada_n[:] # [first_nonzero:last_nonzero] y_help = np.zeros(len(y) + 40) y_help[20 : len(y) + 20] = y x = np.array(range(len(y))) peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0) if len(peaks_real) <= 2 and len(peaks_real) > 1: sigma_gaus = 10 else: sigma_gaus = 5 z = gaussian_filter1d(y_help, sigma_gaus) zneg_rev = -y_help + np.max(y_help) zneg = np.zeros(len(zneg_rev) + 40) zneg[20 : len(zneg_rev) + 20] = zneg_rev zneg = gaussian_filter1d(zneg, sigma_gaus) peaks, _ = find_peaks(z, height=0) peaks_neg, _ = find_peaks(zneg, height=0) for nn in range(len(peaks_neg)): if peaks_neg[nn] > len(z) - 1: peaks_neg[nn] = len(z) - 1 if peaks_neg[nn] < 0: peaks_neg[nn] = 0 diff_peaks = np.abs(np.diff(peaks_neg)) cut_off = 20 peaks_neg_true = [] forest = [] for i in range(len(peaks_neg)): if i == 0: forest.append(peaks_neg[i]) if i < (len(peaks_neg) - 1): if diff_peaks[i] <= cut_off: forest.append(peaks_neg[i + 1]) if diff_peaks[i] > cut_off: # print(forest[np.argmin(z[forest]) ] ) if not isNaN(forest[np.argmin(z[forest])]): peaks_neg_true.append(forest[np.argmin(z[forest])]) forest = [] forest.append(peaks_neg[i + 1]) if i == (len(peaks_neg) - 1): # print(print(forest[np.argmin(z[forest]) ] )) if not isNaN(forest[np.argmin(z[forest])]): peaks_neg_true.append(forest[np.argmin(z[forest])]) diff_peaks_pos = np.abs(np.diff(peaks)) cut_off = 20 peaks_pos_true = [] forest = [] for i in range(len(peaks)): if i == 0: forest.append(peaks[i]) if i < (len(peaks) - 1): if diff_peaks_pos[i] <= cut_off: forest.append(peaks[i + 1]) if diff_peaks_pos[i] > cut_off: # print(forest[np.argmin(z[forest]) ] ) if not isNaN(forest[np.argmax(z[forest])]): peaks_pos_true.append(forest[np.argmax(z[forest])]) forest = [] forest.append(peaks[i + 1]) if i == (len(peaks) - 1): # print(print(forest[np.argmin(z[forest]) ] )) if not isNaN(forest[np.argmax(z[forest])]): peaks_pos_true.append(forest[np.argmax(z[forest])]) # print(len(peaks_neg_true) ,len(peaks_pos_true) ,'lensss') if len(peaks_neg_true) > 0: peaks_neg_true = np.array(peaks_neg_true) """ #plt.figure(figsize=(40,40)) #plt.subplot(1,2,1) #plt.title('Textline segmentation von Textregion') #plt.imshow(img_path) #plt.xlabel('X') #plt.ylabel('Y') #plt.subplot(1,2,2) #plt.title('Dichte entlang X') #base = pyplot.gca().transData #rot = transforms.Affine2D().rotate_deg(90) #plt.plot(zneg,np.array(range(len(zneg)))) #plt.plot(zneg[peaks_neg_true],peaks_neg_true,'*') #plt.gca().invert_yaxis() #plt.xlabel('Dichte') #plt.ylabel('Y') ##plt.plot([0,len(y)], [grenze,grenze]) #plt.show() """ peaks_neg_true = peaks_neg_true - 20 - 20 # print(peaks_neg_true) for i in range(len(peaks_neg_true)): img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0 else: pass if len(peaks_pos_true) > 0: peaks_pos_true = np.array(peaks_pos_true) peaks_pos_true = peaks_pos_true - 20 for i in range(len(peaks_pos_true)): img_path[peaks_pos_true[i] - 8 : peaks_pos_true[i] + 8, :] = 1 else: pass kernel = np.ones((5, 5), np.uint8) # img_path = cv2.erode(img_path,kernel,iterations = 3) img_path = cv2.erode(img_path, kernel, iterations=2) return img_path def seperate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_ind, add_boxes_coor_into_textlines): kernel = np.ones((5, 5), np.uint8) pixel = 255 min_area = 0 max_area = 1 if len(img_patch.shape) == 3: cnts_images = (img_patch[:, :, 0] == pixel) * 1 else: cnts_images = (img_patch[:, :] == pixel) * 1 cnts_images = cnts_images.astype(np.uint8) cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2) imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 0, 255, 0) contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours_imgs = return_parent_contours(contours_imgs, hiearchy) contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=max_area, min_area=min_area) cont_final = [] ###print(add_boxes_coor_into_textlines,'ikki') for i in range(len(contours_imgs)): img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3)) img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255)) img_contour = img_contour.astype(np.uint8) img_contour = cv2.dilate(img_contour, kernel, iterations=4) imgrayrot = cv2.cvtColor(img_contour, cv2.COLOR_BGR2GRAY) _, threshrot = cv2.threshold(imgrayrot, 0, 255, 0) contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) ##contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[ ##0] ##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1] ##if add_boxes_coor_into_textlines: ##print(np.shape(contours_text_rot[0]),'sjppo') ##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0] ##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1] cont_final.append(contours_text_rot[0]) ##print(cont_final,'nadizzzz') return None, cont_final