mirror of
https://github.com/qurator-spk/eynollah.git
synced 2025-10-07 06:59:58 +02:00
1723 lines
77 KiB
Python
1723 lines
77 KiB
Python
import os
|
|
from logging import getLogger
|
|
from functools import partial
|
|
import numpy as np
|
|
import cv2
|
|
from scipy.signal import find_peaks
|
|
from scipy.ndimage import gaussian_filter1d
|
|
from .rotate import rotate_image
|
|
from .resize import resize_image
|
|
from .contour import (
|
|
return_parent_contours,
|
|
filter_contours_area_of_image_tables,
|
|
return_contours_of_image,
|
|
filter_contours_area_of_image,
|
|
return_contours_of_interested_textline,
|
|
find_contours_mean_y_diff,
|
|
)
|
|
from .shm import share_ndarray, wrap_ndarray_shared
|
|
from . import (
|
|
find_num_col_deskew,
|
|
crop_image_inside_box,
|
|
box2rect,
|
|
box2slice,
|
|
)
|
|
|
|
def dedup_separate_lines(img_patch, contour_text_interest, thetha, axis):
|
|
(h, w) = img_patch.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180.0 * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
|
|
x_cont = contour_text_interest[:, 0, 0]
|
|
y_cont = contour_text_interest[:, 0, 1]
|
|
x_cont = x_cont - np.min(x_cont)
|
|
y_cont = y_cont - np.min(y_cont)
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_patch.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_patch.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
textline_patch_sum_along_width = img_patch.sum(axis=axis)
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
|
|
y_padded = np.zeros(len(y) + 40)
|
|
y_padded[20 : len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
if 1 > 0:
|
|
try:
|
|
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
|
|
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
|
|
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
|
|
y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
|
|
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
|
|
|
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
|
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
|
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
|
|
|
arg_neg_must_be_deleted = np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
|
|
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
|
|
|
|
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
|
|
|
|
peaks_new = peaks_e[:]
|
|
peaks_neg_new = peaks_neg_e[:]
|
|
|
|
clusters_to_be_deleted = []
|
|
if len(arg_diff_cluster) > 0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
|
|
for i in range(len(arg_diff_cluster) - 1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
|
|
arg_diff_cluster[i + 1] + 1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
|
|
if len(clusters_to_be_deleted) > 0:
|
|
peaks_new_extra = []
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
|
|
max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
|
|
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot = []
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot = np.sort(peaks_new_tot)
|
|
|
|
else:
|
|
peaks_new_tot = peaks_e[:]
|
|
|
|
textline_con, hierarchy = return_contours_of_image(img_patch)
|
|
textline_con_fil = filter_contours_area_of_image(img_patch,
|
|
textline_con, hierarchy,
|
|
max_area=1, min_area=0.0008)
|
|
if len(np.diff(peaks_new_tot))>1:
|
|
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
|
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
|
else:
|
|
sigma_gaus = 12
|
|
except:
|
|
sigma_gaus = 12
|
|
if sigma_gaus < 3:
|
|
sigma_gaus = 3
|
|
|
|
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
|
|
y_padded_up_to_down = -y_padded + np.max(y_padded)
|
|
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
|
|
y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
|
|
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
|
|
|
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
|
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
|
|
|
return (x, y,
|
|
x_d, y_d,
|
|
xv,
|
|
x_min_cont, y_min_cont,
|
|
x_max_cont, y_max_cont,
|
|
first_nonzero,
|
|
y_padded_up_to_down_padded,
|
|
y_padded_smoothed,
|
|
peaks, peaks_neg,
|
|
rotation_matrix)
|
|
|
|
def separate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
|
|
(h, w) = img_patch.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
thetha = thetha / 180. * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
contour_text_interest_copy = contour_text_interest.copy()
|
|
|
|
x_cont = contour_text_interest[:, 0, 0]
|
|
y_cont = contour_text_interest[:, 0, 1]
|
|
x_cont = x_cont - np.min(x_cont)
|
|
y_cont = y_cont - np.min(y_cont)
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_patch.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_patch.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
textline_patch_sum_along_width = img_patch.sum(axis=1)
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
|
|
y_padded = np.zeros(len(y) + 40)
|
|
y_padded[20:len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
|
|
try:
|
|
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
|
|
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
|
|
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
|
|
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
|
|
|
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
|
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
|
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
|
|
|
arg_neg_must_be_deleted= np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3]
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
peaks_new=peaks_e[:]
|
|
peaks_neg_new=peaks_neg_e[:]
|
|
|
|
clusters_to_be_deleted=[]
|
|
if len(arg_diff_cluster)>0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
|
|
arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
else:
|
|
peaks_new_tot=peaks_e[:]
|
|
|
|
textline_con,hierarchy=return_contours_of_image(img_patch)
|
|
textline_con_fil=filter_contours_area_of_image(img_patch,
|
|
textline_con, hierarchy,
|
|
max_area=1, min_area=0.0008)
|
|
|
|
if len(np.diff(peaks_new_tot))>0:
|
|
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
|
|
