You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
12989 lines
547 KiB
Python
12989 lines
547 KiB
Python
#! /usr/bin/env python3
|
|
|
|
import gc
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
import time
|
|
import warnings
|
|
from multiprocessing import Process, Queue, cpu_count
|
|
from sys import getsizeof
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
stderr = sys.stderr
|
|
sys.stderr = open(devnull, 'w')
|
|
from keras import backend as K
|
|
from keras.models import load_model
|
|
sys.stderr = stderr
|
|
import tensorflow as tf
|
|
tf.get_logger().setLevel('ERROR')
|
|
from scipy.signal import find_peaks
|
|
from scipy.ndimage import gaussian_filter1d
|
|
from shapely import geometry
|
|
from lxml import etree as ET
|
|
import click
|
|
from matplotlib import pyplot, transforms
|
|
import matplotlib.patches as mpatches
|
|
import imutils
|
|
|
|
warnings.filterwarnings('ignore')
|
|
#
|
|
__doc__ = \
|
|
"""
|
|
tool to extract table form data from alto xml data
|
|
"""
|
|
|
|
|
|
class eynollah:
|
|
def __init__(self, image_dir, f_name,dir_out, dir_models,dir_of_cropped_images=None,dir_of_layout=None,dir_of_deskewed=None,dir_of_all=None,allow_enhancement='false',curved_line='false',full_layout='false',allow_scaling='false',headers_off='false'):
|
|
self.image_dir = image_dir # XXX This does not seem to be a directory as the name suggests, but a file
|
|
self.dir_out = dir_out
|
|
self.f_name = f_name
|
|
self.dir_of_cropped_images=dir_of_cropped_images
|
|
self.allow_enhancement=allow_enhancement
|
|
self.curved_line=curved_line
|
|
self.full_layout=full_layout
|
|
self.allow_scaling=allow_scaling
|
|
self.dir_of_layout=dir_of_layout
|
|
self.headers_off=headers_off
|
|
self.dir_of_deskewed=dir_of_deskewed
|
|
self.dir_of_all=dir_of_all
|
|
if self.f_name is None:
|
|
try:
|
|
self.f_name = image_dir.split('/')[len(image_dir.split('/')) - 1]
|
|
self.f_name = self.f_name.split('.')[0]
|
|
except:
|
|
self.f_name = self.f_name.split('.')[0]
|
|
self.dir_models = dir_models
|
|
self.kernel = np.ones((5, 5), np.uint8)
|
|
|
|
self.model_dir_of_enhancemnet=dir_models +'/model_enhancement.h5'
|
|
self.model_dir_of_col_classifier=dir_models +'/model_scale_classifier.h5'
|
|
self.model_region_dir_p = dir_models +'/model_main_covid19_lr5-5_scale_1_1_great.h5'#dir_models +'/model_main_covid_19_many_scalin_down_lr5-5_the_best.h5'#'/model_main_covid19_lr5-5_scale_1_1_great.h5'#'/model_main_scale_1_1und_1_2_corona_great.h5'
|
|
#self.model_region_dir_p_ens = dir_models +'/model_ensemble_s.h5'#'/model_main_covid19_lr5-5_scale_1_1_great.h5'#'/model_main_scale_1_1und_1_2_corona_great.h5'
|
|
self.model_region_dir_p2 = dir_models +'/model_main_home_corona3_rot.h5'
|
|
|
|
self.model_region_dir_fully_np = dir_models + '/model_no_patches_class0_30eopch.h5'
|
|
self.model_region_dir_fully = dir_models + '/model_3up_new_good_no_augmentation.h5'#"model_3col_p_soft_10_less_aug_binarization_only.h5"
|
|
|
|
self.model_page_dir = dir_models + '/model_page_mixed_best.h5'
|
|
self.model_region_dir_p_ens =dir_models +'/model_ensemble_s.h5'#dir_models +'/model_main_covid_19_many_scalin_down_lr5-5_the_best.h5' #dir_models +'/model_ensemble_s.h5'
|
|
###self.model_region_dir_p = dir_models +'/model_layout_newspapers.h5'#'/model_ensemble_s.h5'#'/model_layout_newspapers.h5'#'/model_ensemble_s.h5'#'/model_main_home_5_soft_new.h5'#'/model_home_soft_5_all_data.h5' #'/model_main_office_long_soft.h5'#'/model_20_cat_main.h5'
|
|
self.model_textline_dir = dir_models + '/model_textline_newspapers.h5'#'/model_hor_ver_home_trextline_very_good.h5'# '/model_hor_ver_1_great.h5'#'/model_curved_office_works_great.h5'
