""" tool to extract table form data from alto xml data """ import gc import math import os import random import sys import time import warnings from multiprocessing import Process, Queue, cpu_count from sys import getsizeof import cv2 import numpy as np import matplotlib.pyplot as plt os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" stderr = sys.stderr sys.stderr = open(os.devnull, "w") from keras import backend as K from keras.models import load_model sys.stderr = stderr import tensorflow as tf tf.get_logger().setLevel("ERROR") warnings.filterwarnings("ignore") from scipy.signal import find_peaks from scipy.ndimage import gaussian_filter1d from shapely import geometry import xml.etree.ElementTree as ET#from lxml import etree as ET from matplotlib import pyplot, transforms import matplotlib.patches as mpatches import imutils from .utils.contour import ( contours_in_same_horizon, filter_contours_area_of_image_interiors, filter_contours_area_of_image_tables, filter_contours_area_of_image, find_contours_mean_y_diff, find_features_of_contours, find_new_features_of_contoures, get_text_region_boxes_by_given_contours, get_textregion_contours_in_org_image, return_bonding_box_of_contours, return_contours_of_image, return_contours_of_interested_region, return_contours_of_interested_region_and_bounding_box, return_contours_of_interested_region_by_min_size, return_contours_of_interested_textline, return_parent_contours, return_contours_of_interested_region_by_size, ) from .utils.rotate import ( rotate_image, rotate_max_area, rotate_max_area_new, rotatedRectWithMaxArea, rotation_image_new, rotation_not_90_func, rotation_not_90_func_full_layout, rotyate_image_different, ) from .utils.separate_lines import ( seperate_lines, seperate_lines_new_inside_teils, seperate_lines_new_inside_teils2, seperate_lines_vertical, seperate_lines_vertical_cont, textline_contours_postprocessing, seperate_lines_new2, return_deskew_slop, ) from .utils.drop_capitals import ( adhere_drop_capital_region_into_cprresponding_textline, filter_small_drop_capitals_from_no_patch_layout ) from .utils.marginals import get_marginals from .utils.resize import resize_image from .utils import ( boosting_headers_by_longshot_region_segmentation, crop_image_inside_box, find_features_of_lines, find_num_col, find_num_col_by_vertical_lines, find_num_col_deskew, find_num_col_only_image, isNaN, otsu_copy, otsu_copy_binary, return_hor_spliter_by_index_for_without_verticals, delete_seperator_around, return_regions_without_seperators, put_drop_out_from_only_drop_model, putt_bb_of_drop_capitals_of_model_in_patches_in_layout, check_any_text_region_in_model_one_is_main_or_header, small_textlines_to_parent_adherence2, order_and_id_of_texts, order_of_regions, implent_law_head_main_not_parallel, return_hor_spliter_by_index, combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new, return_points_with_boundies, find_number_of_columns_in_document, return_boxes_of_images_by_order_of_reading_new, ) from utils.xml import create_page_xml SLOPE_THRESHOLD = 0.13 class eynollah: def __init__( self, image_dir, f_name, dir_out, dir_models, dir_of_cropped_images=None, dir_of_layout=None, dir_of_deskewed=None, dir_of_all=None, allow_enhancement=False, curved_line=False, full_layout=False, allow_scaling=False, headers_off=False ): self.image_dir = image_dir # XXX This does not seem to be a directory as the name suggests, but a file self.dir_out = dir_out self.f_name = f_name self.dir_of_cropped_images = dir_of_cropped_images self.allow_enhancement = allow_enhancement self.curved_line = curved_line self.full_layout = full_layout self.allow_scaling = allow_scaling self.dir_of_layout = dir_of_layout self.headers_off = headers_off self.dir_of_deskewed = dir_of_deskewed self.dir_of_all = dir_of_all if self.f_name is None: try: self.f_name = image_dir.split("/")[len(image_dir.split("/")) - 1] self.f_name = self.f_name.split(".")[0] except: self.f_name = self.f_name.split(".")[0] self.dir_models = dir_models self.kernel = np.ones((5, 5), np.uint8) self.model_dir_of_enhancemnet = dir_models + "/model_enhancement.h5" self.model_dir_of_col_classifier = dir_models + "/model_scale_classifier.h5" self.model_region_dir_p = dir_models + "/model_main_covid19_lr5-5_scale_1_1_great.h5" # dir_models +'/model_main_covid_19_many_scalin_down_lr5-5_the_best.h5'#'/model_main_covid19_lr5-5_scale_1_1_great.h5'#'/model_main_scale_1_1und_1_2_corona_great.h5' # self.model_region_dir_p_ens = dir_models +'/model_ensemble_s.h5'#'/model_main_covid19_lr5-5_scale_1_1_great.h5'#'/model_main_scale_1_1und_1_2_corona_great.h5' self.model_region_dir_p2 = dir_models + "/model_main_home_corona3_rot.h5" self.model_region_dir_fully_np = dir_models + "/model_no_patches_class0_30eopch.h5" self.model_region_dir_fully = dir_models + "/model_3up_new_good_no_augmentation.h5" # "model_3col_p_soft_10_less_aug_binarization_only.h5" self.model_page_dir = dir_models + "/model_page_mixed_best.h5" self.model_region_dir_p_ens = dir_models + "/model_ensemble_s.h5" # dir_models +'/model_main_covid_19_many_scalin_down_lr5-5_the_best.h5' #dir_models +'/model_ensemble_s.h5' ###self.model_region_dir_p = dir_models +'/model_layout_newspapers.h5'#'/model_ensemble_s.h5'#'/model_layout_newspapers.h5'#'/model_ensemble_s.h5'#'/model_main_home_5_soft_new.h5'#'/model_home_soft_5_all_data.h5' #'/model_main_office_long_soft.h5'#'/model_20_cat_main.h5' self.model_textline_dir = dir_models + "/model_textline_newspapers.h5" #'/model_hor_ver_home_trextline_very_good.h5'# '/model_hor_ver_1_great.h5'#'/model_curved_office_works_great.h5' def predict_enhancement(self, img): model_enhancement, session_enhancemnet = self.start_new_session_and_model(self.model_dir_of_enhancemnet) img_height_model = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[1] img_width_model = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[2] # n_classes = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[3] if img.shape[0] < img_height_model: img = cv2.resize(img, (img.shape[1], img_width_model), interpolation=cv2.INTER_NEAREST) if img.shape[1] < img_width_model: img = cv2.resize(img, (img_height_model, img.shape[0]), interpolation=cv2.INTER_NEAREST) margin = True if margin: kernel = np.ones((5, 5), np.uint8) margin = int(0 * img_width_model) width_mid = img_width_model - 2 * margin height_mid = img_height_model - 2 * margin img = img / float(255.0) img_h = img.shape[0] img_w = img.shape[1] prediction_true = np.zeros((img_h, img_w, 3)) mask_true = np.zeros((img_h, img_w)) nxf = img_w / float(width_mid) nyf = img_h / float(height_mid) if nxf > int(nxf): nxf = int(nxf) + 1 else: nxf = int(nxf) if nyf > int(nyf): nyf = int(nyf) + 1 else: nyf = int(nyf) for i in range(nxf): for j in range(nyf): if i == 0: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model elif i > 0: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model if j == 0: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model elif j > 0: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model if index_x_u > img_w: index_x_u = img_w index_x_d = img_w - img_width_model if index_y_u > img_h: index_y_u = img_h index_y_d = img_h - img_height_model img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] label_p_pred = model_enhancement.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) seg = label_p_pred[0, :, :, :] seg = seg * 255 if i == 0 and j == 0: seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg elif i == nxf - 1 and j == nyf - 1: seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg elif i == 0 and j == nyf - 1: seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg elif i == nxf - 1 and j == 0: seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg elif i == 0 and j != 0 and j != nyf - 1: seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg elif i == nxf - 1 and j != 0 and j != nyf - 1: seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg elif i != 0 and i != nxf - 1 and j == 0: seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg elif i != 0 and i != nxf - 1 and j == nyf - 1: seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg else: seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg prediction_true = prediction_true.astype(int) del model_enhancement del session_enhancemnet return prediction_true def check_dpi(self): dpi = os.popen('identify -format "%x " ' + self.image_dir).read() return int(float(dpi)) def resize_image_with_column_classifier(self, is_image_enhanced): dpi = self.check_dpi() img = cv2.imread(self.image_dir) img = img.astype(np.uint8) _, page_coord = self.early_page_for_num_of_column_classification() model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier) img_1ch = cv2.imread(self.image_dir, 0) width_early = img_1ch.shape[1] img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] # plt.imshow(img_1ch) # plt.show() img_1ch = img_1ch / 255.0 img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) img_in[0, :, :, 0] = img_1ch[:, :] img_in[0, :, :, 1] = img_1ch[:, :] img_in[0, :, :, 2] = img_1ch[:, :] label_p_pred = model_num_classifier.predict(img_in) num_col = np.argmax(label_p_pred[0]) + 1 print(num_col, label_p_pred, "num_col_classifier") session_col_classifier.close() del model_num_classifier del session_col_classifier K.clear_session() gc.collect() # sys.exit() if num_col == 1 and width_early < 1100: img_w_new = 2000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) elif num_col == 1 and width_early >= 2500: img_w_new = 2000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) elif num_col == 1 and width_early >= 1100 and width_early < 2500: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 2 and width_early < 2000: img_w_new = 2400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) elif num_col == 2 and width_early >= 3500: img_w_new = 2400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) elif num_col == 2 and width_early >= 2000 and width_early < 3500: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 3 and width_early < 2000: img_w_new = 3000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) elif num_col == 3 and width_early >= 4000: img_w_new = 3000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) elif num_col == 3 and width_early >= 2000 and width_early < 4000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 4 and width_early < 2500: img_w_new = 4000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) elif num_col == 4 and width_early >= 5000: img_w_new = 4000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) elif num_col == 4 and width_early >= 2500 and width_early < 5000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 5 and width_early < 3700: img_w_new = 5000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) elif num_col == 5 and width_early >= 7000: img_w_new = 5000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) elif num_col == 5 and width_early >= 3700 and width_early < 7000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 6 and width_early < 4500: img_w_new = 6500 # 5400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500) else: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) if label_p_pred[0][int(num_col - 1)] < 0.9 and img_w_new < width_early: img_new = np.copy(img) num_column_is_classified = False else: img_new = resize_image(img, img_h_new, img_w_new) num_column_is_classified = True if img_new.shape[1] > img.shape[1]: img_new = self.predict_enhancement(img_new) is_image_enhanced = True return img, img_new, is_image_enhanced def resize_and_enhance_image_with_column_classifier(self, is_image_enhanced): dpi = self.check_dpi() img = cv2.imread(self.image_dir) img = img.astype(np.uint8) _, page_coord = self.early_page_for_num_of_column_classification() model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier) img_1ch = cv2.imread(self.image_dir, 0) img_1ch = img_1ch.astype(np.uint8) width_early = img_1ch.shape[1] img_1ch = img_1ch[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] # plt.imshow(img_1ch) # plt.show() img_1ch = img_1ch / 255.0 img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST) img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3)) img_in[0, :, :, 0] = img_1ch[:, :] img_in[0, :, :, 1] = img_1ch[:, :] img_in[0, :, :, 2] = img_1ch[:, :] # plt.imshow(img_in[0,:,:,:]) # plt.show() label_p_pred = model_num_classifier.predict(img_in) num_col = np.argmax(label_p_pred[0]) + 1 print(num_col, label_p_pred, "num_col_classifier") session_col_classifier.close() del model_num_classifier del session_col_classifier del img_in del img_1ch del page_coord K.clear_session() gc.collect() print(dpi) if dpi < 298: # sys.exit() if num_col == 1 and width_early < 1100: img_w_new = 2000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) elif num_col == 1 and width_early >= 2500: img_w_new = 2000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000) elif num_col == 1 and width_early >= 1100 and width_early < 2500: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 2 and width_early < 2000: img_w_new = 2400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) elif num_col == 2 and width_early >= 3500: img_w_new = 2400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 2400) elif num_col == 2 and width_early >= 2000 and width_early < 3500: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 3 and width_early < 2000: img_w_new = 3000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) elif num_col == 3 and width_early >= 4000: img_w_new = 3000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 3000) elif num_col == 3 and width_early >= 2000 and width_early < 4000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 4 and width_early < 2500: img_w_new = 4000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) elif num_col == 4 and width_early >= 5000: img_w_new = 4000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 4000) elif num_col == 4 and width_early >= 2500 and width_early < 5000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 5 and width_early < 3700: img_w_new = 5000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) elif num_col == 5 and width_early >= 7000: img_w_new = 5000 img_h_new = int(img.shape[0] / float(img.shape[1]) * 5000) elif num_col == 5 and width_early >= 3700 and width_early < 7000: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) elif num_col == 6 and width_early < 4500: img_w_new = 6500 # 5400 img_h_new = int(img.shape[0] / float(img.shape[1]) * 6500) else: img_w_new = width_early img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early) if label_p_pred[0][int(num_col - 1)] < 0.9 and img_w_new < width_early: img_new = np.copy(img) num_column_is_classified = False else: img_new = resize_image(img, img_h_new, img_w_new) num_column_is_classified = True # img_new=resize_image(img,img_h_new,img_w_new) image_res = self.predict_enhancement(img_new) # cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif",self.image) # self.image=self.image.astype(np.uint16) # self.scale_x=1 # self.scale_y=1 # self.height_org = self.image.shape[0] # self.width_org = self.image.shape[1] is_image_enhanced = True else: """ if img.shape[0]<=2530 and img.shape[0]>=img.shape[1]: img_h_new=3000 img_w_new=int(img.shape[1]/float(img.shape[0]) * 3000) img_new=resize_image(img,img_h_new,img_w_new) image_res=self.predict_enhancement(img_new) #cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif",self.image) #self.image=self.image.astype(np.uint16) ##self.scale_x=1 ##self.scale_y=1 ##self.height_org = self.image.shape[0] ##self.width_org = self.image.shape[1] is_image_enhanced=True else: is_image_enhanced=False image_res=np.copy(img) """ is_image_enhanced = False num_column_is_classified = True image_res = np.copy(img) return is_image_enhanced, img, image_res, num_col, num_column_is_classified def get_image_and_scales(self, img_org, img_res, scale): self.image = np.copy(img_res) self.image_org = np.copy(img_org) self.height_org = self.image.shape[0] self.width_org = self.image.shape[1] self.img_hight_int = int(self.image.shape[0] * scale) self.img_width_int = int(self.image.shape[1] * scale) self.scale_y = self.img_hight_int / float(self.image.shape[0]) self.scale_x = self.img_width_int / float(self.image.shape[1]) self.image = resize_image(self.image, self.img_hight_int, self.img_width_int) del img_res del img_org def get_image_and_scales_after_enhancing(self, img_org, img_res): # self.image = cv2.imread(self.image_dir) self.image = np.copy(img_res) self.image = self.image.astype(np.uint8) self.image_org = np.copy(img_org) self.height_org = self.image_org.shape[0] self.width_org = self.image_org.shape[1] self.scale_y = img_res.shape[0] / float(self.image_org.shape[0]) self.scale_x = img_res.shape[1] / float(self.image_org.shape[1]) del img_org del img_res def start_new_session_and_model(self, model_dir): config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.InteractiveSession() model = load_model(model_dir, compile=False) return model, session def do_prediction(self, patches, img, model, marginal_of_patch_percent=0.1): img_height_model = model.layers[len(model.layers) - 1].output_shape[1] img_width_model = model.layers[len(model.layers) - 1].output_shape[2] n_classes = model.layers[len(model.layers) - 1].output_shape[3] if patches: if img.shape[0] < img_height_model: img = resize_image(img, img_height_model, img.shape[1]) if img.shape[1] < img_width_model: img = resize_image(img, img.shape[0], img_width_model) # print(img_height_model,img_width_model) # margin = int(0.2 * img_width_model) margin = int(marginal_of_patch_percent * img_height_model) width_mid = img_width_model - 2 * margin height_mid = img_height_model - 2 * margin img = img / float(255.0) # print(sys.getsizeof(img)) # print(np.max(img)) img = img.astype(np.float16) # print(sys.getsizeof(img)) img_h = img.shape[0] img_w = img.shape[1] prediction_true = np.zeros((img_h, img_w, 3)) mask_true = np.zeros((img_h, img_w)) nxf = img_w / float(width_mid) nyf = img_h / float(height_mid) if nxf > int(nxf): nxf = int(nxf) + 1 else: nxf = int(nxf) if nyf > int(nyf): nyf = int(nyf) + 1 else: nyf = int(nyf) for i in range(nxf): for j in range(nyf): if i == 0: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model elif i > 0: index_x_d = i * width_mid index_x_u = index_x_d + img_width_model if j == 0: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model elif j > 0: index_y_d = j * height_mid index_y_u = index_y_d + img_height_model if index_x_u > img_w: index_x_u = img_w index_x_d = img_w - img_width_model if index_y_u > img_h: index_y_u = img_h index_y_d = img_h - img_height_model img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :] label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2])) seg = np.argmax(label_p_pred, axis=3)[0] seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) if i == 0 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin] mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :] seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0] mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color elif i == 0 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :] seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin] mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0] mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color elif i == 0 and j != 0 and j != nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :] seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin] mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color elif i == nxf - 1 and j != 0 and j != nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :] seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0] mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color elif i != 0 and i != nxf - 1 and j == 0: seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin] mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color elif i != 0 and i != nxf - 1 and j == nyf - 1: seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :] seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin] mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color else: seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :] seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin] mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color prediction_true = prediction_true.astype(np.uint8) del img del mask_true del seg_color del seg del img_patch if not patches: img_h_page = img.shape[0] img_w_page = img.shape[1] img = img / float(255.0) img = resize_image(img, img_height_model, img_width_model) label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2])) seg = np.argmax(label_p_pred, axis=3)[0] seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2) prediction_true = resize_image(seg_color, img_h_page, img_w_page) prediction_true = prediction_true.astype(np.uint8) del img del seg_color del label_p_pred del seg del model gc.collect() return prediction_true def early_page_for_num_of_column_classification(self): img = cv2.imread(self.image_dir) img = img.astype(np.uint8) patches = False model_page, session_page = self.start_new_session_and_model(self.model_page_dir) ###img = otsu_copy(self.image) for ii in range(1): img = cv2.GaussianBlur(img, (5, 5), 0) img_page_prediction = self.do_prediction(patches, img, model_page) imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(imgray, 0, 255, 0) thresh = cv2.dilate(thresh, self.kernel, iterations=3) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))]) cnt = contours[np.argmax(cnt_size)] x, y, w, h = cv2.boundingRect(cnt) box = [x, y, w, h] croped_page, page_coord = crop_image_inside_box(box, img) session_page.close() del model_page del session_page del contours del thresh del img del cnt_size del cnt del box del x del y del w del h del imgray del img_page_prediction gc.collect() return croped_page, page_coord def extract_page(self): patches = False model_page, session_page = self.start_new_session_and_model(self.model_page_dir) ###img = otsu_copy(self.image) for ii in range(1): img = cv2.GaussianBlur(self.image, (5, 5), 0) img_page_prediction = self.do_prediction(patches, img, model_page) imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(imgray, 0, 255, 0) thresh = cv2.dilate(thresh, self.kernel, iterations=3) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))]) cnt = contours[np.argmax(cnt_size)] x, y, w, h = cv2.boundingRect(cnt) if x <= 30: w = w + x x = 0 if (self.image.shape[1] - (x + w)) <= 30: w = w + (self.image.shape[1] - (x + w)) if y <= 30: h = h + y y = 0 if (self.image.shape[0] - (y + h)) <= 30: h = h + (self.image.shape[0] - (y + h)) box = [x, y, w, h] croped_page, page_coord = crop_image_inside_box(box, self.image) self.cont_page = [] self.cont_page.append(np.array([[page_coord[2], page_coord[0]], [page_coord[3], page_coord[0]], [page_coord[3], page_coord[1]], [page_coord[2], page_coord[1]]])) session_page.close() del model_page del session_page del contours del thresh del img del imgray gc.collect() return croped_page, page_coord def extract_text_regions(self, img, patches, cols): img_height_h = img.shape[0] img_width_h = img.shape[1] ###if patches and cols>=3 : ###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully) ###if not patches: ###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully_np) ###if patches and cols==2 : ###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_2col) ###if patches and cols==1 : ###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_2col) ###if patches and cols>=2: ###img = otsu_copy_binary(img)#otsu_copy(img) ###img = img.astype(np.uint8) ###if patches and cols==1: ###img = otsu_copy_binary(img)#otsu_copy(img) ###img = img.astype(np.uint8) ###img= resize_image(img, int(img_height_h*1), int(img_width_h*1) ) if patches: model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully) if not patches: model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully_np) if patches and cols == 1: img2 = otsu_copy_binary(img) # otsu_copy(img) img2 = img2.astype(np.uint8) img2 = resize_image(img2, int(img_height_h * 0.7), int(img_width_h * 0.7)) marginal_of_patch_percent = 0.1 prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent) prediction_regions2 = resize_image(prediction_regions2, img_height_h, img_width_h) if patches and cols == 2: img2 = otsu_copy_binary(img) # otsu_copy(img) img2 = img2.astype(np.uint8) img2 = resize_image(img2, int(img_height_h * 0.4), int(img_width_h * 0.4)) marginal_of_patch_percent = 0.1 prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent) prediction_regions2 = resize_image(prediction_regions2, img_height_h, img_width_h) elif patches and cols > 2: img2 = otsu_copy_binary(img) # otsu_copy(img) img2 = img2.astype(np.uint8) img2 = resize_image(img2, int(img_height_h * 0.3), int(img_width_h * 0.3)) marginal_of_patch_percent = 0.1 prediction_regions2 = self.do_prediction(patches, img2, model_region, marginal_of_patch_percent) prediction_regions2 = resize_image(prediction_regions2, img_height_h, img_width_h) if patches and cols == 2: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint8) if img_width_h >= 2000: img = resize_image(img, int(img_height_h * 0.9), int(img_width_h * 0.9)) else: pass # img= resize_image(img, int(img_height_h*1), int(img_width_h*1) ) img = img.astype(np.uint8) if patches and cols == 1: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint8) img = resize_image(img, int(img_height_h * 0.5), int(img_width_h * 0.5)) img = img.astype(np.uint8) if patches and cols == 3: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint8) # img= resize_image(img, int(img_height_h*0.9), int(img_width_h*0.9) ) if patches and cols == 4: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint8) # img= resize_image(img, int(img_height_h*0.9), int(img_width_h*0.9) ) if patches and cols >= 5: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint8) # img= resize_image(img, int(img_height_h*0.9), int(img_width_h*0.9) ) if not patches: img = otsu_copy_binary(img) # otsu_copy(img) img = img.astype(np.uint8) prediction_regions2 = None marginal_of_patch_percent = 0.1 prediction_regions = self.do_prediction(patches, img, model_region, marginal_of_patch_percent) prediction_regions = resize_image(prediction_regions, img_height_h, img_width_h) session_region.close() del model_region del session_region del img gc.collect() return prediction_regions, prediction_regions2 def get_slopes_and_deskew_new(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, slope_deskew): num_cores = cpu_count() queue_of_all_params = Queue() processes = [] nh = np.linspace(0, len(boxes), num_cores + 1) indexes_by_text_con = np.array(range(len(contours_par))) for i in range(num_cores): boxes_per_process = boxes[int(nh[i]) : int(nh[i + 1])] contours_per_process = contours[int(nh[i]) : int(nh[i + 1])] contours_par_per_process = contours_par[int(nh[i]) : int(nh[i + 1])] indexes_text_con_per_process = indexes_by_text_con[int(nh[i]) : int(nh[i + 1])] processes.append(Process(target=self.do_work_of_slopes_new, args=(queue_of_all_params, boxes_per_process, textline_mask_tot, contours_per_process, contours_par_per_process, indexes_text_con_per_process, image_page_rotated, slope_deskew))) for i in range(num_cores): processes[i].start() slopes = [] all_found_texline_polygons = [] all_found_text_regions = [] all_found_text_regions_par = [] boxes = [] all_box_coord = [] all_index_text_con = [] for i in range(num_cores): list_all_par = queue_of_all_params.get(True) slopes_for_sub_process = list_all_par[0] polys_for_sub_process = list_all_par[1] boxes_for_sub_process = list_all_par[2] contours_for_subprocess = list_all_par[3] contours_par_for_subprocess = list_all_par[4] boxes_coord_for_subprocess = list_all_par[5] indexes_for_subprocess = list_all_par[6] for j in range(len(slopes_for_sub_process)): slopes.append(slopes_for_sub_process[j]) all_found_texline_polygons.append(polys_for_sub_process[j]) boxes.append(boxes_for_sub_process[j]) all_found_text_regions.append(contours_for_subprocess[j]) all_found_text_regions_par.append(contours_par_for_subprocess[j]) all_box_coord.append(boxes_coord_for_subprocess[j]) all_index_text_con.append(indexes_for_subprocess[j]) for i in range(num_cores): processes[i].join() # print(slopes,'slopes') return slopes, all_found_texline_polygons, boxes, all_found_text_regions, all_found_text_regions_par, all_box_coord, all_index_text_con def get_slopes_and_deskew_new_curved(self, contours, contours_par, textline_mask_tot, image_page_rotated, boxes, mask_texts_only, num_col, scale_par, slope_deskew): num_cores = cpu_count() queue_of_all_params = Queue() processes = [] nh = np.linspace(0, len(boxes), num_cores + 1) indexes_by_text_con = np.array(range(len(contours_par))) for i in range(num_cores): boxes_per_process = boxes[int(nh[i]) : int(nh[i + 1])] contours_per_process = contours[int(nh[i]) : int(nh[i + 1])] contours_par_per_process = contours_par[int(nh[i]) : int(nh[i + 1])] indexes_text_con_per_process = indexes_by_text_con[int(nh[i]) : int(nh[i + 1])] processes.append(Process(target=self.do_work_of_slopes_new_curved, args=(queue_of_all_params, boxes_per_process, textline_mask_tot, contours_per_process, contours_par_per_process, image_page_rotated, mask_texts_only, num_col, scale_par, indexes_text_con_per_process, slope_deskew))) for i in range(num_cores): processes[i].start() slopes = [] all_found_texline_polygons = [] all_found_text_regions = [] all_found_text_regions_par = [] boxes = [] all_box_coord = [] all_index_text_con = [] for i in range(num_cores): list_all_par = queue_of_all_params.get(True) polys_for_sub_process = list_all_par[0] boxes_for_sub_process = list_all_par[1] contours_for_subprocess = list_all_par[2] contours_par_for_subprocess = list_all_par[3] boxes_coord_for_subprocess = list_all_par[4] indexes_for_subprocess = list_all_par[5] slopes_for_sub_process = list_all_par[6] for j in range(len(polys_for_sub_process)): slopes.append(slopes_for_sub_process[j]) all_found_texline_polygons.append(polys_for_sub_process[j]) boxes.append(boxes_for_sub_process[j]) all_found_text_regions.append(contours_for_subprocess[j]) all_found_text_regions_par.append(contours_par_for_subprocess[j]) all_box_coord.append(boxes_coord_for_subprocess[j]) all_index_text_con.append(indexes_for_subprocess[j]) for i in range(num_cores): processes[i].join() # print(slopes,'slopes') return all_found_texline_polygons, boxes, all_found_text_regions, all_found_text_regions_par, all_box_coord, all_index_text_con, slopes def do_work_of_slopes_new_curved(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, image_page_rotated, mask_texts_only, num_col, scale_par, indexes_r_con_per_pro, slope_deskew): slopes_per_each_subprocess = [] bounding_box_of_textregion_per_each_subprocess = [] textlines_rectangles_per_each_subprocess = [] contours_textregion_per_each_subprocess = [] contours_textregion_par_per_each_subprocess = [] all_box_coord_per_process = [] index_by_text_region_contours = [] slope_biggest = 0 textline_cnt_seperated = np.zeros(textline_mask_tot_ea.shape) for mv in range(len(boxes_text)): all_text_region_raw = textline_mask_tot_ea[boxes_text[mv][1] : boxes_text[mv][1] + boxes_text[mv][3], boxes_text[mv][0] : boxes_text[mv][0] + boxes_text[mv][2]] all_text_region_raw = all_text_region_raw.astype(np.uint8) img_int_p = all_text_region_raw[:, :] # self.all_text_region_raw[mv] ##img_int_p=cv2.erode(img_int_p,self.kernel,iterations = 2) # plt.imshow(img_int_p) # plt.show() if img_int_p.shape[0] / img_int_p.shape[1] < 0.1: slopes_per_each_subprocess.append(0) slope_first = 0 slope_for_all = [slope_deskew][0] else: try: textline_con, hierachy = return_contours_of_image(img_int_p) textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierachy, max_area=1, min_area=0.0008) y_diff_mean = find_contours_mean_y_diff(textline_con_fil) sigma_des = int(y_diff_mean * (4.0 / 40.0)) if sigma_des < 1: sigma_des = 1 img_int_p[img_int_p > 0] = 1 # slope_for_all=self.return_deskew_slope_new(img_int_p,sigma_des) slope_for_all = return_deskew_slop(img_int_p, sigma_des, dir_of_all=self.dir_of_all, f_name=self.f_name) if abs(slope_for_all) < 0.5: slope_for_all = [slope_deskew][0] # old method # slope_for_all=self.textline_contours_to_get_slope_correctly(self.all_text_region_raw[mv],denoised,contours[mv]) # text_patch_processed=textline_contours_postprocessing(gada) except: slope_for_all = 999 ##slope_for_all=return_deskew_slop(img_int_p,sigma_des, dir_of_all=self.dir_of_all, f_name=self.f_name) if slope_for_all == 999: slope_for_all = [slope_deskew][0] ##if np.abs(slope_for_all)>32.5 and slope_for_all!=999: ##slope_for_all=slope_biggest ##elif slope_for_all==999: ##slope_for_all=slope_biggest slopes_per_each_subprocess.append(slope_for_all) index_by_text_region_contours.append(indexes_r_con_per_pro[mv]) crop_img, crop_coor = crop_image_inside_box(boxes_text[mv], image_page_rotated) if abs(slope_for_all) < 45: # all_box_coord.append(crop_coor) textline_region_in_image = np.zeros(textline_mask_tot_ea.shape) cnt_o_t_max = contours_par_per_process[mv] x, y, w, h = cv2.boundingRect(cnt_o_t_max) mask_biggest = np.zeros(mask_texts_only.shape) mask_biggest = cv2.fillPoly(mask_biggest, pts=[cnt_o_t_max], color=(1, 1, 1)) mask_region_in_patch_region = mask_biggest[y : y + h, x : x + w] textline_biggest_region = mask_biggest * textline_mask_tot_ea # print(slope_for_all,'slope_for_all') textline_rotated_seperated = seperate_lines_new2(textline_biggest_region[y : y + h, x : x + w], 0, num_col, slope_for_all, self.dir_of_all, self.f_name) # new line added ##print(np.shape(textline_rotated_seperated),np.shape(mask_biggest)) textline_rotated_seperated[mask_region_in_patch_region[:, :] != 1] = 0 # till here textline_cnt_seperated[y : y + h, x : x + w] = textline_rotated_seperated textline_region_in_image[y : y + h, x : x + w] = textline_rotated_seperated # plt.imshow(textline_region_in_image) # plt.show() # plt.imshow(textline_cnt_seperated) # plt.show() pixel_img = 1 cnt_textlines_in_image = return_contours_of_interested_textline(textline_region_in_image, pixel_img) textlines_cnt_per_region = [] for jjjj in range(len(cnt_textlines_in_image)): mask_biggest2 = np.zeros(mask_texts_only.shape) mask_biggest2 = cv2.fillPoly(mask_biggest2, pts=[cnt_textlines_in_image[jjjj]], color=(1, 1, 1)) if num_col + 1 == 1: mask_biggest2 = cv2.dilate(mask_biggest2, self.kernel, iterations=5) else: mask_biggest2 = cv2.dilate(mask_biggest2, self.kernel, iterations=4) pixel_img = 1 mask_biggest2 = resize_image(mask_biggest2, int(mask_biggest2.shape[0] * scale_par), int(mask_biggest2.shape[1] * scale_par)) cnt_textlines_in_image_ind = return_contours_of_interested_textline(mask_biggest2, pixel_img) try: # textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0]/scale_par) textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0]) except: pass else: slope_first = 0 add_boxes_coor_into_textlines = True textlines_cnt_per_region = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contours_par_per_process[mv], boxes_text[mv], slope_first, add_boxes_coor_into_textlines) add_boxes_coor_into_textlines = False # print(np.shape(textlines_cnt_per_region),'textlines_cnt_per_region') # textlines_cnt_tot_per_process.append(textlines_cnt_per_region) # index_polygons_per_process_per_process.append(index_polygons_per_process[iiii]) textlines_rectangles_per_each_subprocess.append(textlines_cnt_per_region) # all_found_texline_polygons.append(cnt_clean_rot) bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv]) contours_textregion_per_each_subprocess.append(contours_per_process[mv]) contours_textregion_par_per_each_subprocess.append(contours_par_per_process[mv]) all_box_coord_per_process.append(crop_coor) queue_of_all_params.put([textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours, slopes_per_each_subprocess]) def do_work_of_slopes_new(self, queue_of_all_params, boxes_text, textline_mask_tot_ea, contours_per_process, contours_par_per_process, indexes_r_con_per_pro, image_page_rotated, slope_deskew): slopes_per_each_subprocess = [] bounding_box_of_textregion_per_each_subprocess = [] textlines_rectangles_per_each_subprocess = [] contours_textregion_per_each_subprocess = [] contours_textregion_par_per_each_subprocess = [] all_box_coord_per_process = [] index_by_text_region_contours = [] slope_biggest = 0 for mv in range(len(boxes_text)): crop_img,crop_coor=crop_image_inside_box(boxes_text[mv],image_page_rotated) #all_box_coord.append(crop_coor) mask_textline=np.zeros((textline_mask_tot_ea.shape)) mask_textline=cv2.fillPoly(mask_textline,pts=[contours_per_process[mv]],color=(1,1,1)) denoised=None all_text_region_raw=(textline_mask_tot_ea*mask_textline[:,:])[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ] all_text_region_raw=all_text_region_raw.astype(np.uint8) img_int_p=all_text_region_raw[:,:]#self.all_text_region_raw[mv] img_int_p=cv2.erode(img_int_p,self.kernel,iterations = 2) if img_int_p.shape[0]/img_int_p.shape[1]<0.1: slopes_per_each_subprocess.append(0) slope_for_all = [slope_deskew][0] all_text_region_raw = textline_mask_tot_ea[boxes_text[mv][1] : boxes_text[mv][1] + boxes_text[mv][3], boxes_text[mv][0] : boxes_text[mv][0] + boxes_text[mv][2]] ###cnt_clean_rot=textline_contours_postprocessing(all_text_region_raw,slopes[jj],contours_only_text_parent[jj],boxes_text[jj],slope_first) cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contours_par_per_process[mv], boxes_text[mv], 0) textlines_rectangles_per_each_subprocess.append(cnt_clean_rot) index_by_text_region_contours.append(indexes_r_con_per_pro[mv]) # all_found_texline_polygons.append(cnt_clean_rot) bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv]) else: try: textline_con, hierachy = return_contours_of_image(img_int_p) textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con, hierachy, max_area=1, min_area=0.00008) y_diff_mean = find_contours_mean_y_diff(textline_con_fil) sigma_des = int(y_diff_mean * (4.0 / 40.0)) if sigma_des < 1: sigma_des = 1 img_int_p[img_int_p > 0] = 1 # slope_for_all=self.return_deskew_slope_new(img_int_p,sigma_des) slope_for_all = return_deskew_slop(img_int_p, sigma_des, dir_of_all=self.dir_of_all, f_name=self.f_name) if abs(slope_for_all) <= 0.5: slope_for_all = [slope_deskew][0] except: slope_for_all = 999 ##slope_for_all=return_deskew_slop(img_int_p,sigma_des, dir_of_all=self.dir_of_all, f_name=self.f_name) if slope_for_all == 999: slope_for_all = [slope_deskew][0] ##if np.abs(slope_for_all)>32.5 and slope_for_all!=999: ##slope_for_all=slope_biggest ##elif slope_for_all==999: ##slope_for_all=slope_biggest slopes_per_each_subprocess.append(slope_for_all) slope_first = 0 mask_only_con_region = np.zeros(textline_mask_tot_ea.shape) mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contours_par_per_process[mv]], color=(1, 1, 1)) # plt.imshow(mask_only_con_region) # plt.show() all_text_region_raw = np.copy(textline_mask_tot_ea[boxes_text[mv][1] : boxes_text[mv][1] + boxes_text[mv][3], boxes_text[mv][0] : boxes_text[mv][0] + boxes_text[mv][2]]) mask_only_con_region = mask_only_con_region[boxes_text[mv][1] : boxes_text[mv][1] + boxes_text[mv][3], boxes_text[mv][0] : boxes_text[mv][0] + boxes_text[mv][2]] ##plt.imshow(textline_mask_tot_ea) ##plt.show() ##plt.imshow(all_text_region_raw) ##plt.show() ##plt.imshow(mask_only_con_region) ##plt.show() all_text_region_raw[mask_only_con_region == 0] = 0 ###cnt_clean_rot=textline_contours_postprocessing(all_text_region_raw,slopes[jj],contours_only_text_parent[jj],boxes_text[jj],slope_first) cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contours_par_per_process[mv], boxes_text[mv], slope_first) textlines_rectangles_per_each_subprocess.append(cnt_clean_rot) index_by_text_region_contours.append(indexes_r_con_per_pro[mv]) # all_found_texline_polygons.append(cnt_clean_rot) bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv]) contours_textregion_per_each_subprocess.append(contours_per_process[mv]) contours_textregion_par_per_each_subprocess.append(contours_par_per_process[mv]) all_box_coord_per_process.append(crop_coor) queue_of_all_params.put([slopes_per_each_subprocess, textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess, contours_textregion_par_per_each_subprocess, all_box_coord_per_process, index_by_text_region_contours]) def textline_contours(self, img, patches, scaler_h, scaler_w): if patches: model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir) if not patches: model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir_np) ##img = otsu_copy(img) img = img.astype(np.uint8) img_org = np.copy(img) img_h = img_org.shape[0] img_w = img_org.shape[1] img = resize_image(img_org, int(img_org.shape[0] * scaler_h), int(img_org.shape[1] * scaler_w)) prediction_textline = self.do_prediction(patches, img, model_textline) prediction_textline = resize_image(prediction_textline, img_h, img_w) patches = False prediction_textline_longshot = self.do_prediction(patches, img, model_textline) prediction_textline_longshot_true_size = resize_image(prediction_textline_longshot, img_h, img_w) # scaler_w=1.5 # scaler_h=1.5 # patches=True # img= resize_image(img_org, int(img_org.shape[0]*scaler_h), int(img_org.shape[1]*scaler_w)) # prediction_textline_streched=self.do_prediction(patches,img,model_textline) # prediction_textline_streched= resize_image(prediction_textline_streched, img_h, img_w) ##plt.imshow(prediction_textline_streched[:,:,0]) ##plt.show() # sys.exit() session_textline.close() del model_textline del session_textline del img del img_org gc.collect() return prediction_textline[:, :, 0], prediction_textline_longshot_true_size[:, :, 0] def do_work_of_slopes(self, q, poly, box_sub, boxes_per_process, textline_mask_tot, contours_per_process): slope_biggest = 0 slopes_sub = [] boxes_sub_new = [] poly_sub = [] for mv in range(len(boxes_per_process)): crop_img, _ = crop_image_inside_box(boxes_per_process[mv], np.repeat(textline_mask_tot[:, :, np.newaxis], 3, axis=2)) crop_img = crop_img[:, :, 0] crop_img = cv2.erode(crop_img, self.kernel, iterations=2) try: textline_con, hierachy = return_contours_of_image(crop_img) textline_con_fil = filter_contours_area_of_image(crop_img, textline_con, hierachy, max_area=1, min_area=0.0008) y_diff_mean = find_contours_mean_y_diff(textline_con_fil) sigma_des = int(y_diff_mean * (4.0 / 40.0)) if sigma_des < 1: sigma_des = 1 crop_img[crop_img > 0] = 1 slope_corresponding_textregion = return_deskew_slop(crop_img, sigma_des, dir_of_all=self.dir_of_all, f_name=self.f_name) except: slope_corresponding_textregion = 999 if slope_corresponding_textregion == 999: slope_corresponding_textregion = slope_biggest ##if np.abs(slope_corresponding_textregion)>12.5 and slope_corresponding_textregion!