sigma_gaus=int( y_diff_mean * (7./40.0) )
|
|
else:
|
|
sigma_gaus=12
|
|
|
|
except:
|
|
sigma_gaus=12
|
|
if sigma_gaus<3:
|
|
sigma_gaus=3
|
|
|
|
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
|
|
y_padded_up_to_down=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
|
|
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
|
|
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
|
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
|
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
|
|
|
try:
|
|
neg_peaks_max=np.max(y_padded_smoothed[peaks])
|
|
arg_neg_must_be_deleted= np.arange(len(peaks_neg))[y_padded_up_to_down_padded[peaks_neg]/float(neg_peaks_max)<0.42]
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
|
|
except:
|
|
arg_neg_must_be_deleted=[]
|
|
arg_diff_cluster=[]
|
|
try:
|
|
peaks_new=peaks[:]
|
|
peaks_neg_new=peaks_neg[:]
|
|
clusters_to_be_deleted=[]
|
|
if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:
|
|
arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
elif len(arg_neg_must_be_deleted)>=2 and len(arg_diff_cluster)==0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
|
|
|
if len(arg_neg_must_be_deleted)==1:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]]]
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
else:
|
|
peaks_new_tot=peaks[:]
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
except:
|
|
pass
|
|
if len(y_padded_smoothed[peaks]) > 1:
|
|
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
|
|
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
|
|
else:
|
|
mean_value_of_peaks = np.nan
|
|
std_value_of_peaks = np.nan
|
|
peaks_values=y_padded_smoothed[peaks]
|
|
peaks_neg = peaks_neg - 20 - 20
|
|
peaks = peaks - 20
|
|
for jj in range(len(peaks_neg)):
|
|
if peaks_neg[jj] > len(x) - 1:
|
|
peaks_neg[jj] = len(x) - 1
|
|
for jj in range(len(peaks)):
|
|
if peaks[jj] > len(x) - 1:
|
|
peaks[jj] = len(x) - 1
|
|
|
|
textline_boxes = []
|
|
textline_boxes_rot = []
|
|
|
|
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
|
|
for jj in range(len(peaks)):
|
|
|
|
if jj==(len(peaks)-1):
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
else:
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
|
|
if point_down_narrow >= img_patch.shape[0]:
|
|
point_down_narrow = img_patch.shape[0] - 2
|
|
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
elif len(peaks) < 1:
|
|
pass
|
|
|
|
elif len(peaks) == 1:
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
|
|
tuple(int(x) for x in np.array([xv[mj], peaks[0] + first_nonzero])), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
#x_min = x_min_cont
|
|
#x_max = x_max_cont
|
|
|
|
y_min = y_min_cont
|
|
y_max = y_max_cont
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(y_min)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(y_min)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(y_max)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(y_max)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(y_min)],
|
|
[int(x_max), int(y_min)],
|
|
[int(x_max), int(y_max)],
|
|
[int(x_min), int(y_max)]]))
|
|
elif len(peaks) == 2:
|
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
|
for jj in range(len(peaks)):
|
|
if jj == 0:
|
|
point_up = 0#peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
point_down = peaks_neg[1] + first_nonzero# peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
elif jj == 1:
|
|
point_down =peaks_neg[1] + first_nonzero# peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
try:
|
|
point_up = peaks_neg[2] + first_nonzero#peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
|
|
except:
|
|
point_up =peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
|
|
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside)
|
|
x_max = np.max(xvinside)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
else:
|
|
for jj in range(len(peaks)):
|
|
if jj == 0:
|
|
dis_to_next = peaks[jj + 1] - peaks[jj]
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next)
|
|
elif jj == len(peaks) - 1:
|
|
dis_to_next = peaks[jj] - peaks[jj - 1]
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.7 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
else:
|
|
dis_to_next_down = peaks[jj + 1] - peaks[jj]
|
|
dis_to_next_up = peaks[jj] - peaks[jj - 1]
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next_up)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next_down)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
|
|
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
return peaks, textline_boxes_rot
|
|
|
|
def separate_lines_vertical(img_patch, contour_text_interest, thetha):
|
|
thetha = thetha + 90
|
|
contour_text_interest_copy = contour_text_interest.copy()
|
|
x, y, x_d, y_d, xv, x_min_cont, y_min_cont, x_max_cont, y_max_cont, \
|
|
first_nonzero, y_padded_up_to_down_padded, y_padded_smoothed, \
|
|
peaks, peaks_neg, rotation_matrix = dedup_separate_lines(img_patch, contour_text_interest, thetha, 0)
|
|
|
|
# plt.plot(y_padded_up_to_down_padded)
|
|
# plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
|
|
# plt.title('negs')
|
|
# plt.show()
|
|
|
|
# plt.plot(y_padded_smoothed)
|
|
# plt.plot(peaks,y_padded_smoothed[peaks],'*')
|
|
# plt.title('poss')
|
|
# plt.show()
|
|
|
|
neg_peaks_max = np.max(y_padded_up_to_down_padded[peaks_neg])
|
|
|
|
arg_neg_must_be_deleted = np.arange(len(peaks_neg))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
|
|
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
|
|
|
|
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
|
|
|
|
peaks_new = peaks[:]
|
|
peaks_neg_new = peaks_neg[:]
|
|
clusters_to_be_deleted = []
|
|
|
|
if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
|
|
for i in range(len(arg_diff_cluster) - 1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
|
|
arg_diff_cluster[i + 1] + 1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
|
|
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
|
else:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
|
if len(clusters_to_be_deleted) > 0:
|
|
peaks_new_extra = []