|
|
|
|
|
|
def filter_contours_area_of_image_tables(self,image,contours,hirarchy,max_area,min_area):
|
|
found_polygons_early = list()
|
|
|
|
jv=0
|
|
for c in contours:
|
|
if len(c) < 3: # A polygon cannot have less than 3 points
|
|
continue
|
|
|
|
polygon = geometry.Polygon([point[0] for point in c])
|
|
#area = cv2.contourArea(c)
|
|
area = polygon.area
|
|
##print(np.prod(thresh.shape[:2]))
|
|
# Check that polygon has area greater than minimal area
|
|
#print(hirarchy[0][jv][3],hirarchy )
|
|
if area >=min_area*np.prod(image.shape[:2]) and area <=max_area*np.prod(image.shape[:2]):#and hirarchy[0][jv][3]==-1 :
|
|
#print(c[0][0][1])
|
|
found_polygons_early.append(
|
|
np.array( [ [point] for point in polygon.exterior.coords] , dtype=np.int32) )
|
|
jv+=1
|
|
return found_polygons_early
|
|
def find_polygons_size_filter(self, contours, median_area, scaler_up=1.2, scaler_down=0.8):
|
|
found_polygons_early = list()
|
|
|
|
for c in contours:
|
|
if len(c) < 3: # A polygon cannot have less than 3 points
|
|
continue
|
|
|
|
polygon = geometry.Polygon([point[0] for point in c])
|
|
area = polygon.area
|
|
# Check that polygon has area greater than minimal area
|
|
if area >= median_area * scaler_down and area <= median_area * scaler_up:
|
|
found_polygons_early.append(
|
|
np.array([point for point in polygon.exterior.coords], dtype=np.uint))
|
|
return found_polygons_early
|
|
|
|
def filter_contours_area_of_image(self, image, contours, hirarchy, max_area, min_area):
|
|
found_polygons_early = list()
|
|
|
|
jv = 0
|
|
for c in contours:
|
|
if len(c) < 3: # A polygon cannot have less than 3 points
|
|
continue
|
|
|
|
polygon = geometry.Polygon([point[0] for point in c])
|
|
area = polygon.area
|
|
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(
|
|
image.shape[:2]) and hirarchy[0][jv][3] == -1 : # and hirarchy[0][jv][3]==-1 :
|
|
found_polygons_early.append(
|
|
np.array([ [point] for point in polygon.exterior.coords], dtype=np.uint))
|
|
jv += 1
|
|
return found_polygons_early
|
|
|
|
def filter_contours_area_of_image_interiors(self, image, contours, hirarchy, max_area, min_area):
|
|
found_polygons_early = list()
|
|
|
|
jv = 0
|
|
for c in contours:
|
|
if len(c) < 3: # A polygon cannot have less than 3 points
|
|
continue
|
|
|
|
polygon = geometry.Polygon([point[0] for point in c])
|
|
area = polygon.area
|
|
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and \
|
|
hirarchy[0][jv][3] != -1:
|
|
# print(c[0][0][1])
|
|
found_polygons_early.append(
|
|
np.array([point for point in polygon.exterior.coords], dtype=np.uint))
|
|
jv += 1
|
|
return found_polygons_early
|
|
|
|
def resize_image(self, img_in, input_height, input_width):
|
|
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
def resize_ann(self, seg_in, input_height, input_width):
|
|
return cv2.resize(seg_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
def rotatedRectWithMaxArea(self,w, h, angle):
|
|
if w <= 0 or h <= 0:
|
|
return 0,0
|
|
|
|
width_is_longer = w >= h
|
|
side_long, side_short = (w,h) if width_is_longer else (h,w)
|
|
|
|
# since the solutions for angle, -angle and 180-angle are all the same,
|
|
# if suffices to look at the first quadrant and the absolute values of sin,cos:
|
|
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
|
|
if side_short <= 2.*sin_a*cos_a*side_long or abs(sin_a-cos_a) < 1e-10:
|
|
# half constrained case: two crop corners touch the longer side,
|
|
# the other two corners are on the mid-line parallel to the longer line
|
|
x = 0.5*side_short
|
|
wr,hr = (x/sin_a,x/cos_a) if width_is_longer else (x/cos_a,x/sin_a)
|
|
else:
|
|