=999: ##slope_corresponding_textregion=slope_biggest ##elif slope_corresponding_textregion==999: ##slope_corresponding_textregion=slope_biggest slopes_sub.append(slope_corresponding_textregion) cnt_clean_rot = textline_contours_postprocessing(crop_img, slope_corresponding_textregion, contours_per_process[mv], boxes_per_process[mv]) poly_sub.append(cnt_clean_rot) boxes_sub_new.append(boxes_per_process[mv]) q.put(slopes_sub) poly.put(poly_sub) box_sub.put(boxes_sub_new) def write_into_page_xml_full(self, contours, contours_h, page_coord, dir_of_image, order_of_texts, id_of_texts, all_found_texline_polygons, all_found_texline_polygons_h, all_box_coord, all_box_coord_h, found_polygons_text_region_img, found_polygons_tables, found_polygons_drop_capitals, found_polygons_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals): found_polygons_text_region = contours found_polygons_text_region_h = contours_h # create the file structure pcgts, page = create_page_xml(self.image_dir, self.height_org, self.width_org) page_print_sub = ET.SubElement(page, "PrintSpace") coord_page = ET.SubElement(page_print_sub, "Coords") points_page_print = "" for lmm in range(len(self.cont_page[0])): if len(self.cont_page[0][lmm]) == 2: points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0]) / self.scale_x)) points_page_print = points_page_print + "," points_page_print = points_page_print + str(int((self.cont_page[0][lmm][1]) / self.scale_y)) else: points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0][0]) / self.scale_x)) points_page_print = points_page_print + "," points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0][1]) / self.scale_y)) if lmm < (len(self.cont_page[0]) - 1): points_page_print = points_page_print + " " coord_page.set("points", points_page_print) if len(contours) > 0: region_order = ET.SubElement(page, "ReadingOrder") region_order_sub = ET.SubElement(region_order, "OrderedGroup") region_order_sub.set("id", "ro357564684568544579089") # args_sort=order_of_texts for vj in order_of_texts: name = "coord_text_" + str(vj) name = ET.SubElement(region_order_sub, "RegionRefIndexed") name.set("index", str(order_of_texts[vj])) name.set("regionRef", id_of_texts[vj]) id_of_marginalia = [] indexer_region = len(contours) + len(contours_h) for vm in range(len(found_polygons_marginals)): id_of_marginalia.append("r" + str(indexer_region)) name = "coord_text_" + str(indexer_region) name = ET.SubElement(region_order_sub, "RegionRefIndexed") name.set("index", str(indexer_region)) name.set("regionRef", "r" + str(indexer_region)) indexer_region += 1 id_indexer = 0 id_indexer_l = 0 for mm in range(len(found_polygons_text_region)): textregion = ET.SubElement(page, "TextRegion") textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 textregion.set("type", "paragraph") # if mm==0: # textregion.set('type','header') # else: # textregion.set('type','paragraph') coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_text_region[mm])): if len(found_polygons_text_region[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_text_region[mm]) - 1): points_co = points_co + " " # print(points_co) coord_text.set("points", points_co) for j in range(len(all_found_texline_polygons[mm])): textline = ET.SubElement(textregion, "TextLine") textline.set("id", "l" + str(id_indexer_l)) id_indexer_l += 1 coord = ET.SubElement(textline, "Coords") texteq = ET.SubElement(textline, "TextEquiv") uni = ET.SubElement(texteq, "Unicode") uni.text = " " # points = ET.SubElement(coord, 'Points') points_co = "" for l in range(len(all_found_texline_polygons[mm][j])): # point = ET.SubElement(coord, 'Point') if not self.curved_line: # point.set('x',str(found_polygons[j][l][0])) # point.set('y',str(found_polygons[j][l][1])) if len(all_found_texline_polygons[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) if (self.curved_line) and np.abs(slopes[mm]) <= 45: if len(all_found_texline_polygons[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][1] + page_coord[0]) / self.scale_y)) elif (self.curved_line) and np.abs(slopes[mm]) > 45: if len(all_found_texline_polygons[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) if l < (len(all_found_texline_polygons[mm][j]) - 1): points_co = points_co + " " # print(points_co) coord.set("points", points_co) texteqreg = ET.SubElement(textregion, "TextEquiv") unireg = ET.SubElement(texteqreg, "Unicode") unireg.text = " " print(len(contours_h)) if len(contours_h) > 0: for mm in range(len(found_polygons_text_region_h)): textregion = ET.SubElement(page, "TextRegion") try: id_indexer = id_indexer id_indexer_l = id_indexer_l except: id_indexer = 0 id_indexer_l = 0 textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 textregion.set("type", "header") # if mm==0: # textregion.set('type','header') # else: # textregion.set('type','paragraph') coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_text_region_h[mm])): if len(found_polygons_text_region_h[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_text_region_h[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region_h[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_text_region_h[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region_h[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_text_region_h[mm]) - 1): points_co = points_co + " " # print(points_co) coord_text.set("points", points_co) for j in range(len(all_found_texline_polygons_h[mm])): textline = ET.SubElement(textregion, "TextLine") textline.set("id", "l" + str(id_indexer_l)) id_indexer_l += 1 coord = ET.SubElement(textline, "Coords") texteq = ET.SubElement(textline, "TextEquiv") uni = ET.SubElement(texteq, "Unicode") uni.text = " " # points = ET.SubElement(coord, 'Points') points_co = "" for l in range(len(all_found_texline_polygons_h[mm][j])): # point = ET.SubElement(coord, 'Point') if not self.curved_line: # point.set('x',str(found_polygons[j][l][0])) # point.set('y',str(found_polygons[j][l][1])) if len(all_found_texline_polygons_h[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][0] + all_box_coord_h[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][1] + all_box_coord_h[mm][0] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][0][0] + all_box_coord_h[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][0][1] + all_box_coord_h[mm][0] + page_coord[0]) / self.scale_y)) if self.curved_line: if len(all_found_texline_polygons_h[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_h[mm][j][l][0][1] + page_coord[0]) / self.scale_y)) if l < (len(all_found_texline_polygons_h[mm][j]) - 1): points_co = points_co + " " # print(points_co) coord.set("points", points_co) texteqreg = ET.SubElement(textregion, "TextEquiv") unireg = ET.SubElement(texteqreg, "Unicode") unireg.text = " " if len(found_polygons_drop_capitals) > 0: id_indexer = len(contours_h) + len(contours) + len(found_polygons_marginals) for mm in range(len(found_polygons_drop_capitals)): textregion = ET.SubElement(page, "TextRegion") # id_indexer_l=id_indexer_l textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 textregion.set("type", "drop-capital") # if mm==0: # textregion.set('type','header') # else: # textregion.set('type','paragraph') coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_drop_capitals[mm])): if len(found_polygons_drop_capitals[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_drop_capitals[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_drop_capitals[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_drop_capitals[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_drop_capitals[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_drop_capitals[mm]) - 1): points_co = points_co + " " # print(points_co) coord_text.set("points", points_co) ##for j in range(len(all_found_texline_polygons_h[mm])): ##textline=ET.SubElement(textregion, 'TextLine') ##textline.set('id','l'+str(id_indexer_l)) ##id_indexer_l+=1 ##coord = ET.SubElement(textline, 'Coords') ##texteq=ET.SubElement(textline, 'TextEquiv') ##uni=ET.SubElement(texteq, 'Unicode') ##uni.text = ' ' ###points = ET.SubElement(coord, 'Points') ##points_co='' ##for l in range(len(all_found_texline_polygons_h[mm][j])): ###point = ET.SubElement(coord, 'Point') ##if not curved_line: ###point.set('x',str(found_polygons[j][l][0])) ###point.set('y',str(found_polygons[j][l][1])) ##if len(all_found_texline_polygons_h[mm][j][l])==2: ##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0] ##+all_box_coord_h[mm][2]+page_coord[2])/self.scale_x) ) ##points_co=points_co+',' ##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1] ##+all_box_coord_h[mm][0]+page_coord[0])/self.scale_y) ) ##else: ##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0] ##+all_box_coord_h[mm][2]+page_coord[2])/self.scale_x ) ) ##points_co=points_co+',' ##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1] ##+all_box_coord_h[mm][0]+page_coord[0])/self.scale_y) ) ##if curved_line: ##if len(all_found_texline_polygons_h[mm][j][l])==2: ##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0] ##+page_coord[2])/self.scale_x) ) ##points_co=points_co+',' ##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1] ##+page_coord[0])/self.scale_y) ) ##else: ##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0] ##+page_coord[2])/self.scale_x ) ) ##points_co=points_co+',' ##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1] ##+page_coord[0])/self.scale_y) ) ##if l<(len(all_found_texline_polygons_h[mm][j])-1): ##points_co=points_co+' ' ###print(points_co) ####coord.set('points',points_co) texteqreg = ET.SubElement(textregion, "TextEquiv") unireg = ET.SubElement(texteqreg, "Unicode") unireg.text = " " try: try: ###id_indexer=id_indexer id_indexer_l = id_indexer_l except: ###id_indexer=0 id_indexer_l = 0 for mm in range(len(found_polygons_marginals)): textregion = ET.SubElement(page, "TextRegion") textregion.set("id", id_of_marginalia[mm]) textregion.set("type", "marginalia") # if mm==0: # textregion.set('type','header') # else: # textregion.set('type','paragraph') coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_marginals[mm])): if len(found_polygons_marginals[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_marginals[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_marginals[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_marginals[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_marginals[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_marginals[mm]) - 1): points_co = points_co + " " # print(points_co) coord_text.set("points", points_co) for j in range(len(all_found_texline_polygons_marginals[mm])): textline = ET.SubElement(textregion, "TextLine") textline.set("id", "l" + str(id_indexer_l)) id_indexer_l += 1 coord = ET.SubElement(textline, "Coords") texteq = ET.SubElement(textline, "TextEquiv") uni = ET.SubElement(texteq, "Unicode") uni.text = " " # points = ET.SubElement(coord, 'Points') points_co = "" for l in range(len(all_found_texline_polygons_marginals[mm][j])): # point = ET.SubElement(coord, 'Point') if not self.curved_line: # point.set('x',str(found_polygons[j][l][0])) # point.set('y',str(found_polygons[j][l][1])) if len(all_found_texline_polygons_marginals[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0] + all_box_coord_marginals[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][1] + all_box_coord_marginals[mm][0] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][0] + all_box_coord_marginals[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][1] + all_box_coord_marginals[mm][0] + page_coord[0]) / self.scale_y)) if self.curved_line: if len(all_found_texline_polygons_marginals[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][1] + page_coord[0]) / self.scale_y)) if l < (len(all_found_texline_polygons_marginals[mm][j]) - 1): points_co = points_co + " " # print(points_co) coord.set("points", points_co) texteqreg = ET.SubElement(textregion, "TextEquiv") unireg = ET.SubElement(texteqreg, "Unicode") unireg.text = " " except: pass try: id_indexer = len(contours_h) + len(contours) + len(found_polygons_marginals) + len(found_polygons_drop_capitals) for mm in range(len(found_polygons_text_region_img)): textregion = ET.SubElement(page, "ImageRegion") textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_text_region_img[mm])): if len(found_polygons_text_region_img[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_text_region_img[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region_img[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_text_region_img[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region_img[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_text_region_img[mm]) - 1): points_co = points_co + " " coord_text.set("points", points_co) except: pass try: for mm in range(len(found_polygons_tables)): textregion = ET.SubElement(page, "TableRegion") textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_tables[mm])): if len(found_polygons_tables[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_tables[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_tables[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_tables[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_tables[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_tables[mm]) - 1): points_co = points_co + " " coord_text.set("points", points_co) except: pass print(dir_of_image) print(self.f_name) print(os.path.join(dir_of_image, self.f_name) + ".xml") tree = ET.ElementTree(pcgts) tree.write(os.path.join(dir_of_image, self.f_name) + ".xml") def write_into_page_xml(self, contours, page_coord, dir_of_image, order_of_texts, id_of_texts, all_found_texline_polygons, all_box_coord, found_polygons_text_region_img, found_polygons_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, curved_line, slopes, slopes_marginals): found_polygons_text_region = contours ##found_polygons_text_region_h=contours_h # create the file structure pcgts, page = create_page_xml(self.image_dir, self.height_org, self.width_org) page_print_sub = ET.SubElement(page, "PrintSpace") coord_page = ET.SubElement(page_print_sub, "Coords") points_page_print = "" for lmm in range(len(self.cont_page[0])): if len(self.cont_page[0][lmm]) == 2: points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0]) / self.scale_x)) points_page_print = points_page_print + "," points_page_print = points_page_print + str(int((self.cont_page[0][lmm][1]) / self.scale_y)) else: points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0][0]) / self.scale_x)) points_page_print = points_page_print + "," points_page_print = points_page_print + str(int((self.cont_page[0][lmm][0][1]) / self.scale_y)) if lmm < (len(self.cont_page[0]) - 1): points_page_print = points_page_print + " " coord_page.set("points", points_page_print) if len(contours) > 0: region_order = ET.SubElement(page, "ReadingOrder") region_order_sub = ET.SubElement(region_order, "OrderedGroup") region_order_sub.set("id", "ro357564684568544579089") indexer_region = 0 for vj in order_of_texts: name = "coord_text_" + str(vj) name = ET.SubElement(region_order_sub, "RegionRefIndexed") name.set("index", str(indexer_region)) name.set("regionRef", id_of_texts[vj]) indexer_region += 1 id_of_marginalia = [] for vm in range(len(found_polygons_marginals)): id_of_marginalia.append("r" + str(indexer_region)) name = "coord_text_" + str(indexer_region) name = ET.SubElement(region_order_sub, "RegionRefIndexed") name.set("index", str(indexer_region)) name.set("regionRef", "r" + str(indexer_region)) indexer_region += 1 id_indexer = 0 id_indexer_l = 0 for mm in range(len(found_polygons_text_region)): textregion = ET.SubElement(page, "TextRegion") textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 textregion.set("type", "paragraph") # if mm==0: # textregion.set('type','header') # else: # textregion.set('type','paragraph') coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_text_region[mm])): if len(found_polygons_text_region[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_text_region[mm]) - 1): points_co = points_co + " " # print(points_co) coord_text.set("points", points_co) for j in range(len(all_found_texline_polygons[mm])): textline = ET.SubElement(textregion, "TextLine") textline.set("id", "l" + str(id_indexer_l)) id_indexer_l += 1 coord = ET.SubElement(textline, "Coords") texteq = ET.SubElement(textline, "TextEquiv") uni = ET.SubElement(texteq, "Unicode") uni.text = " " # points = ET.SubElement(coord, 'Points') points_co = "" for l in range(len(all_found_texline_polygons[mm][j])): # point = ET.SubElement(coord, 'Point') if not self.curved_line: # point.set('x',str(found_polygons[j][l][0])) # point.set('y',str(found_polygons[j][l][1])) if len(all_found_texline_polygons[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) if (self.curved_line) and abs(slopes[mm]) <= 45: if len(all_found_texline_polygons[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][1] + page_coord[0]) / self.scale_y)) elif (self.curved_line) and abs(slopes[mm]) > 45: if len(all_found_texline_polygons[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][0] + all_box_coord[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons[mm][j][l][0][1] + all_box_coord[mm][0] + page_coord[0]) / self.scale_y)) if l < (len(all_found_texline_polygons[mm][j]) - 1): points_co = points_co + " " # print(points_co) coord.set("points", points_co) texteqreg = ET.SubElement(textregion, "TextEquiv") unireg = ET.SubElement(texteqreg, "Unicode") unireg.text = " " ###print(len(contours_h)) ###if len(contours_h)>0: ###for mm in range(len(found_polygons_text_region_h)): ###textregion=ET.SubElement(page, 'TextRegion') ###try: ###id_indexer=id_indexer ###id_indexer_l=id_indexer_l ###except: ###id_indexer=0 ###id_indexer_l=0 ###textregion.set('id','r'+str(id_indexer)) ###id_indexer+=1 ###textregion.set('type','header') ####if mm==0: #### textregion.set('type','header') ####else: #### textregion.set('type','paragraph') ###coord_text = ET.SubElement(textregion, 'Coords') ###points_co='' ###for lmm in range(len(found_polygons_text_region_h[mm])): ###if len(found_polygons_text_region_h[mm][lmm])==2: ###points_co=points_co+str( int( (found_polygons_text_region_h[mm][lmm][0] +page_coord[2])/self.scale_x ) ) ###points_co=points_co+',' ###points_co=points_co+str( int( (found_polygons_text_region_h[mm][lmm][1] +page_coord[0])/self.scale_y ) ) ###else: ###points_co=points_co+str( int((found_polygons_text_region_h[mm][lmm][0][0] +page_coord[2])/self.scale_x) ) ###points_co=points_co+',' ###points_co=points_co+str( int((found_polygons_text_region_h[mm][lmm][0][1] +page_coord[0])/self.scale_y) ) ###if lmm<(len(found_polygons_text_region_h[mm])-1): ###points_co=points_co+' ' ####print(points_co) ###coord_text.set('points',points_co) ###for j in range(len(all_found_texline_polygons_h[mm])): ###textline=ET.SubElement(textregion, 'TextLine') ###textline.set('id','l'+str(id_indexer_l)) ###id_indexer_l+=1 ###coord = ET.SubElement(textline, 'Coords') ###texteq=ET.SubElement(textline, 'TextEquiv') ###uni=ET.SubElement(texteq, 'Unicode') ###uni.text = ' ' ####points = ET.SubElement(coord, 'Points') ###points_co='' ###for l in range(len(all_found_texline_polygons_h[mm][j])): ####point = ET.SubElement(coord, 'Point') ####point.set('x',str(found_polygons[j][l][0])) ####point.set('y',str(found_polygons[j][l][1])) ###if len(all_found_texline_polygons_h[mm][j][l])==2: ###points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0] +page_coord[2] ###+all_box_coord_h[mm][2])/self.scale_x) ) ###points_co=points_co+',' ###points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1] +page_coord[0] ###+all_box_coord_h[mm][0])/self.scale_y) ) ###else: ###points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0] +page_coord[2] ###+all_box_coord_h[mm][2])/self.scale_x ) ) ###points_co=points_co+',' ###points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1] +page_coord[0] ###+all_box_coord_h[mm][0])/self.scale_y) ) ###if l<(len(all_found_texline_polygons_h[mm][j])-1): ###points_co=points_co+' ' ####print(points_co) ###coord.set('points',points_co) ###texteqreg=ET.SubElement(textregion, 'TextEquiv') ###unireg=ET.SubElement(texteqreg, 'Unicode') ###unireg.text = ' ' try: # id_indexer_l=0 try: ###id_indexer=id_indexer id_indexer_l = id_indexer_l except: ###id_indexer=0 id_indexer_l = 0 for mm in range(len(found_polygons_marginals)): textregion = ET.SubElement(page, "TextRegion") textregion.set("id", id_of_marginalia[mm]) textregion.set("type", "marginalia") # if mm==0: # textregion.set('type','header') # else: # textregion.set('type','paragraph') coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_marginals[mm])): if len(found_polygons_marginals[mm][lmm]) == 2: points_co = points_co + str(int((found_polygons_marginals[mm][lmm][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_marginals[mm][lmm][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((found_polygons_marginals[mm][lmm][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_marginals[mm][lmm][0][1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_marginals[mm]) - 1): points_co = points_co + " " # print(points_co) coord_text.set("points", points_co) for j in range(len(all_found_texline_polygons_marginals[mm])): textline = ET.SubElement(textregion, "TextLine") textline.set("id", "l" + str(id_indexer_l)) id_indexer_l += 1 coord = ET.SubElement(textline, "Coords") texteq = ET.SubElement(textline, "TextEquiv") uni = ET.SubElement(texteq, "Unicode") uni.text = " " # points = ET.SubElement(coord, 'Points') points_co = "" for l in range(len(all_found_texline_polygons_marginals[mm][j])): # point = ET.SubElement(coord, 'Point') if not self.curved_line: # point.set('x',str(found_polygons[j][l][0])) # point.set('y',str(found_polygons[j][l][1])) if len(all_found_texline_polygons_marginals[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0] + all_box_coord_marginals[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][1] + all_box_coord_marginals[mm][0] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][0] + all_box_coord_marginals[mm][2] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][1] + all_box_coord_marginals[mm][0] + page_coord[0]) / self.scale_y)) if self.curved_line: if len(all_found_texline_polygons_marginals[mm][j][l]) == 2: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][1] + page_coord[0]) / self.scale_y)) else: points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((all_found_texline_polygons_marginals[mm][j][l][0][1] + page_coord[0]) / self.scale_y)) if l < (len(all_found_texline_polygons_marginals[mm][j]) - 1): points_co = points_co + " " # print(points_co) coord.set("points", points_co) except: pass try: for mm in range(len(found_polygons_text_region_img)): textregion = ET.SubElement(page, "ImageRegion") textregion.set("id", "r" + str(id_indexer)) id_indexer += 1 coord_text = ET.SubElement(textregion, "Coords") points_co = "" for lmm in range(len(found_polygons_text_region_img[mm])): points_co = points_co + str(int((found_polygons_text_region_img[mm][lmm, 0, 0] + page_coord[2]) / self.scale_x)) points_co = points_co + "," points_co = points_co + str(int((found_polygons_text_region_img[mm][lmm, 0, 1] + page_coord[0]) / self.scale_y)) if lmm < (len(found_polygons_text_region_img[mm]) - 1): points_co = points_co + " " coord_text.set("points", points_co) ###for mm in range(len(found_polygons_text_region_img)): ###textregion=ET.SubElement(page, 'ImageRegion') ###textregion.set('id','r'+str(id_indexer)) ###id_indexer+=1 ###coord_text = ET.SubElement(textregion, 'Coords') ###print(found_polygons_text_region_img[mm]) ###points_co='' ###for lmm in range(len(found_polygons_text_region_img[mm])): ###print(len(found_polygons_text_region_img[mm][lmm])) ###if len(found_polygons_text_region_img[mm][lmm])==2: ###points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm][0]+page_coord[2] )/self.scale_x ) ) ###points_co=points_co+',' ###points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm][1]+page_coord[0] )/self.scale_y ) ) ###else: ###points_co=points_co+str( int((found_polygons_text_region_img[mm][lmm][0][0]+page_coord[2] )/self.scale_x) ) ###points_co=points_co+',' ###points_co=points_co+str( int((found_polygons_text_region_img[mm][lmm][0][1]+page_coord[0] )/self.scale_y) ) ###if lmm<(len(found_polygons_text_region_img[mm])-1): ###points_co=points_co+' ' ###coord_text.set('points',points_co) except: pass ####try: ####for mm in range(len(found_polygons_tables)): ####textregion=ET.SubElement(page, 'TableRegion') ####textregion.set('id','r'+str(id_indexer)) ####id_indexer+=1 ####coord_text = ET.SubElement(textregion, 'Coords') ####points_co='' ####for lmm in range(len(found_polygons_tables[mm])): ####if len(found_polygons_tables[mm][lmm])==2: ####points_co=points_co+str( int( (found_polygons_tables[mm][lmm][0] +page_coord[2])/self.scale_x ) ) ####points_co=points_co+',' ####points_co=points_co+str( int( (found_polygons_tables[mm][lmm][1] +page_coord[0])/self.scale_y ) ) ####else: ####points_co=points_co+str( int((found_polygons_tables[mm][lmm][0][0] +page_coord[2])/self.scale_x) ) ####points_co=points_co+',' ####points_co=points_co+str( int((found_polygons_tables[mm][lmm][0][1] +page_coord[0])/self.scale_y) ) ####if lmm<(len(found_polygons_tables[mm])-1): ####points_co=points_co+' ' ####coord_text.set('points',points_co) ####except: ####pass """ try: for mm in range(len(found_polygons_drop_capitals)): textregion=ET.SubElement(page, 'DropCapitals') textregion.set('id','r'+str(id_indexer)) id_indexer+=1 coord_text = ET.SubElement(textregion, 'Coords') points_co='' for lmm in range(len(found_polygons_drop_capitals[mm])): if len(found_polygons_drop_capitals[mm][lmm])==2: points_co=points_co+str( int( (found_polygons_drop_capitals[mm][lmm][0] +page_coord[2])/self.scale_x ) ) points_co=points_co+',' points_co=points_co+str( int( (found_polygons_drop_capitals[mm][lmm][1] +page_coord[0])/self.scale_y ) ) else: points_co=points_co+str( int((found_polygons_drop_capitals[mm][lmm][0][0] +page_coord[2])/self.scale_x) ) points_co=points_co+',' points_co=points_co+str( int((found_polygons_drop_capitals[mm][lmm][0][1] +page_coord[0])/self.scale_y) ) if lmm<(len(found_polygons_drop_capitals[mm])-1): points_co=points_co+' ' coord_text.set('points',points_co) except: pass """ # print(dir_of_image) print(self.f_name) # print(os.path.join(dir_of_image, self.f_name) + ".xml") tree = ET.ElementTree(data) tree.write(os.path.join(dir_of_image, self.f_name) + ".xml") # cv2.imwrite(os.path.join(dir_of_image, self.f_name) + ".tif",self.image_org) def get_regions_from_xy_2models(self,img,is_image_enhanced): img_org=np.copy(img) img_height_h=img_org.shape[0] img_width_h=img_org.shape[1] model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens) gaussian_filter=False patches=True binary=False ratio_y=1.3 ratio_x=1 median_blur=False img= resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) if binary: img = otsu_copy_binary(img)#self.otsu_copy(img) img = img.astype(np.uint16) if median_blur: img=cv2.medianBlur(img,5) if gaussian_filter: img= cv2.GaussianBlur(img,(5,5),0) img = img.astype(np.uint16) prediction_regions_org_y=self.do_prediction(patches,img,model_region) prediction_regions_org_y = resize_image(prediction_regions_org_y, img_height_h, img_width_h ) #plt.imshow(prediction_regions_org_y[:,:,0]) #plt.show() #sys.exit() prediction_regions_org_y=prediction_regions_org_y[:,:,0] mask_zeros_y=(prediction_regions_org_y[:,:]==0)*1 if is_image_enhanced: ratio_x=1.2 else: ratio_x=1 ratio_y=1 median_blur=False img= resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) if binary: img = otsu_copy_binary(img)#self.otsu_copy(img) img = img.astype(np.uint16) if median_blur: img=cv2.medianBlur(img,5) if gaussian_filter: img= cv2.GaussianBlur(img,(5,5),0) img = img.astype(np.uint16) prediction_regions_org=self.do_prediction(patches,img,model_region) prediction_regions_org=resize_image(prediction_regions_org, img_height_h, img_width_h ) ##plt.imshow(prediction_regions_org[:,:,0]) ##plt.show() ##sys.exit() prediction_regions_org=prediction_regions_org[:,:,0] prediction_regions_org[(prediction_regions_org[:,:]==1) & (mask_zeros_y[:,:]==1)]=0 session_region.close() del model_region del session_region gc.collect() ###K.clear_session() model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2) gaussian_filter=False patches=True binary=False ratio_x=1 ratio_y=1 median_blur=False img= resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) if binary: img = otsu_copy_binary(img)#self.otsu_copy(img) img = img.astype(np.uint16) if median_blur: img=cv2.medianBlur(img,5) if gaussian_filter: img= cv2.GaussianBlur(img,(5,5),0) img = img.astype(np.uint16) marginal_patch=0.2 prediction_regions_org2=self.do_prediction(patches,img,model_region,marginal_patch) prediction_regions_org2=resize_image(prediction_regions_org2, img_height_h, img_width_h ) #plt.imshow(prediction_regions_org2[:,:,0]) #plt.show() #sys.exit() ##prediction_regions_org=prediction_regions_org[:,:,0] session_region.close() del model_region del session_region gc.collect() ###K.clear_session() mask_zeros2=(prediction_regions_org2[:,:,0]==0)*1 mask_lines2=(prediction_regions_org2[:,:,0]==3)*1 text_sume_early=( (prediction_regions_org[:,:]==1)*1 ).sum() prediction_regions_org_copy=np.copy(prediction_regions_org) prediction_regions_org_copy[(prediction_regions_org_copy[:,:]==1) & (mask_zeros2[:,:]==1)]=0 