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
|
|
max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
|
|
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
|
|
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot = []
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot = np.sort(peaks_new_tot)
|
|
|
|
peaks = peaks_new_tot[:]
|
|
peaks_neg = peaks_neg_new[:]
|
|
|
|
else:
|
|
peaks_new_tot = peaks[:]
|
|
peaks = peaks_new_tot[:]
|
|
peaks_neg = peaks_neg_new[:]
|
|
|
|
if len(y_padded_smoothed[peaks])>1:
|
|
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
|
|
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
|
|
else:
|
|
mean_value_of_peaks = np.nan
|
|
std_value_of_peaks = np.nan
|
|
|
|
peaks_values = y_padded_smoothed[peaks]
|
|
|
|
peaks_neg = peaks_neg - 20 - 20
|
|
peaks = peaks - 20
|
|
|
|
for jj in range(len(peaks_neg)):
|
|
if peaks_neg[jj] > len(x) - 1:
|
|
peaks_neg[jj] = len(x) - 1
|
|
|
|
for jj in range(len(peaks)):
|
|
if peaks[jj] > len(x) - 1:
|
|
peaks[jj] = len(x) - 1
|
|
|
|
textline_boxes = []
|
|
textline_boxes_rot = []
|
|
|
|
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
|
|
for jj in range(len(peaks)):
|
|
|
|
if jj == (len(peaks) - 1):
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
|
|
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = x_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = x_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
else:
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
|
|
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
|
|
if point_down_narrow >= img_patch.shape[0]:
|
|
point_down_narrow = img_patch.shape[0] - 2
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True) for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1 < 0:
|
|
x_min_rot1 = 0
|
|
if x_min_rot4 < 0:
|
|
x_min_rot4 = 0
|
|
if point_up_rot1 < 0:
|
|
point_up_rot1 = 0
|
|
if point_up_rot2 < 0:
|
|
point_up_rot2 = 0
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
elif len(peaks) < 1:
|
|
pass
|
|
elif len(peaks) == 1:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
|
|
y_min = y_min_cont
|
|
y_max = y_max_cont
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1 < 0:
|
|
x_min_rot1 = 0
|
|
if x_min_rot4 < 0:
|
|
x_min_rot4 = 0
|
|
if point_up_rot1 < 0:
|
|
point_up_rot1 = 0
|
|
if point_up_rot2 < 0:
|
|
point_up_rot2 = 0
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(y_min)],
|
|
[int(x_max), int(y_min)],
|
|
[int(x_max), int(y_max)],
|
|
[int(x_min), int(y_max)]]))
|
|
elif len(peaks) == 2:
|
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
|
for jj in range(len(peaks)):
|
|
if jj == 0:
|
|
point_up = 0 # peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
|
|
elif jj == 1:
|
|
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
|
|
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside)
|
|
x_max = np.max(xvinside)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1 < 0:
|
|
x_min_rot1 = 0
|
|
if x_min_rot4 < 0:
|
|
x_min_rot4 = 0
|
|
if point_up_rot1 < 0:
|
|
point_up_rot1 = 0
|
|
if point_up_rot2 < 0:
|
|
point_up_rot2 = 0
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
else:
|
|
for jj in range(len(peaks)):
|
|
if jj == 0:
|
|
dis_to_next = peaks[jj + 1] - peaks[jj]
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next)
|
|
elif jj == len(peaks) - 1:
|
|
dis_to_next = peaks[jj] - peaks[jj - 1]
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.7 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
|
|
else:
|
|
dis_to_next_down = peaks[jj + 1] - peaks[jj]
|
|
dis_to_next_up = peaks[jj] - peaks[jj - 1]
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up)
|
|
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy,
|
|
tuple(int(x) for x in np.array([xv[mj], peaks[jj] + first_nonzero])), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1 < 0:
|
|
x_min_rot1 = 0
|
|
if x_min_rot4 < 0:
|
|
x_min_rot4 = 0
|
|
if point_up_rot1 < 0:
|
|
point_up_rot1 = 0
|
|
if point_up_rot2 < 0:
|
|
point_up_rot2 = 0
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
return peaks, textline_boxes_rot
|
|
|
|
def separate_lines_new_inside_tiles2(img_patch, thetha):
|
|
(h, w) = img_patch.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180.0 * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
# contour_text_interest_copy = contour_text_interest.copy()
|
|
|
|
# x_cont = contour_text_interest[:, 0, 0]
|
|
# y_cont = contour_text_interest[:, 0, 1]
|
|
# x_cont = x_cont - np.min(x_cont)
|
|
# y_cont = y_cont - np.min(y_cont)
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_patch.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_patch.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
textline_patch_sum_along_width = img_patch.sum(axis=1)
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
|
|
y_padded = np.zeros(len(y) + 40)
|
|
y_padded[20 : len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
if 1 > 0:
|
|
try:
|
|
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
|
|
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
|
|
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
|
|
y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
|
|
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
|
|
|
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
|
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
|
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
|
|
|
arg_neg_must_be_deleted = np.arange(len(peaks_neg_e))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
|
|
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
|
|
|
|
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
|
|
|
|
peaks_new = peaks_e[:]
|
|
peaks_neg_new = peaks_neg_e[:]
|
|
|
|
clusters_to_be_deleted = []
|
|
if len(arg_diff_cluster) > 0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
|
|
for i in range(len(arg_diff_cluster) - 1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
|
|
if len(clusters_to_be_deleted) > 0:
|
|
peaks_new_extra = []
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
|
|