# fully constrained case: crop touches all 4 sides
|
|
cos_2a = cos_a*cos_a - sin_a*sin_a
|
|
wr,hr = (w*cos_a - h*sin_a)/cos_2a, (h*cos_a - w*sin_a)/cos_2a
|
|
|
|
return wr,hr
|
|
|
|
def get_one_hot(self, seg, input_height, input_width, n_classes):
|
|
seg = seg[:, :, 0]
|
|
seg_f = np.zeros((input_height, input_width, n_classes))
|
|
for j in range(n_classes):
|
|
seg_f[:, :, j] = (seg == j).astype(int)
|
|
return seg_f
|
|
|
|
|
|
def color_images(self, seg, n_classes):
|
|
ann_u = range(n_classes)
|
|
if len(np.shape(seg)) == 3:
|
|
seg = seg[:, :, 0]
|
|
|
|
seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(np.uint8)
|
|
colors = sns.color_palette("hls", n_classes)
|
|
|
|
for c in ann_u:
|
|
c = int(c)
|
|
segl = (seg == c)
|
|
seg_img[:, :, 0] = segl * c
|
|
seg_img[:, :, 1] = segl * c
|
|
seg_img[:, :, 2] = segl * c
|
|
return seg_img
|
|
|
|
def color_images_diva(self, seg, n_classes):
|
|
ann_u = range(n_classes)
|
|
if len(np.shape(seg)) == 3:
|
|
seg = seg[:, :, 0]
|
|
|
|
seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(float)
|
|
# colors=sns.color_palette("hls", n_classes)
|
|
colors = [[1, 0, 0], [8, 0, 0], [2, 0, 0], [4, 0, 0]]
|
|
|
|
for c in ann_u:
|
|
c = int(c)
|
|
segl = (seg == c)
|
|
seg_img[:, :, 0][seg == c] = colors[c][0] # segl*(colors[c][0])
|
|
seg_img[:, :, 1][seg == c] = colors[c][1] # seg_img[:,:,1]=segl*(colors[c][1])
|
|
seg_img[:, :, 2][seg == c] = colors[c][2] # seg_img[:,:,2]=segl*(colors[c][2])
|
|
return seg_img
|
|
|
|
def rotate_image(self, img_patch, slope):
|
|
(h, w) = img_patch.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, slope, 1.0)
|
|
return cv2.warpAffine(img_patch, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
|
|
|
|
def rotyate_image_different(self,img,slope):
|
|
#img = cv2.imread('images/input.jpg')
|
|
num_rows, num_cols = img.shape[:2]
|
|
|
|
rotation_matrix = cv2.getRotationMatrix2D((num_cols/2, num_rows/2), slope, 1)
|
|
img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows) )
|
|
return img_rotation
|
|
|
|
def cleaning_probs(self, probs: np.ndarray, sigma: float) -> np.ndarray:
|
|
# Smooth
|
|
if sigma > 0.:
|
|
return cv2.GaussianBlur(probs, (int(3 * sigma) * 2 + 1, int(3 * sigma) * 2 + 1), sigma)
|
|
elif sigma == 0.:
|
|
return cv2.fastNlMeansDenoising((probs * 255).astype(np.uint8), h=20) / 255
|
|
else: # Negative sigma, do not do anything
|
|
return probs
|
|
|
|
def crop_image_inside_box(self, box, img_org_copy):
|
|
image_box = img_org_copy[box[1]:box[1] + box[3], box[0]:box[0] + box[2]]
|
|
return image_box, [box[1], box[1] + box[3], box[0], box[0] + box[2]]
|
|
|
|
def otsu_copy(self, img):
|
|
img_r = np.zeros(img.shape)
|
|
img1 = img[:, :, 0]
|
|
img2 = img[:, :, 1]
|
|
img3 = img[:, :, 2]
|
|
# print(img.min())
|
|
# print(img[:,:,0].min())
|
|
# blur = cv2.GaussianBlur(img,(5,5))
|
|
# ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
retval2, threshold2 = cv2.threshold(img2, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
retval3, threshold3 = cv2.threshold(img3, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
|
|
|
img_r[:, :, 0] = threshold1
|
|
img_r[:, :, 1] = threshold1
|
|
img_r[:, :, 2] = threshold1
|
|
return img_r
|
|
|
|
def otsu_copy_binary(self,img):
|
|
img_r=np.zeros((img.shape[0],img.shape[1],3))
|
|
img1=img[:,:,0]
|
|
|
|
retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
|
|
|
|
|
|
|
img_r[:,:,0]=threshold1
|
|
img_r[:,:,1]=threshold1
|
|
img_r[:,:,2]=threshold1
|
|
|
|
img_r=img_r/float(np.max(img_r))*255
|
|
return img_r
|
|
|
|
def predict_enhancement(self,img):
|
|
model_enhancement,session_enhancemnet=self.start_new_session_and_model(self.model_dir_of_enhancemnet)