text_sume_second=( (prediction_regions_org_copy[:,:]==1)*1 ).sum() rate_two_models=text_sume_second/float(text_sume_early)*100 print(rate_two_models,'ratio_of_two_models') if is_image_enhanced and rate_two_models<95.50:#98.45: pass else: prediction_regions_org=np.copy(prediction_regions_org_copy) ##prediction_regions_org[mask_lines2[:,:]==1]=3 prediction_regions_org[(mask_lines2[:,:]==1) & (prediction_regions_org[:,:]==0)]=3 del mask_lines2 del mask_zeros2 del prediction_regions_org2 #if is_image_enhanced: #pass #else: #model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2) #gaussian_filter=False #patches=True #binary=False #ratio_x=1 #ratio_y=1 #median_blur=False #img= resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x)) #if binary: #img = self.otsu_copy_binary(img)#self.otsu_copy(img) #img = img.astype(np.uint16) #if median_blur: #img=cv2.medianBlur(img,5) #if gaussian_filter: #img= cv2.GaussianBlur(img,(5,5),0) #img = img.astype(np.uint16) #prediction_regions_org2=self.do_prediction(patches,img,model_region) #prediction_regions_org2=resize_image(prediction_regions_org2, img_height_h, img_width_h ) ##plt.imshow(prediction_regions_org2[:,:,0]) ##plt.show() ##sys.exit() ###prediction_regions_org=prediction_regions_org[:,:,0] #session_region.close() #del model_region #del session_region #gc.collect() ####K.clear_session() #mask_zeros2=(prediction_regions_org2[:,:,0]==0)*1 #mask_lines2=(prediction_regions_org2[:,:,0]==3)*1 #text_sume_early=( (prediction_regions_org[:,:]==1)*1 ).sum() #prediction_regions_org[(prediction_regions_org[:,:]==1) & (mask_zeros2[:,:]==1)]=0 ###prediction_regions_org[mask_lines2[:,:]==1]=3 #prediction_regions_org[(mask_lines2[:,:]==1) & (prediction_regions_org[:,:]==0)]=3 #text_sume_second=( (prediction_regions_org[:,:]==1)*1 ).sum() #print(text_sume_second/float(text_sume_early)*100,'twomodelsratio') #del mask_lines2 #del mask_zeros2 #del prediction_regions_org2 mask_lines_only=(prediction_regions_org[:,:]==3)*1 prediction_regions_org = cv2.erode(prediction_regions_org[:,:], self.kernel, iterations=2) #plt.imshow(text_region2_1st_channel) #plt.show() prediction_regions_org = cv2.dilate(prediction_regions_org[:,:], self.kernel, iterations=2) mask_texts_only=(prediction_regions_org[:,:]==1)*1 mask_images_only=(prediction_regions_org[:,:]==2)*1 pixel_img=1 min_area_text=0.00001 polygons_of_only_texts=return_contours_of_interested_region(mask_texts_only,pixel_img,min_area_text) polygons_of_only_images=return_contours_of_interested_region(mask_images_only,pixel_img) polygons_of_only_lines=return_contours_of_interested_region(mask_lines_only,pixel_img,min_area_text) text_regions_p_true=np.zeros(prediction_regions_org.shape) #text_regions_p_true[:,:]=text_regions_p_1[:,:] text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_lines, color=(3,3,3)) ##text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_images, color=(2,2,2)) text_regions_p_true[:,:][mask_images_only[:,:]==1]=2 text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_texts, color=(1,1,1)) ##print(np.unique(text_regions_p_true)) #text_regions_p_true_3d=np.repeat(text_regions_p_1[:, :, np.newaxis], 3, axis=2) #text_regions_p_true_3d=text_regions_p_true_3d.astype(np.uint8) del polygons_of_only_texts del polygons_of_only_images del polygons_of_only_lines del mask_images_only del prediction_regions_org del img del mask_zeros_y del prediction_regions_org_y del img_org gc.collect() return text_regions_p_true def write_images_into_directory(self, img_contoures, dir_of_cropped_imgs, image_page): index = 0 for cont_ind in img_contoures: # cont_ind[:,0,0]=cont_ind[:,0,0]/self.scale_x # cont_ind[:,0,1]=cont_ind[:,0,1]/self.scale_y x, y, w, h = cv2.boundingRect(cont_ind) box = [x, y, w, h] croped_page, page_coord = crop_image_inside_box(box, image_page) croped_page = resize_image(croped_page, int(croped_page.shape[0] / self.scale_y), int(croped_page.shape[1] / self.scale_x)) path = os.path.join(dir_of_cropped_imgs, self.f_name + "_" + str(index) + ".jpg") cv2.imwrite(path, croped_page) index += 1 def do_order_of_regions(self, contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot): if self.full_layout: cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent) cx_text_only_h, cy_text_only_h, x_min_text_only_h, _, _, _, y_cor_x_min_main_h = find_new_features_of_contoures(contours_only_text_parent_h) try: arg_text_con = [] for ii in range(len(cx_text_only)): for jj in range(len(boxes)): if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]: arg_text_con.append(jj) break arg_arg_text_con = np.argsort(arg_text_con) args_contours = np.array(range(len(arg_text_con))) arg_text_con_h = [] for ii in range(len(cx_text_only_h)): for jj in range(len(boxes)): if (x_min_text_only_h[ii] + 80) >= boxes[jj][0] and (x_min_text_only_h[ii] + 80) < boxes[jj][1] and y_cor_x_min_main_h[ii] >= boxes[jj][2] and y_cor_x_min_main_h[ii] < boxes[jj][3]: arg_text_con_h.append(jj) break arg_arg_text_con = np.argsort(arg_text_con_h) args_contours_h = np.array(range(len(arg_text_con_h))) order_by_con_head = np.zeros(len(arg_text_con_h)) order_by_con_main = np.zeros(len(arg_text_con)) ref_point = 0 order_of_texts_tot = [] id_of_texts_tot = [] for iij in range(len(boxes)): args_contours_box = args_contours[np.array(arg_text_con) == iij] args_contours_box_h = args_contours_h[np.array(arg_text_con_h) == iij] con_inter_box = [] con_inter_box_h = [] for i in range(len(args_contours_box)): con_inter_box.append(contours_only_text_parent[args_contours_box[i]]) for i in range(len(args_contours_box_h)): con_inter_box_h.append(contours_only_text_parent_h[args_contours_box_h[i]]) indexes_sorted, matrix_of_orders, kind_of_texts_sorted, index_by_kind_sorted = order_of_regions(textline_mask_tot[int(boxes[iij][2]) : int(boxes[iij][3]), int(boxes[iij][0]) : int(boxes[iij][1])], con_inter_box, con_inter_box_h, boxes[iij][2]) order_of_texts, id_of_texts = order_and_id_of_texts(con_inter_box, con_inter_box_h, matrix_of_orders, indexes_sorted, index_by_kind_sorted, kind_of_texts_sorted, ref_point) indexes_sorted_main = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_by_type_main = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_sorted_head = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 2] indexes_by_type_head = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 2] zahler = 0 for mtv in args_contours_box: arg_order_v = indexes_sorted_main[zahler] tartib = np.where(indexes_sorted == arg_order_v)[0][0] order_by_con_main[args_contours_box[indexes_by_type_main[zahler]]] = tartib + ref_point zahler = zahler + 1 zahler = 0 for mtv in args_contours_box_h: arg_order_v = indexes_sorted_head[zahler] tartib = np.where(indexes_sorted == arg_order_v)[0][0] # print(indexes_sorted,np.where(indexes_sorted==arg_order_v ),arg_order_v,tartib,'inshgalla') order_by_con_head[args_contours_box_h[indexes_by_type_head[zahler]]] = tartib + ref_point zahler = zahler + 1 for jji in range(len(id_of_texts)): order_of_texts_tot.append(order_of_texts[jji] + ref_point) id_of_texts_tot.append(id_of_texts[jji]) ref_point = ref_point + len(id_of_texts) order_of_texts_tot = [] for tj1 in range(len(contours_only_text_parent)): order_of_texts_tot.append(int(order_by_con_main[tj1])) for tj1 in range(len(contours_only_text_parent_h)): order_of_texts_tot.append(int(order_by_con_head[tj1])) order_text_new = [] for iii in range(len(order_of_texts_tot)): tartib_new = np.where(np.array(order_of_texts_tot) == iii)[0][0] order_text_new.append(tartib_new) except: arg_text_con = [] for ii in range(len(cx_text_only)): for jj in range(len(boxes)): if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located arg_text_con.append(jj) break arg_arg_text_con = np.argsort(arg_text_con) args_contours = np.array(range(len(arg_text_con))) order_by_con_main = np.zeros(len(arg_text_con)) ############################# head arg_text_con_h = [] for ii in range(len(cx_text_only_h)): for jj in range(len(boxes)): if cx_text_only_h[ii] >= boxes[jj][0] and cx_text_only_h[ii] < boxes[jj][1] and cy_text_only_h[ii] >= boxes[jj][2] and cy_text_only_h[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located arg_text_con_h.append(jj) break arg_arg_text_con_h = np.argsort(arg_text_con_h) args_contours_h = np.array(range(len(arg_text_con_h))) order_by_con_head = np.zeros(len(arg_text_con_h)) ##### ref_point = 0 order_of_texts_tot = [] id_of_texts_tot = [] for iij in range(len(boxes)): args_contours_box = args_contours[np.array(arg_text_con) == iij] args_contours_box_h = args_contours_h[np.array(arg_text_con_h) == iij] con_inter_box = [] con_inter_box_h = [] for i in range(len(args_contours_box)): con_inter_box.append(contours_only_text_parent[args_contours_box[i]]) for i in range(len(args_contours_box_h)): con_inter_box_h.append(contours_only_text_parent_h[args_contours_box_h[i]]) indexes_sorted, matrix_of_orders, kind_of_texts_sorted, index_by_kind_sorted = order_of_regions(textline_mask_tot[int(boxes[iij][2]) : int(boxes[iij][3]), int(boxes[iij][0]) : int(boxes[iij][1])], con_inter_box, con_inter_box_h, boxes[iij][2]) order_of_texts, id_of_texts = order_and_id_of_texts(con_inter_box, con_inter_box_h, matrix_of_orders, indexes_sorted, index_by_kind_sorted, kind_of_texts_sorted, ref_point) indexes_sorted_main = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_by_type_main = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_sorted_head = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 2] indexes_by_type_head = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 2] zahler = 0 for mtv in args_contours_box: arg_order_v = indexes_sorted_main[zahler] tartib = np.where(indexes_sorted == arg_order_v)[0][0] order_by_con_main[args_contours_box[indexes_by_type_main[zahler]]] = tartib + ref_point zahler = zahler + 1 zahler = 0 for mtv in args_contours_box_h: arg_order_v = indexes_sorted_head[zahler] tartib = np.where(indexes_sorted == arg_order_v)[0][0] # print(indexes_sorted,np.where(indexes_sorted==arg_order_v ),arg_order_v,tartib,'inshgalla') order_by_con_head[args_contours_box_h[indexes_by_type_head[zahler]]] = tartib + ref_point zahler = zahler + 1 for jji in range(len(id_of_texts)): order_of_texts_tot.append(order_of_texts[jji] + ref_point) id_of_texts_tot.append(id_of_texts[jji]) ref_point = ref_point + len(id_of_texts) order_of_texts_tot = [] for tj1 in range(len(contours_only_text_parent)): order_of_texts_tot.append(int(order_by_con_main[tj1])) for tj1 in range(len(contours_only_text_parent_h)): order_of_texts_tot.append(int(order_by_con_head[tj1])) order_text_new = [] for iii in range(len(order_of_texts_tot)): tartib_new = np.where(np.array(order_of_texts_tot) == iii)[0][0] order_text_new.append(tartib_new) return order_text_new, id_of_texts_tot else: cx_text_only, cy_text_only, x_min_text_only, _, _, _, y_cor_x_min_main = find_new_features_of_contoures(contours_only_text_parent) try: arg_text_con = [] for ii in range(len(cx_text_only)): for jj in range(len(boxes)): if (x_min_text_only[ii] + 80) >= boxes[jj][0] and (x_min_text_only[ii] + 80) < boxes[jj][1] and y_cor_x_min_main[ii] >= boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]: arg_text_con.append(jj) break arg_arg_text_con = np.argsort(arg_text_con) args_contours = np.array(range(len(arg_text_con))) order_by_con_main = np.zeros(len(arg_text_con)) ref_point = 0 order_of_texts_tot = [] id_of_texts_tot = [] for iij in range(len(boxes)): args_contours_box = args_contours[np.array(arg_text_con) == iij] con_inter_box = [] con_inter_box_h = [] for i in range(len(args_contours_box)): con_inter_box.append(contours_only_text_parent[args_contours_box[i]]) indexes_sorted, matrix_of_orders, kind_of_texts_sorted, index_by_kind_sorted = order_of_regions(textline_mask_tot[int(boxes[iij][2]) : int(boxes[iij][3]), int(boxes[iij][0]) : int(boxes[iij][1])], con_inter_box, con_inter_box_h, boxes[iij][2]) order_of_texts, id_of_texts = order_and_id_of_texts(con_inter_box, con_inter_box_h, matrix_of_orders, indexes_sorted, index_by_kind_sorted, kind_of_texts_sorted, ref_point) indexes_sorted_main = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_by_type_main = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_sorted_head = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 2] indexes_by_type_head = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 2] zahler = 0 for mtv in args_contours_box: arg_order_v = indexes_sorted_main[zahler] tartib = np.where(indexes_sorted == arg_order_v)[0][0] order_by_con_main[args_contours_box[indexes_by_type_main[zahler]]] = tartib + ref_point zahler = zahler + 1 for jji in range(len(id_of_texts)): order_of_texts_tot.append(order_of_texts[jji] + ref_point) id_of_texts_tot.append(id_of_texts[jji]) ref_point = ref_point + len(id_of_texts) order_of_texts_tot = [] for tj1 in range(len(contours_only_text_parent)): order_of_texts_tot.append(int(order_by_con_main[tj1])) order_text_new = [] for iii in range(len(order_of_texts_tot)): tartib_new = np.where(np.array(order_of_texts_tot) == iii)[0][0] order_text_new.append(tartib_new) except: arg_text_con = [] for ii in range(len(cx_text_only)): for jj in range(len(boxes)): if cx_text_only[ii] >= boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >= boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]: # this is valid if the center of region identify in which box it is located arg_text_con.append(jj) break arg_arg_text_con = np.argsort(arg_text_con) args_contours = np.array(range(len(arg_text_con))) order_by_con_main = np.zeros(len(arg_text_con)) ref_point = 0 order_of_texts_tot = [] id_of_texts_tot = [] for iij in range(len(boxes)): args_contours_box = args_contours[np.array(arg_text_con) == iij] con_inter_box = [] con_inter_box_h = [] for i in range(len(args_contours_box)): con_inter_box.append(contours_only_text_parent[args_contours_box[i]]) indexes_sorted, matrix_of_orders, kind_of_texts_sorted, index_by_kind_sorted = order_of_regions(textline_mask_tot[int(boxes[iij][2]) : int(boxes[iij][3]), int(boxes[iij][0]) : int(boxes[iij][1])], con_inter_box, con_inter_box_h, boxes[iij][2]) order_of_texts, id_of_texts = order_and_id_of_texts(con_inter_box, con_inter_box_h, matrix_of_orders, indexes_sorted, index_by_kind_sorted, kind_of_texts_sorted, ref_point) indexes_sorted_main = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_by_type_main = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 1] indexes_sorted_head = np.array(indexes_sorted)[np.array(kind_of_texts_sorted) == 2] indexes_by_type_head = np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted) == 2] zahler = 0 for mtv in args_contours_box: arg_order_v = indexes_sorted_main[zahler] tartib = np.where(indexes_sorted == arg_order_v)[0][0] order_by_con_main[args_contours_box[indexes_by_type_main[zahler]]] = tartib + ref_point zahler = zahler + 1 for jji in range(len(id_of_texts)): order_of_texts_tot.append(order_of_texts[jji] + ref_point) id_of_texts_tot.append(id_of_texts[jji]) ref_point = ref_point + len(id_of_texts) order_of_texts_tot = [] for tj1 in range(len(contours_only_text_parent)): order_of_texts_tot.append(int(order_by_con_main[tj1])) order_text_new = [] for iii in range(len(order_of_texts_tot)): tartib_new = np.where(np.array(order_of_texts_tot) == iii)[0][0] order_text_new.append(tartib_new) return order_text_new, id_of_texts_tot def save_plot_of_layout_main(self, text_regions_p, image_page): values = np.unique(text_regions_p[:, :]) # pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics'] pixels = ["Background", "Main text", "Images", "Seperators", "Marginalia"] values_indexes = [0, 1, 2, 3, 4] plt.figure(figsize=(40, 40)) plt.rcParams["font.size"] = "40" im = plt.imshow(text_regions_p[:, :]) colors = [im.cmap(im.norm(value)) for value in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40) plt.savefig(os.path.join(self.dir_of_layout, self.f_name + "_layout_main.png")) def save_plot_of_layout_main_all(self, text_regions_p, image_page): values = np.unique(text_regions_p[:, :]) # pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics'] pixels = ["Background", "Main text", "Images", "Seperators", "Marginalia"] values_indexes = [0, 1, 2, 3, 4] plt.figure(figsize=(70, 40)) plt.rcParams["font.size"] = "40" plt.subplot(1, 2, 1) plt.imshow(image_page) plt.subplot(1, 2, 2) im = plt.imshow(text_regions_p[:, :]) colors = [im.cmap(im.norm(value)) for value in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60) plt.savefig(os.path.join(self.dir_of_all, self.f_name + "_layout_main_and_page.png")) def save_plot_of_layout(self, text_regions_p, image_page): values = np.unique(text_regions_p[:, :]) # pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics'] pixels = ["Background", "Main text", "Header", "Marginalia", "Drop capitals", "Images", "Seperators"] values_indexes = [0, 1, 2, 8, 4, 5, 6] plt.figure(figsize=(40, 40)) plt.rcParams["font.size"] = "40" im = plt.imshow(text_regions_p[:, :]) colors = [im.cmap(im.norm(value)) for value in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=40) plt.savefig(os.path.join(self.dir_of_layout, self.f_name + "_layout.png")) def save_plot_of_layout_all(self, text_regions_p, image_page): values = np.unique(text_regions_p[:, :]) # pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics'] pixels = ["Background", "Main text", "Header", "Marginalia", "Drop capitals", "Images", "Seperators"] values_indexes = [0, 1, 2, 8, 4, 5, 6] plt.figure(figsize=(70, 40)) plt.rcParams["font.size"] = "40" plt.subplot(1, 2, 1) plt.imshow(image_page) plt.subplot(1, 2, 2) im = plt.imshow(text_regions_p[:, :]) colors = [im.cmap(im.norm(value)) for value in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60) plt.savefig(os.path.join(self.dir_of_all, self.f_name + "_layout_and_page.png")) def save_deskewed_image(self, slope_deskew): img_rotated = rotyate_image_different(self.image_org, slope_deskew) if self.dir_of_all is not None: cv2.imwrite(os.path.join(self.dir_of_all, self.f_name + "_org.png"), self.image_org) cv2.imwrite(os.path.join(self.dir_of_deskewed, self.f_name + "_deskewed.png"), img_rotated) del img_rotated def run(self): is_image_enhanced = False # get image and sclaes, then extract the page of scanned image t1 = time.time() ########## ###is_image_enhanced,img_org,img_res=self.resize_and_enhance_image(is_image_enhanced) is_image_enhanced, img_org, img_res, num_col_classifier, num_column_is_classified = self.resize_and_enhance_image_with_column_classifier(is_image_enhanced) print(is_image_enhanced, "is_image_enhanced") K.clear_session() scale = 1 if (self.allow_enhancement) and is_image_enhanced: cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif", img_res) img_res = img_res.astype(np.uint8) self.get_image_and_scales(img_org, img_res, scale) if (not self.allow_enhancement) and is_image_enhanced: self.get_image_and_scales_after_enhancing(img_org, img_res) if (self.allow_enhancement) and not is_image_enhanced: self.get_image_and_scales(img_org, img_res, scale) if (not self.allow_enhancement) and not is_image_enhanced: self.get_image_and_scales(img_org, img_res, scale) if (self.allow_scaling) and not is_image_enhanced: img_org, img_res, is_image_enhanced = self.resize_image_with_column_classifier(is_image_enhanced) self.get_image_and_scales_after_enhancing(img_org, img_res) # print(self.scale_x) print("enhancing: " + str(time.time() - t1)) text_regions_p_1 = self.get_regions_from_xy_2models(img_res, is_image_enhanced) K.clear_session() gc.collect() print("textregion: " + str(time.time() - t1)) img_g = cv2.imread(self.image_dir, 0) img_g = img_g.astype(np.uint8) img_g3 = np.zeros((img_g.shape[0], img_g.shape[1], 3)) img_g3 = img_g3.astype(np.uint8) img_g3[:, :, 0] = img_g[:, :] img_g3[:, :, 1] = img_g[:, :] img_g3[:, :, 2] = img_g[:, :] ###self.produce_groundtruth_for_textline() image_page, page_coord = self.extract_page() # print(image_page.shape,'page') if self.dir_of_all is not None: cv2.imwrite(os.path.join(self.dir_of_all, self.f_name + "_page.png"), image_page) ########## K.clear_session() gc.collect() img_g3_page = img_g3[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3], :] del img_g3 del img_g text_regions_p_1 = text_regions_p_1[page_coord[0] : page_coord[1], page_coord[2] : page_coord[3]] mask_images = (text_regions_p_1[:, :] == 2) * 1 mask_lines = (text_regions_p_1[:, :] == 3) * 1 mask_images = mask_images.astype(np.uint8) mask_lines = mask_lines.astype(np.uint8) mask_images = cv2.erode(mask_images[:, :], self.kernel, iterations=10) img_only_regions_with_sep = ((text_regions_p_1[:, :] != 3) & (text_regions_p_1[:, :] != 0)) * 1 img_only_regions_with_sep = img_only_regions_with_sep.astype(np.uint8) img_only_regions = cv2.erode(img_only_regions_with_sep[:, :], self.kernel, iterations=6) try: num_col, peaks_neg_fin = find_num_col(img_only_regions, multiplier=6.0) if not num_column_is_classified: num_col_classifier = num_col + 1 except: num_col = None peaks_neg_fin = [] #print(num_col, "num_colnum_col") if num_col is None: txt_con_org = [] order_text_new = [] id_of_texts_tot = [] all_found_texline_polygons = [] all_box_coord = [] polygons_of_images = [] polygons_of_marginals = [] all_found_texline_polygons_marginals = [] all_box_coord_marginals = [] slopes = [] slopes_marginals = [] self.write_into_page_xml(txt_con_org, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, self.curved_line, slopes, slopes_marginals) else: # pass try: patches = True scaler_h_textline = 1 # 1.2#1.2 scaler_w_textline = 1 # 0.9#1 textline_mask_tot_ea, textline_mask_tot_long_shot = self.textline_contours(image_page, patches, scaler_h_textline, scaler_w_textline) K.clear_session() gc.collect() #print(np.unique(textline_mask_tot_ea[:, :]), "textline") if self.dir_of_all is not None: values = np.unique(textline_mask_tot_ea[:, :]) pixels = ["Background", "Textlines"] values_indexes = [0, 1] plt.figure(figsize=(70, 40)) plt.rcParams["font.size"] = "40" plt.subplot(1, 2, 1) plt.imshow(image_page) plt.subplot(1, 2, 2) im = plt.imshow(textline_mask_tot_ea[:, :]) colors = [im.cmap(im.norm(value)) for value in values] patches = [mpatches.Patch(color=colors[np.where(values == i)[0][0]], label="{l}".format(l=pixels[int(np.where(values_indexes == i)[0][0])])) for i in values] plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize=60) plt.savefig(os.path.join(self.dir_of_all, self.f_name + "_textline_and_page.png")) print("textline: " + str(time.time() - t1)) # plt.imshow(textline_mask_tot_ea) # plt.show() # sys.exit() sigma = 2 main_page_deskew = True slope_deskew = return_deskew_slop(cv2.erode(textline_mask_tot_ea, self.kernel, iterations=2), sigma, main_page_deskew, dir_of_all=self.dir_of_all, f_name=self.f_name) slope_first = 0 # return_deskew_slop(cv2.erode(textline_mask_tot_ea, self.kernel, iterations=2),sigma, dir_of_all=self.dir_of_all, f_name=self.f_name) if self.dir_of_deskewed is not None: self.save_deskewed_image(slope_deskew) # img_rotated=rotyate_image_different(self.image_org,slope_deskew) print(slope_deskew, "slope_deskew") ##plt.imshow(img_rotated) ##plt.show() ##sys.exit() print("deskewing: " + str(time.time() - t1)) image_page_rotated, textline_mask_tot = image_page[:, :], textline_mask_tot_ea[:, :] # rotation_not_90_func(image_page,textline_mask_tot_ea,slope_first) textline_mask_tot[mask_images[:, :] == 1] = 0 pixel_img = 1 min_area = 0.00001 max_area = 0.0006 textline_mask_tot_small_size = return_contours_of_interested_region_by_size(textline_mask_tot, pixel_img, min_area, max_area) # text_regions_p_1[(textline_mask_tot[:,:]==1) & (text_regions_p_1[:,:]==2)]=1 text_regions_p_1[mask_lines[:, :] == 1] = 3 ##text_regions_p_1[textline_mask_tot_small_size[:,:]==1]=1 text_regions_p = text_regions_p_1[:, :] # long_short_region[:,:]#self.get_regions_from_2_models(image_page) text_regions_p = np.array(text_regions_p) if num_col_classifier == 1 or num_col_classifier == 2: try: regions_without_seperators = (text_regions_p[:, :] == 1) * 1 regions_without_seperators = regions_without_seperators.astype(np.uint8) text_regions_p = get_marginals(rotate_image(regions_without_seperators, slope_deskew), text_regions_p, num_col_classifier, slope_deskew, kernel=self.kernel) except: pass else: pass # plt.imshow(text_regions_p) # plt.show() if self.dir_of_all is not None: self.save_plot_of_layout_main_all(text_regions_p, image_page) if self.dir_of_layout is not None: self.save_plot_of_layout_main(text_regions_p, image_page) print("marginals: " + str(time.time() - t1)) if not self.full_layout: if np.abs(slope_deskew) >= SLOPE_THRESHOLD: image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n = rotation_not_90_func(image_page, textline_mask_tot, text_regions_p, slope_deskew) text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) pixel_lines = 3 if np.abs(slope_deskew) < SLOPE_THRESHOLD: num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) if np.abs(slope_deskew) >= SLOPE_THRESHOLD: num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) K.clear_session() gc.collect() # print(peaks_neg_fin,num_col,'num_col2') print(num_col_classifier, "num_col_classifier") if num_col_classifier >= 3: if np.abs(slope_deskew) < SLOPE_THRESHOLD: regions_without_seperators = regions_without_seperators.astype(np.uint8) regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6) random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1]) random_pixels_for_image[random_pixels_for_image < -0.5] = 0 random_pixels_for_image[random_pixels_for_image != 0] = 1 regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 2)] = 1 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8) regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6) random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1]) random_pixels_for_image[random_pixels_for_image < -0.5] = 0 random_pixels_for_image[random_pixels_for_image != 0] = 1 regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 2)] = 1 else: pass if np.abs(slope_deskew) < SLOPE_THRESHOLD: boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch) else: boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d) # print(len(boxes),'boxes') # sys.exit() print("boxes in: " + str(time.time() - t1)) img_revised_tab = text_regions_p[:, :] # plt.imshow(img_revised_tab) # plt.show() K.clear_session() pixel_img = 4 min_area_mar = 0.00001 polygons_of_marginals = return_contours_of_interested_region(text_regions_p, pixel_img, min_area_mar) if self.full_layout: # set first model with second model text_regions_p[:, :][text_regions_p[:, :] == 2] = 5 text_regions_p[:, :][text_regions_p[:, :] == 3] = 6 text_regions_p[:, :][text_regions_p[:, :] == 4] = 8 K.clear_session() # gc.collect() patches = True image_page = image_page.astype(np.uint8) # print(type(image_page)) regions_fully, regions_fully_only_drop = self.extract_text_regions(image_page, patches, cols=num_col_classifier) regions_fully_only_drop = put_drop_out_from_only_drop_model(regions_fully_only_drop, text_regions_p) regions_fully[:, :, 0][regions_fully_only_drop[:, :, 0] == 4] = 4 K.clear_session() gc.collect() # plt.imshow(regions_fully[:,:,0]) # plt.show() regions_fully = putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully) # plt.imshow(regions_fully[:,:,0]) # plt.show() K.clear_session() gc.collect() patches = False regions_fully_np, _ = self.extract_text_regions(image_page, patches, cols=num_col_classifier) # plt.imshow(regions_fully_np[:,:,0]) # plt.show() if num_col_classifier > 2: regions_fully_np[:, :, 0][regions_fully_np[:, :, 0] == 4] = 0 else: regions_fully_np = filter_small_drop_capitals_from_no_patch_layout(regions_fully_np, text_regions_p) # regions_fully_np=filter_small_drop_capitals_from_no_patch_layout(regions_fully_np,text_regions_p) # plt.imshow(regions_fully_np[:,:,0]) # plt.show() K.clear_session() gc.collect() # plt.imshow(regions_fully[:,:,0]) # plt.show() regions_fully = boosting_headers_by_longshot_region_segmentation(regions_fully, regions_fully_np, img_only_regions) # plt.imshow(regions_fully[:,:,0]) # plt.show() text_regions_p[:, :][regions_fully[:, :, 0] == 4] = 4 ##text_regions_p[:,:][(regions_fully[:,:,0]==7) & (text_regions_p[:,:]!