max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
|
|
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot = []
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot = np.sort(peaks_new_tot)
|
|
else:
|
|
peaks_new_tot = peaks_e[:]
|
|
|
|
textline_con, hierarchy = return_contours_of_image(img_patch)
|
|
textline_con_fil = filter_contours_area_of_image(img_patch,
|
|
textline_con, hierarchy,
|
|
max_area=1, min_area=0.0008)
|
|
if len(np.diff(peaks_new_tot)):
|
|
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
|
|
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
|
|
else:
|
|
sigma_gaus = 12
|
|
|
|
except:
|
|
sigma_gaus = 12
|
|
if sigma_gaus < 3:
|
|
sigma_gaus = 3
|
|
|
|
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
|
|
y_padded_up_to_down = -y_padded + np.max(y_padded)
|
|
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
|
|
y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
|
|
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
|
|
|
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
|
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
|
|
|
peaks_new = peaks[:]
|
|
peaks_neg_new = peaks_neg[:]
|
|
|
|
try:
|
|
neg_peaks_max = np.max(y_padded_smoothed[peaks])
|
|
|
|
arg_neg_must_be_deleted = np.arange(len(peaks_neg))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.24]
|
|
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
|
|
|
|
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
|
|
|
|
clusters_to_be_deleted = []
|
|
if len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) >= 2:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
|
|
for i in range(len(arg_diff_cluster) - 1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 :
|
|
arg_diff_cluster[i + 1] + 1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
|
|
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
|
else:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
|
if len(clusters_to_be_deleted) > 0:
|
|
peaks_new_extra = []
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
|
|
max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
|
|
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
|
|
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot = []
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot = np.sort(peaks_new_tot)
|
|
|
|
# plt.plot(y_padded_up_to_down_padded)
|
|
# plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
|
|
# plt.show()
|
|
|
|
# plt.plot(y_padded_up_to_down_padded)
|
|
# plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
|
|
# plt.show()
|
|
|
|
# plt.plot(y_padded_smoothed)
|
|
# plt.plot(peaks,y_padded_smoothed[peaks],'*')
|
|
# plt.show()
|
|
|
|
# plt.plot(y_padded_smoothed)
|
|
# plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
|
|
# plt.show()
|
|
peaks = peaks_new_tot[:]
|
|
peaks_neg = peaks_neg_new[:]
|
|
except:
|
|
pass
|
|
|
|
else:
|
|
peaks_new_tot = peaks[:]
|
|
peaks = peaks_new_tot[:]
|
|
peaks_neg = peaks_neg_new[:]
|
|
|
|
if len(y_padded_smoothed[peaks]) > 1:
|
|
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
|
|
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
|
|
else:
|
|
mean_value_of_peaks = np.nan
|
|
std_value_of_peaks = np.nan
|
|
|
|
peaks_values = y_padded_smoothed[peaks]
|
|
|
|
###peaks_neg = peaks_neg - 20 - 20
|
|
###peaks = peaks - 20
|
|
peaks_neg_true = peaks_neg[:]
|
|
peaks_pos_true = peaks[:]
|
|
|
|
if len(peaks_neg_true) > 0:
|
|
peaks_neg_true = np.array(peaks_neg_true)
|
|
peaks_neg_true = peaks_neg_true - 20 - 20
|
|
|
|
for i in range(len(peaks_neg_true)):
|
|
img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
|
|
else:
|
|
pass
|
|
|
|
if len(peaks_pos_true) > 0:
|
|
peaks_pos_true = np.array(peaks_pos_true)
|
|
peaks_pos_true = peaks_pos_true - 20
|
|
|
|
for i in range(len(peaks_pos_true)):
|
|
##img_patch[peaks_pos_true[i]-8:peaks_pos_true[i]+8,:]=1
|
|
img_patch[peaks_pos_true[i] - 6 : peaks_pos_true[i] + 6, :] = 1
|
|
else:
|
|
pass
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
|
|
# img_patch = cv2.erode(img_patch,kernel,iterations = 3)
|
|
#######################img_patch = cv2.erode(img_patch,kernel,iterations = 2)
|
|
img_patch = cv2.erode(img_patch, kernel, iterations=1)
|
|
return img_patch
|
|
|
|
def separate_lines_new_inside_tiles(img_path, thetha):
|
|
(h, w) = img_path.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180.0 * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_path.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_path.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
mada_n = img_path.sum(axis=1)
|
|
|
|
##plt.plot(mada_n)
|
|
##plt.show()
|
|
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = mada_n[:] # [first_nonzero:last_nonzero]
|
|
y_help = np.zeros(len(y) + 40)
|
|
y_help[20 : len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
if len(peaks_real) <= 2 and len(peaks_real) > 1:
|
|
sigma_gaus = 10
|
|
else:
|
|
sigma_gaus = 5
|
|
|
|
z = gaussian_filter1d(y_help, sigma_gaus)
|
|
zneg_rev = -y_help + np.max(y_help)
|
|
zneg = np.zeros(len(zneg_rev) + 40)
|
|
zneg[20 : len(zneg_rev) + 20] = zneg_rev
|
|
zneg = gaussian_filter1d(zneg, sigma_gaus)
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
for nn in range(len(peaks_neg)):
|
|
if peaks_neg[nn] > len(z) - 1:
|
|
peaks_neg[nn] = len(z) - 1
|
|
if peaks_neg[nn] < 0:
|
|
peaks_neg[nn] = 0
|
|
|
|
diff_peaks = np.abs(np.diff(peaks_neg))
|
|
|
|
cut_off = 20
|
|
peaks_neg_true = []
|
|
forest = []
|
|
|
|
for i in range(len(peaks_neg)):
|
|
if i == 0:
|
|
forest.append(peaks_neg[i])
|
|
if i < (len(peaks_neg) - 1):
|
|
if diff_peaks[i] <= cut_off:
|
|
forest.append(peaks_neg[i + 1])
|
|
if diff_peaks[i] > cut_off:
|
|
if not np.isnan(forest[np.argmin(z[forest])]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
|
forest = []
|
|
forest.append(peaks_neg[i + 1])
|
|
if i == (len(peaks_neg) - 1):
|
|
if not np.isnan(forest[np.argmin(z[forest])]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest])])
|
|
|
|
diff_peaks_pos = np.abs(np.diff(peaks))
|
|
|
|
cut_off = 20
|
|
peaks_pos_true = []
|
|
forest = []
|
|
|
|
for i in range(len(peaks)):
|
|
if i == 0:
|
|
forest.append(peaks[i])
|
|
if i < (len(peaks) - 1):
|
|
if diff_peaks_pos[i] <= cut_off:
|
|
forest.append(peaks[i + 1])
|
|
if diff_peaks_pos[i] > cut_off:
|
|
if not np.isnan(forest[np.argmax(z[forest])]):
|
|
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
|
forest = []
|
|
forest.append(peaks[i + 1])
|
|
if i == (len(peaks) - 1):
|
|
if not np.isnan(forest[np.argmax(z[forest])]):
|
|
peaks_pos_true.append(forest[np.argmax(z[forest])])
|
|
|
|
|
|
if len(peaks_neg_true) > 0:
|
|
peaks_neg_true = np.array(peaks_neg_true)
|
|
"""
|
|
#plt.figure(figsize=(40,40))
|
|
#plt.subplot(1,2,1)
|
|
#plt.title('Textline segmentation von Textregion')
|
|
#plt.imshow(img_path)
|
|
#plt.xlabel('X')
|
|
#plt.ylabel('Y')
|
|
#plt.subplot(1,2,2)
|
|
#plt.title('Dichte entlang X')
|
|
#base = pyplot.gca().transData
|
|
#rot = transforms.Affine2D().rotate_deg(90)
|
|
#plt.plot(zneg,np.array(range(len(zneg))))
|
|
#plt.plot(zneg[peaks_neg_true],peaks_neg_true,'*')
|
|
#plt.gca().invert_yaxis()
|
|
|
|
#plt.xlabel('Dichte')
|
|
#plt.ylabel('Y')
|
|
##plt.plot([0,len(y)], [grenze,grenze])
|
|
#plt.show()
|
|
"""
|
|
peaks_neg_true = peaks_neg_true - 20 - 20
|
|
|
|
for i in range(len(peaks_neg_true)):
|
|
img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
|
|
|
|
else:
|
|
pass
|
|
|
|
if len(peaks_pos_true) > 0:
|
|
peaks_pos_true = np.array(peaks_pos_true)
|
|
peaks_pos_true = peaks_pos_true - 20
|
|
|
|
for i in range(len(peaks_pos_true)):
|
|
img_path[peaks_pos_true[i] - 8 : peaks_pos_true[i] + 8, :] = 1
|
|
else:
|
|
pass
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
|
|
# img_path = cv2.erode(img_path,kernel,iterations = 3)
|
|
img_path = cv2.erode(img_path, kernel, iterations=2)
|
|
return img_path
|
|
|
|
def separate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_ind, add_boxes_coor_into_textlines):
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
pixel = 255
|
|
min_area = 0
|
|
max_area = 1
|
|
|
|
if len(img_patch.shape) == 3:
|
|
cnts_images = (img_patch[:, :, 0] == pixel) * 1
|
|
else:
|
|
cnts_images = (img_patch[:, :] == pixel) * 1
|
|
cnts_images = cnts_images.astype(np.uint8)
|
|
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_imgs, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
contours_imgs = return_parent_contours(contours_imgs, hierarchy)
|
|
contours_imgs = filter_contours_area_of_image_tables(thresh,
|
|
contours_imgs, hierarchy,
|
|
max_area=max_area, min_area=min_area)
|
|
cont_final = []
|
|
for i in range(len(contours_imgs)):
|
|
img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3))
|
|
img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255))
|
|
img_contour = img_contour.astype(np.uint8)
|
|
|
|
img_contour = cv2.dilate(img_contour, kernel, iterations=4)
|
|
imgrayrot = cv2.cvtColor(img_contour, cv2.COLOR_BGR2GRAY)
|
|
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
|
|
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
##contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[
|
|
##0]
|
|
##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
|
|
##if add_boxes_coor_into_textlines:
|
|
##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0]
|
|
##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1]
|
|
cont_final.append(contours_text_rot[0])
|
|
|
|
return None, cont_final
|
|
|
|
def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind, add_boxes_coor_into_textlines=False):
|
|
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
|
|
textline_mask = textline_mask.astype(np.uint8)
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_OPEN, kernel)
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, kernel)
|
|
textline_mask = cv2.erode(textline_mask, kernel, iterations=2)
|
|
# textline_mask = cv2.erode(textline_mask, kernel, iterations=1)
|
|
try:
|
|
x_help = 30
|
|
y_help = 2
|
|
|
|
textline_mask_help = np.zeros((textline_mask.shape[0] + int(2 * y_help),
|
|
textline_mask.shape[1] + int(2 * x_help), 3))
|
|
textline_mask_help[y_help : y_help + textline_mask.shape[0],
|
|
x_help : x_help + textline_mask.shape[1], :] = np.copy(textline_mask[:, :, :])
|
|
|
|
dst = rotate_image(textline_mask_help, slope)
|
|
dst = dst[:, :, 0]
|
|
dst[dst != 0] = 1
|
|
|
|
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
|
# plt.imshow(dst)
|
|
# plt.show()
|
|
|
|
contour_text_copy = contour_text_interest.copy()
|
|
contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[0]
|
|
contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
|
|
|
|
img_contour = np.zeros((box_ind[3], box_ind[2], 3))
|
|
img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255))
|
|
|
|
img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help),
|
|
img_contour.shape[1] + int(2 * x_help), 3))
|
|
img_contour_help[y_help : y_help + img_contour.shape[0],
|
|
x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
|
|
|
|
img_contour_rot = rotate_image(img_contour_help, slope)
|
|
|
|
img_contour_rot = img_contour_rot.astype(np.uint8)
|
|
# dst_help = dst_help.astype(np.uint8)
|
|
imgrayrot = cv2.cvtColor(img_contour_rot, cv2.COLOR_BGR2GRAY)
|
|
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
|
|
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))]
|
|
ind_big_con = np.argmax(len_con_text_rot)
|
|
|
|
if abs(slope) > 45:
|
|
_, contours_rotated_clean = separate_lines_vertical_cont(
|
|
textline_mask, contours_text_rot[ind_big_con], box_ind, slope,
|
|
add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
|
|
else:
|
|
_, contours_rotated_clean = separate_lines(
|
|
dst, contours_text_rot[ind_big_con], slope, x_help, y_help)
|
|
except:
|
|
contours_rotated_clean = []
|
|
|
|
return contours_rotated_clean
|
|
|
|
def separate_lines_new2(img_crop, thetha, num_col, slope_region, logger=None, plotter=None):
|
|
if logger is None:
|
|
logger = getLogger(__package__)
|
|
if not np.prod(img_crop.shape):
|
|
return img_crop
|
|
|
|
if num_col == 1:
|
|
num_patches = int(img_crop.shape[1] / 200.0)
|
|
else:
|
|
num_patches = int(img_crop.shape[1] / 140.0)