=0)]=7 text_regions_p[:, :][regions_fully_np[:, :, 0] == 4] = 4 # plt.imshow(text_regions_p) # plt.show() if np.abs(slope_deskew) >= SLOPE_THRESHOLD: image_page_rotated_n, textline_mask_tot_d, text_regions_p_1_n, regions_fully_n = rotation_not_90_func_full_layout(image_page, textline_mask_tot, text_regions_p, regions_fully, slope_deskew) text_regions_p_1_n = resize_image(text_regions_p_1_n, text_regions_p.shape[0], text_regions_p.shape[1]) textline_mask_tot_d = resize_image(textline_mask_tot_d, text_regions_p.shape[0], text_regions_p.shape[1]) regions_fully_n = resize_image(regions_fully_n, text_regions_p.shape[0], text_regions_p.shape[1]) regions_without_seperators_d = (text_regions_p_1_n[:, :] == 1) * 1 regions_without_seperators = (text_regions_p[:, :] == 1) * 1 # ( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions) K.clear_session() gc.collect() img_revised_tab = np.copy(text_regions_p[:, :]) print("full layout in: " + str(time.time() - t1)) # sys.exit() pixel_img = 5 polygons_of_images = return_contours_of_interested_region(img_revised_tab, pixel_img) # plt.imshow(img_revised_tab) # plt.show() # print(img_revised_tab.shape,text_regions_p_1_n.shape) # text_regions_p_1_n=resize_image(text_regions_p_1_n,img_revised_tab.shape[0],img_revised_tab.shape[1]) # print(np.unique(text_regions_p_1_n),'uni') text_only = ((img_revised_tab[:, :] == 1)) * 1 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: text_only_d = ((text_regions_p_1_n[:, :] == 1)) * 1 ##text_only_h=( (img_revised_tab[:,:,0]==2) )*1 # print(text_only.shape,text_only_d.shape) # plt.imshow(text_only) # plt.show() # plt.imshow(text_only_d) # plt.show() min_con_area = 0.000005 if np.abs(slope_deskew) >= SLOPE_THRESHOLD: contours_only_text, hir_on_text = return_contours_of_image(text_only) contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] contours_only_text_parent = [contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz] > min_con_area] areas_cnt_text_parent = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > min_con_area] index_con_parents = np.argsort(areas_cnt_text_parent) contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents]) areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest]) cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent) contours_only_text_d, hir_on_text_d = return_contours_of_image(text_only_d) contours_only_text_parent_d = return_parent_contours(contours_only_text_d, hir_on_text_d) areas_cnt_text_d = np.array([cv2.contourArea(contours_only_text_parent_d[j]) for j in range(len(contours_only_text_parent_d))]) areas_cnt_text_d = areas_cnt_text_d / float(text_only_d.shape[0] * text_only_d.shape[1]) contours_biggest_d = contours_only_text_parent_d[np.argmax(areas_cnt_text_d)] cx_bigest_d_big, cy_biggest_d_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest_d]) cx_bigest_d, cy_biggest_d, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent_d) (h, w) = text_only.shape[:2] center = (w // 2.0, h // 2.0) M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0) M_22 = np.array(M)[:2, :2] p_big = np.dot(M_22, [cx_bigest_big, cy_biggest_big]) x_diff = p_big[0] - cx_bigest_d_big y_diff = p_big[1] - cy_biggest_d_big # print(p_big) # print(cx_bigest_d_big,cy_biggest_d_big) # print(x_diff,y_diff) contours_only_text_parent_d_ordered = [] for i in range(len(contours_only_text_parent)): # img1=np.zeros((text_only.shape[0],text_only.shape[1],3)) # img1=cv2.fillPoly(img1,pts=[contours_only_text_parent[i]] ,color=(1,1,1)) # plt.imshow(img1[:,:,0]) # plt.show() p = np.dot(M_22, [cx_bigest[i], cy_biggest[i]]) # print(p) p[0] = p[0] - x_diff[0] p[1] = p[1] - y_diff[0] # print(p) # print(cx_bigest_d) # print(cy_biggest_d) dists = [math.sqrt((p[0] - cx_bigest_d[j]) ** 2 + (p[1] - cy_biggest_d[j]) ** 2) for j in range(len(cx_bigest_d))] # print(np.argmin(dists)) contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)]) # img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) # img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1)) # plt.imshow(img2[:,:,0]) # plt.show() else: contours_only_text, hir_on_text = return_contours_of_image(text_only) contours_only_text_parent = return_parent_contours(contours_only_text, hir_on_text) areas_cnt_text = np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))]) areas_cnt_text = areas_cnt_text / float(text_only.shape[0] * text_only.shape[1]) contours_biggest = contours_only_text_parent[np.argmax(areas_cnt_text)] contours_only_text_parent = [contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz] > min_con_area] areas_cnt_text_parent = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > min_con_area] index_con_parents = np.argsort(areas_cnt_text_parent) contours_only_text_parent = list(np.array(contours_only_text_parent)[index_con_parents]) areas_cnt_text_parent = list(np.array(areas_cnt_text_parent)[index_con_parents]) cx_bigest_big, cy_biggest_big, _, _, _, _, _ = find_new_features_of_contoures([contours_biggest]) cx_bigest, cy_biggest, _, _, _, _, _ = find_new_features_of_contoures(contours_only_text_parent) # print(areas_cnt_text_parent,'areas_cnt_text_parent') ###index_con_parents_d=np.argsort(areas_cnt_text_parent_d) ##contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d]) ###areas_cnt_text_parent_d=list(np.array(areas_cnt_text_parent_d)[index_con_parents_d]) ##print(areas_cnt_text_parent_d,'areas_cnt_text_parent_d') # print(len(contours_only_text_parent),len(contours_only_text_parent_d),'vizzz') txt_con_org = get_textregion_contours_in_org_image(contours_only_text_parent, self.image, slope_first) ###boxes_text,_= get_text_region_boxes_by_given_contours(contours_only_text_parent) boxes_text, _ = get_text_region_boxes_by_given_contours(contours_only_text_parent) boxes_marginals, _ = get_text_region_boxes_by_given_contours(polygons_of_marginals) ####boxes_text_h,_= get_text_region_boxes_by_given_contours(text_only_h,contours_only_text_parent_h,image_page) if not self.curved_line: slopes, all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con = self.get_slopes_and_deskew_new(txt_con_org, contours_only_text_parent, textline_mask_tot_ea, image_page_rotated, boxes_text, slope_deskew) slopes_marginals, all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, index_by_text_par_con_marginal = self.get_slopes_and_deskew_new(polygons_of_marginals, polygons_of_marginals, textline_mask_tot_ea, image_page_rotated, boxes_marginals, slope_deskew) if self.curved_line: scale_param = 1 all_found_texline_polygons, boxes_text, txt_con_org, contours_only_text_parent, all_box_coord, index_by_text_par_con, slopes = self.get_slopes_and_deskew_new_curved(txt_con_org, contours_only_text_parent, cv2.erode(textline_mask_tot_ea, kernel=self.kernel, iterations=1), image_page_rotated, boxes_text, text_only, num_col_classifier, scale_param, slope_deskew) # all_found_texline_polygons,boxes_text,txt_con_org,contours_only_text_parent,all_box_coord=self.get_slopes_and_deskew_new_curved(txt_con_org,contours_only_text_parent,textline_mask_tot_ea,image_page_rotated,boxes_text,text_only,num_col,scale_param) all_found_texline_polygons = small_textlines_to_parent_adherence2(all_found_texline_polygons, textline_mask_tot_ea, num_col_classifier) # slopes=list(np.zeros(len(contours_only_text_parent))) all_found_texline_polygons_marginals, boxes_marginals, _, polygons_of_marginals, all_box_coord_marginals, index_by_text_par_con_marginal, slopes_marginals = self.get_slopes_and_deskew_new_curved(polygons_of_marginals, polygons_of_marginals, cv2.erode(textline_mask_tot_ea, kernel=self.kernel, iterations=1), image_page_rotated, boxes_marginals, text_only, num_col_classifier, scale_param, slope_deskew) # all_found_texline_polygons,boxes_text,txt_con_org,contours_only_text_parent,all_box_coord=self.get_slopes_and_deskew_new_curved(txt_con_org,contours_only_text_parent,textline_mask_tot_ea,image_page_rotated,boxes_text,text_only,num_col,scale_param) all_found_texline_polygons_marginals = small_textlines_to_parent_adherence2(all_found_texline_polygons_marginals, textline_mask_tot_ea, num_col_classifier) index_of_vertical_text_contours = np.array(range(len(slopes)))[(abs(np.array(slopes)) > 60)] contours_text_vertical = [contours_only_text_parent[i] for i in index_of_vertical_text_contours] K.clear_session() gc.collect() # contours_only_text_parent_d_ordered=list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con]) ###print(index_by_text_par_con,'index_by_text_par_con') if self.full_layout: ##for iii in range(len(contours_only_text_parent)): ##img1=np.zeros((text_only.shape[0],text_only.shape[1],3)) ##img1=cv2.fillPoly(img1,pts=[contours_only_text_parent[iii]] ,color=(1,1,1)) ##plt.imshow(img1[:,:,0]) ##plt.show() ##img2=np.zeros((text_only.shape[0],text_only.shape[1],3)) ##img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d_ordered[iii]] ,color=(1,1,1)) ##plt.imshow(img2[:,:,0]) ##plt.show() if np.abs(slope_deskew) >= SLOPE_THRESHOLD: contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con]) text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered) else: contours_only_text_parent_d_ordered = None text_regions_p, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, slopes, slopes_h, contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered = check_any_text_region_in_model_one_is_main_or_header(text_regions_p, regions_fully, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered) ###text_regions_p,contours_only_text_parent,contours_only_text_parent_h,all_box_coord,all_box_coord_h,all_found_texline_polygons,all_found_texline_polygons_h=check_any_text_region_in_model_one_is_main_or_header(text_regions_p,regions_fully,contours_only_text_parent,all_box_coord,all_found_texline_polygons) # text_regions_p=self.return_region_segmentation_after_implementing_not_head_maintext_parallel(text_regions_p,boxes) # if you want to save the layout result just uncommet following plot if self.dir_of_layout is not None: self.save_plot_of_layout(text_regions_p, image_page) if self.dir_of_all is not None: self.save_plot_of_layout_all(text_regions_p, image_page) K.clear_session() gc.collect() ##print('Job done in: '+str(time.time()-t1)) polygons_of_tabels = [] pixel_img = 4 polygons_of_drop_capitals = return_contours_of_interested_region_by_min_size(text_regions_p, pixel_img) # polygons_of_drop_capitals=[] all_found_texline_polygons = adhere_drop_capital_region_into_cprresponding_textline(text_regions_p, polygons_of_drop_capitals, contours_only_text_parent, contours_only_text_parent_h, all_box_coord, all_box_coord_h, all_found_texline_polygons, all_found_texline_polygons_h, kernel=self.kernel, curved_line=self.curved_line) # print(len(contours_only_text_parent_h),len(contours_only_text_parent_h_d_ordered),'contours_only_text_parent_h') pixel_lines = 6 if not self.headers_off: if np.abs(slope_deskew) < SLOPE_THRESHOLD: num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h) else: num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines, contours_only_text_parent_h_d_ordered) elif self.headers_off: if np.abs(slope_deskew) < SLOPE_THRESHOLD: num_col, peaks_neg_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n = find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) else: num_col_d, peaks_neg_fin_d, matrix_of_lines_ch_d, spliter_y_new_d, seperators_closeup_n_d = find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2), num_col_classifier, pixel_lines) # print(peaks_neg_fin,peaks_neg_fin_d,'num_col2') # print(spliter_y_new,spliter_y_new_d,'num_col_classifier') # print(matrix_of_lines_ch.shape,matrix_of_lines_ch_d.shape,'matrix_of_lines_ch') if num_col_classifier >= 3: if np.abs(slope_deskew) < SLOPE_THRESHOLD: regions_without_seperators = regions_without_seperators.astype(np.uint8) regions_without_seperators = cv2.erode(regions_without_seperators[:, :], self.kernel, iterations=6) random_pixels_for_image = np.random.randn(regions_without_seperators.shape[0], regions_without_seperators.shape[1]) random_pixels_for_image[random_pixels_for_image < -0.5] = 0 random_pixels_for_image[random_pixels_for_image != 0] = 1 regions_without_seperators[(random_pixels_for_image[:, :] == 1) & (text_regions_p[:, :] == 5)] = 1 else: regions_without_seperators_d = regions_without_seperators_d.astype(np.uint8) regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:, :], self.kernel, iterations=6) random_pixels_for_image = np.random.randn(regions_without_seperators_d.shape[0], regions_without_seperators_d.shape[1]) random_pixels_for_image[random_pixels_for_image < -0.5] = 0 random_pixels_for_image[random_pixels_for_image != 0] = 1 regions_without_seperators_d[(random_pixels_for_image[:, :] == 1) & (text_regions_p_1_n[:, :] == 5)] = 1 else: pass if np.abs(slope_deskew) < SLOPE_THRESHOLD: boxes = return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch) else: boxes_d = return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d, regions_without_seperators_d, matrix_of_lines_ch_d) # print(slopes) if self.dir_of_cropped_images is not None: self.write_images_into_directory(polygons_of_images, self.dir_of_cropped_images, image_page) if self.full_layout: if np.abs(slope_deskew) < SLOPE_THRESHOLD: order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) else: order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h_d_ordered, boxes_d, textline_mask_tot_d) self.write_into_page_xml_full(contours_only_text_parent, contours_only_text_parent_h, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_found_texline_polygons_h, all_box_coord, all_box_coord_h, polygons_of_images, polygons_of_tabels, polygons_of_drop_capitals, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, slopes, slopes_marginals) else: contours_only_text_parent_h = None # print('bura galmir?') if np.abs(slope_deskew) < SLOPE_THRESHOLD: contours_only_text_parent = list(np.array(contours_only_text_parent)[index_by_text_par_con]) order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent, contours_only_text_parent_h, boxes, textline_mask_tot) else: contours_only_text_parent_d_ordered = list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con]) order_text_new, id_of_texts_tot = self.do_order_of_regions(contours_only_text_parent_d_ordered, contours_only_text_parent_h, boxes_d, textline_mask_tot_d) # order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot) self.write_into_page_xml(txt_con_org, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, self.curved_line, slopes, slopes_marginals) except: txt_con_org = [] order_text_new = [] id_of_texts_tot = [] all_found_texline_polygons = [] all_box_coord = [] polygons_of_images = [] polygons_of_marginals = [] all_found_texline_polygons_marginals = [] all_box_coord_marginals = [] slopes = [] slopes_marginals = [] self.write_into_page_xml(txt_con_org, page_coord, self.dir_out, order_text_new, id_of_texts_tot, all_found_texline_polygons, all_box_coord, polygons_of_images, polygons_of_marginals, all_found_texline_polygons_marginals, all_box_coord_marginals, self.curved_line, slopes, slopes_marginals) print("Job done in: " + str(time.time() - t1))