|
|
# num_patches=int(img_crop.shape[1]/200.)
|
|
if num_patches == 0:
|
|
num_patches = 1
|
|
|
|
img_patch_interest = img_crop[:, :] # [peaks_neg_true[14]-dis_up:peaks_neg_true[15]+dis_down ,:]
|
|
|
|
# plt.imshow(img_patch_interest)
|
|
# plt.show()
|
|
|
|
length_x = int(img_crop.shape[1] / float(num_patches))
|
|
# margin = int(0.04 * length_x) just recently this was changed because it break lines into 2
|
|
margin = int(0.04 * length_x)
|
|
# if margin<=4:
|
|
# margin = int(0.08 * length_x)
|
|
# margin=0
|
|
|
|
width_mid = length_x - 2 * margin
|
|
nxf = img_crop.shape[1] / float(width_mid)
|
|
|
|
if nxf > int(nxf):
|
|
nxf = int(nxf) + 1
|
|
else:
|
|
nxf = int(nxf)
|
|
|
|
slopes_tile_wise = []
|
|
for i in range(nxf):
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
|
|
if index_x_u > img_crop.shape[1]:
|
|
index_x_u = img_crop.shape[1]
|
|
index_x_d = img_crop.shape[1] - length_x
|
|
|
|
# img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
img_xline = img_patch_interest[:, index_x_d:index_x_u]
|
|
|
|
try:
|
|
assert img_xline.any()
|
|
slope_xline = return_deskew_slop(img_xline, 2, logger=logger, plotter=plotter)
|
|
except:
|
|
slope_xline = 0
|
|
|
|
if abs(slope_region) < 25 and abs(slope_xline) > 25:
|
|
slope_xline = [slope_region][0]
|
|
# if abs(slope_region)>70 and abs(slope_xline)<25:
|
|
# slope_xline=[slope_region][0]
|
|
slopes_tile_wise.append(slope_xline)
|
|
img_line_rotated = rotate_image(img_xline, slope_xline)
|
|
img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1
|
|
|
|
img_patch_interest = img_crop[:, :] # [peaks_neg_true[14]-dis_up:peaks_neg_true[14]+dis_down ,:]
|
|
|
|
img_patch_interest_revised = np.zeros(img_patch_interest.shape)
|
|
|
|
for i in range(nxf):
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
|
|
if index_x_u > img_crop.shape[1]:
|
|
index_x_u = img_crop.shape[1]
|
|
index_x_d = img_crop.shape[1] - length_x
|
|
|
|
img_xline = img_patch_interest[:, index_x_d:index_x_u]
|
|
|
|
img_int = np.zeros((img_xline.shape[0], img_xline.shape[1]))
|
|
img_int[:, :] = img_xline[:, :] # img_patch_org[:,:,0]
|
|
|
|
img_resized = np.zeros((int(img_int.shape[0] * (1.2)), int(img_int.shape[1] * (3))))
|
|
img_resized[int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0],
|
|
int(img_int.shape[1] * (1.0)) : int(img_int.shape[1] * (1.0)) + img_int.shape[1]] = img_int[:, :]
|
|
# plt.imshow(img_xline)
|
|
# plt.show()
|
|
img_line_rotated = rotate_image(img_resized, slopes_tile_wise[i])
|
|
img_line_rotated[:, :][img_line_rotated[:, :] != 0] = 1
|
|
|
|
img_patch_separated = separate_lines_new_inside_tiles2(img_line_rotated, 0)
|
|
|
|
img_patch_separated_returned = rotate_image(img_patch_separated, -slopes_tile_wise[i])
|
|
img_patch_separated_returned[:, :][img_patch_separated_returned[:, :] != 0] = 1
|
|
|
|
img_patch_separated_returned_true_size = img_patch_separated_returned[
|
|
int(img_int.shape[0] * (0.1)) : int(img_int.shape[0] * (0.1)) + img_int.shape[0],
|
|
int(img_int.shape[1] * (1.0)) : int(img_int.shape[1] * (1.0)) + img_int.shape[1]]
|
|
|
|
img_patch_separated_returned_true_size = img_patch_separated_returned_true_size[:, margin : length_x - margin]
|
|
img_patch_interest_revised[:, index_x_d + margin : index_x_u - margin] = img_patch_separated_returned_true_size
|
|
|
|
return img_patch_interest_revised
|
|
|
|
@wrap_ndarray_shared(kw='img')
|
|
def do_image_rotation(angle, img=None, sigma_des=1.0, logger=None):
|
|
if logger is None:
|
|
logger = getLogger(__package__)
|
|
img_rot = rotate_image(img, angle)
|
|
img_rot[img_rot!=0] = 1
|
|
try:
|
|
var = find_num_col_deskew(img_rot, sigma_des, 20.3)
|
|
except:
|
|
logger.exception("cannot determine variance for angle %.2f°", angle)
|
|
var = 0
|
|
return var
|
|
|
|
def return_deskew_slop(img_patch_org, sigma_des,n_tot_angles=100,
|
|
main_page=False, logger=None, plotter=None, map=map):
|
|
if main_page and plotter:
|
|
plotter.save_plot_of_textline_density(img_patch_org)
|
|
|
|
img_int=np.zeros((img_patch_org.shape[0],img_patch_org.shape[1]))
|
|
img_int[:,:]=img_patch_org[:,:]#img_patch_org[:,:,0]
|
|
|
|
max_shape=np.max(img_int.shape)
|
|
img_resized=np.zeros((int( max_shape*(1.1) ) , int( max_shape*(1.1) ) ))
|
|
|
|
onset_x=int((img_resized.shape[1]-img_int.shape[1])/2.)
|
|
onset_y=int((img_resized.shape[0]-img_int.shape[0])/2.)
|
|
|
|
#img_resized=np.zeros((int( img_int.shape[0]*(1.8) ) , int( img_int.shape[1]*(2.6) ) ))
|
|
#img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:]
|
|
img_resized[ onset_y:onset_y+img_int.shape[0] , onset_x:onset_x+img_int.shape[1] ]=img_int[:,:]
|
|
|
|
if main_page and img_patch_org.shape[1] > img_patch_org.shape[0]:
|
|
angles = np.array([-45, 0, 45, 90,])
|
|
angle, _ = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
|
|
|
angles = np.linspace(angle - 22.5, angle + 22.5, n_tot_angles)
|
|
angle, _ = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
|
elif main_page:
|
|
angles = np.linspace(-12, 12, n_tot_angles)#np.array([0 , 45 , 90 , -45])
|
|
angle, var = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
|
|
|
early_slope_edge=11
|
|
if abs(angle) > early_slope_edge:
|
|
if angle < 0:
|
|
angles2 = np.linspace(-90, -12, n_tot_angles)
|
|
else:
|
|
angles2 = np.linspace(90, 12, n_tot_angles)
|
|
angle2, var2 = get_smallest_skew(img_resized, sigma_des, angles2, map=map, logger=logger, plotter=plotter)
|
|
if var2 > var:
|
|
angle = angle2
|
|
else:
|
|
angles = np.linspace(-25, 25, int(0.5 * n_tot_angles) + 10)
|
|
angle, var = get_smallest_skew(img_resized, sigma_des, angles, map=map, logger=logger, plotter=plotter)
|
|
|
|
early_slope_edge=22
|
|
if abs(angle) > early_slope_edge:
|
|
if angle < 0:
|
|
angles2 = np.linspace(-90, -25, int(0.5 * n_tot_angles) + 10)
|
|
else:
|
|
angles2 = np.linspace(90, 25, int(0.5 * n_tot_angles) + 10)
|
|
angle2, var2 = get_smallest_skew(img_resized, sigma_des, angles2, map=map, logger=logger, plotter=plotter)
|
|
if var2 > var:
|
|
angle = angle2
|
|
return angle
|
|
|
|
def get_smallest_skew(img, sigma_des, angles, logger=None, plotter=None, map=map):
|
|
if logger is None:
|
|
logger = getLogger(__package__)
|
|
with share_ndarray(img) as img_shared:
|
|
results = list(map(partial(do_image_rotation, img=img_shared, sigma_des=sigma_des, logger=logger), angles))
|
|
if plotter:
|
|
plotter.save_plot_of_rotation_angle(angles, results)
|
|
try:
|
|
var_res = np.array(results)
|
|
assert var_res.any()
|
|
idx = np.argmax(var_res)
|
|
angle = angles[idx]
|
|
var = var_res[idx]
|
|
except:
|
|
logger.exception("cannot determine best angle among %s", str(angles))
|
|
angle = 0
|
|
var = 0
|
|
return angle, var
|
|
|
|
def do_work_of_slopes_new(
|
|
box_text, contour, contour_par, index_r_con,
|
|
textline_mask_tot_ea, slope_deskew,
|
|
logger=None, MAX_SLOPE=999, KERNEL=None, plotter=None
|
|
):
|
|
if KERNEL is None:
|
|
KERNEL = np.ones((5, 5), np.uint8)
|
|
if logger is None:
|
|
logger = getLogger(__package__)
|
|
logger.debug('enter do_work_of_slopes_new')
|
|
|
|
x, y, w, h = box_text
|
|
crop_coor = box2rect(box_text)
|
|
mask_textline = np.zeros(textline_mask_tot_ea.shape)
|
|
mask_textline = cv2.fillPoly(mask_textline, pts=[contour], color=(1,1,1))
|
|
all_text_region_raw = textline_mask_tot_ea * mask_textline
|
|
all_text_region_raw = all_text_region_raw[y: y + h, x: x + w].astype(np.uint8)
|
|
img_int_p = all_text_region_raw[:,:]
|
|
img_int_p = cv2.erode(img_int_p, KERNEL, iterations=2)
|
|
|
|
if not np.prod(img_int_p.shape) or img_int_p.shape[0] /img_int_p.shape[1] < 0.1:
|
|
slope = 0
|
|
slope_for_all = slope_deskew
|
|
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w]
|
|
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text, 0)
|
|
else:
|
|
try:
|
|
textline_con, hierarchy = return_contours_of_image(img_int_p)
|
|
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con,
|
|
hierarchy,
|
|
max_area=1, min_area=0.00008)
|
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil) if len(textline_con_fil) > 1 else np.NaN
|
|
if np.isnan(y_diff_mean):
|
|
slope_for_all = MAX_SLOPE
|
|
else:
|
|
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
|
img_int_p[img_int_p > 0] = 1
|
|
slope_for_all = return_deskew_slop(img_int_p, sigma_des, logger=logger, plotter=plotter)
|
|
if abs(slope_for_all) <= 0.5:
|
|
slope_for_all = slope_deskew
|
|
except:
|
|
logger.exception("cannot determine angle of contours")
|
|
slope_for_all = MAX_SLOPE
|
|
|
|
if slope_for_all == MAX_SLOPE:
|
|
slope_for_all = slope_deskew
|
|
slope = slope_for_all
|
|
mask_only_con_region = np.zeros(textline_mask_tot_ea.shape)
|
|
mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contour_par], color=(1, 1, 1))
|
|
|
|
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w].copy()
|
|
mask_only_con_region = mask_only_con_region[y: y + h, x: x + w]
|
|
|
|
all_text_region_raw[mask_only_con_region == 0] = 0
|
|
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text)
|
|
|
|
return cnt_clean_rot, box_text, contour, contour_par, crop_coor, index_r_con, slope
|
|
|
|
@wrap_ndarray_shared(kw='textline_mask_tot_ea')
|
|
@wrap_ndarray_shared(kw='mask_texts_only')
|
|
def do_work_of_slopes_new_curved(
|
|
box_text, contour, contour_par, index_r_con,
|
|
textline_mask_tot_ea=None, mask_texts_only=None,
|
|
num_col=1, scale_par=1.0, slope_deskew=0.0,
|
|
logger=None, MAX_SLOPE=999, KERNEL=None, plotter=None
|
|
):
|
|
if KERNEL is None:
|
|
KERNEL = np.ones((5, 5), np.uint8)
|
|
if logger is None:
|
|
logger = getLogger(__package__)
|
|
logger.debug("enter do_work_of_slopes_new_curved")
|
|
|
|
x, y, w, h = box_text
|
|
all_text_region_raw = textline_mask_tot_ea[y: y + h, x: x + w].astype(np.uint8)
|
|
img_int_p = all_text_region_raw[:, :]
|
|
|
|
# img_int_p=cv2.erode(img_int_p,KERNEL,iterations = 2)
|
|
# plt.imshow(img_int_p)
|
|
# plt.show()
|
|
|
|
if not np.prod(img_int_p.shape) or img_int_p.shape[0] / img_int_p.shape[1] < 0.1:
|
|
slope = 0
|
|
slope_for_all = slope_deskew
|
|
else:
|
|
try:
|
|
textline_con, hierarchy = return_contours_of_image(img_int_p)
|
|
textline_con_fil = filter_contours_area_of_image(img_int_p, textline_con,
|
|
hierarchy,
|
|
max_area=1, min_area=0.0008)
|
|
y_diff_mean = find_contours_mean_y_diff(textline_con_fil) if len(textline_con_fil) > 1 else np.NaN
|
|
if np.isnan(y_diff_mean):
|
|
slope_for_all = MAX_SLOPE
|
|
else:
|
|
sigma_des = max(1, int(y_diff_mean * (4.0 / 40.0)))
|
|
img_int_p[img_int_p > 0] = 1
|
|
slope_for_all = return_deskew_slop(img_int_p, sigma_des, logger=logger, plotter=plotter)
|
|
if abs(slope_for_all) < 0.5:
|
|
slope_for_all = slope_deskew
|
|
except:
|
|
logger.exception("cannot determine angle of contours")
|
|
slope_for_all = MAX_SLOPE
|
|
|
|
if slope_for_all == MAX_SLOPE:
|
|
slope_for_all = slope_deskew
|
|
slope = slope_for_all
|
|
|
|
crop_coor = box2rect(box_text)
|
|
|
|
if abs(slope_for_all) < 45:
|
|
textline_region_in_image = np.zeros(textline_mask_tot_ea.shape)
|
|
x, y, w, h = cv2.boundingRect(contour_par)
|
|
mask_biggest = np.zeros(mask_texts_only.shape)
|
|
mask_biggest = cv2.fillPoly(mask_biggest, pts=[contour_par], color=(1, 1, 1))
|
|
mask_region_in_patch_region = mask_biggest[y : y + h, x : x + w]
|
|
textline_biggest_region = mask_biggest * textline_mask_tot_ea
|
|
|
|
textline_rotated_separated = separate_lines_new2(textline_biggest_region[y: y+h, x: x+w], 0,
|
|
num_col, slope_for_all,
|
|
logger=logger, plotter=plotter)
|
|
|
|
|
|
textline_rotated_separated[mask_region_in_patch_region[:, :] != 1] = 0
|
|
|
|
textline_region_in_image[y : y + h, x : x + w] = textline_rotated_separated
|
|
|
|
|
|
pixel_img = 1
|
|
cnt_textlines_in_image = return_contours_of_interested_textline(textline_region_in_image, pixel_img)
|
|
|
|
textlines_cnt_per_region = []
|
|
for jjjj in range(len(cnt_textlines_in_image)):
|
|
mask_biggest2 = np.zeros(mask_texts_only.shape)
|
|
mask_biggest2 = cv2.fillPoly(mask_biggest2, pts=[cnt_textlines_in_image[jjjj]], color=(1, 1, 1))
|
|
if num_col + 1 == 1:
|
|
mask_biggest2 = cv2.dilate(mask_biggest2, KERNEL, iterations=5)
|
|
else:
|
|
mask_biggest2 = cv2.dilate(mask_biggest2, KERNEL, iterations=4)
|
|
|
|
pixel_img = 1
|
|
mask_biggest2 = resize_image(mask_biggest2, int(mask_biggest2.shape[0] * scale_par), int(mask_biggest2.shape[1] * scale_par))
|
|
cnt_textlines_in_image_ind = return_contours_of_interested_textline(mask_biggest2, pixel_img)
|
|
try:
|
|
textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0])
|
|
except Exception as why:
|
|
logger.error(why)
|
|
else:
|
|
textlines_cnt_per_region = textline_contours_postprocessing(all_text_region_raw, slope_for_all, contour_par, box_text, True)
|
|
|
|
return textlines_cnt_per_region[::-1], box_text, contour, contour_par, crop_coor, index_r_con, slope
|
|
|
|
def do_work_of_slopes_new_light(
|
|
box_text, contour, contour_par, index_r_con,
|
|
textline_mask_tot_ea, slope_deskew, textline_light,
|
|
logger=None
|
|
):
|
|
if logger is None:
|
|
logger = getLogger(__package__)
|
|
logger.debug('enter do_work_of_slopes_new_light')
|
|
|
|
x, y, w, h = box_text
|
|
crop_coor = box2rect(box_text)
|
|
mask_textline = np.zeros(textline_mask_tot_ea.shape)
|
|
mask_textline = cv2.fillPoly(mask_textline, pts=[contour], color=(1,1,1))
|
|
all_text_region_raw = textline_mask_tot_ea * mask_textline
|
|
all_text_region_raw = all_text_region_raw[y: y + h, x: x + w].astype(np.uint8)
|
|
|
|
mask_only_con_region = np.zeros(textline_mask_tot_ea.shape)
|
|
mask_only_con_region = cv2.fillPoly(mask_only_con_region, pts=[contour_par], color=(1, 1, 1))
|
|
|
|
if textline_light:
|
|
all_text_region_raw = np.copy(textline_mask_tot_ea)
|
|
all_text_region_raw[mask_only_con_region == 0] = 0
|
|
cnt_clean_rot_raw, hir_on_cnt_clean_rot = return_contours_of_image(all_text_region_raw)
|
|
cnt_clean_rot = filter_contours_area_of_image(all_text_region_raw, cnt_clean_rot_raw, hir_on_cnt_clean_rot,
|
|
max_area=1, min_area=0.00001)
|
|
else:
|
|
all_text_region_raw = np.copy(textline_mask_tot_ea[y: y + h, x: x + w])
|
|
mask_only_con_region = mask_only_con_region[y: y + h, x: x + w]
|
|
all_text_region_raw[mask_only_con_region == 0] = 0
|
|
cnt_clean_rot = textline_contours_postprocessing(all_text_region_raw, slope_deskew, contour_par, box_text)
|
|
|
|
return cnt_clean_rot, box_text, contour, contour_par, crop_coor, index_r_con, slope_deskew
|