|
|
|
|
img_height_model = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[1]
|
|
img_width_model = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[2]
|
|
#n_classes = model_enhancement.layers[len(model_enhancement.layers) - 1].output_shape[3]
|
|
if img.shape[0]<img_height_model:
|
|
img=cv2.resize( img, ( img.shape[1],img_width_model) ,interpolation=cv2.INTER_NEAREST)
|
|
|
|
if img.shape[1]<img_width_model:
|
|
img=cv2.resize( img, ( img_height_model,img.shape[0]) ,interpolation=cv2.INTER_NEAREST)
|
|
|
|
margin=True
|
|
|
|
if margin:
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
|
|
margin = int(0 * img_width_model)
|
|
|
|
width_mid = img_width_model - 2 * margin
|
|
height_mid = img_height_model - 2 * margin
|
|
|
|
|
|
img = img / float(255.0)
|
|
|
|
img_h = img.shape[0]
|
|
img_w = img.shape[1]
|
|
|
|
prediction_true = np.zeros((img_h, img_w, 3))
|
|
mask_true = np.zeros((img_h, img_w))
|
|
nxf = img_w / float(width_mid)
|
|
nyf = img_h / float(height_mid)
|
|
|
|
if nxf > int(nxf):
|
|
nxf = int(nxf) + 1
|
|
else:
|
|
nxf = int(nxf)
|
|
|
|
if nyf > int(nyf):
|
|
nyf = int(nyf) + 1
|
|
else:
|
|
nyf = int(nyf)
|
|
|
|
for i in range(nxf):
|
|
for j in range(nyf):
|
|
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + img_width_model
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + img_width_model
|
|
|
|
if j == 0:
|
|
index_y_d = j * height_mid
|
|
index_y_u = index_y_d + img_height_model
|
|
elif j > 0:
|
|
index_y_d = j * height_mid
|
|
index_y_u = index_y_d + img_height_model
|
|
|
|
if index_x_u > img_w:
|
|
index_x_u = img_w
|
|
index_x_d = img_w - img_width_model
|
|
if index_y_u > img_h:
|
|
index_y_u = img_h
|
|
index_y_d = img_h - img_height_model
|
|
|
|
|
|
|
|
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
|
|
label_p_pred = model_enhancement.predict(
|
|
img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
|
|
|
seg =label_p_pred[0,:,:,:]
|
|
seg=seg*255
|
|
|
|
|
|
if i==0 and j==0:
|
|
seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
|
:] = seg
|
|
|
|
elif i==nxf-1 and j==nyf-1:
|
|
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0,
|
|
:] = seg
|
|
|
|
elif i==0 and j==nyf-1:
|
|
seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
|
|
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin,
|
|
:] = seg
|
|
|
|
elif i==nxf-1 and j==0:
|
|
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
|
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
|
:] = seg
|
|
|
|
elif i==0 and j!=0 and j!=nyf-1:
|
|
seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
|
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
|
:] = seg
|
|
|
|
elif i==nxf-1 and j!=0 and j!=nyf-1:
|
|
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
|
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
|
:] = seg
|
|
|
|
elif i!=0 and i!=nxf-1 and j==0:
|
|
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
|
:] = seg
|
|
|
|
elif i!=0 and i!=nxf-1 and j==nyf-1:
|
|
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
|
|
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin,
|
|
:] = seg
|
|
|
|
else:
|
|
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
|
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
|
:] = seg
|
|
|
|
prediction_true = prediction_true.astype(int)
|
|
|
|
del model_enhancement
|
|
del session_enhancemnet
|
|
|
|
|
|
return prediction_true
|
|
|
|
def check_dpi(self):
|
|
self.dpi=os.popen('identify -format "%x " '+self.image_dir).read()
|
|
self.dpi=int(float(self.dpi))
|
|
|
|
|
|
def resize_image_with_column_classifier(self,is_image_enhanced):
|
|
self.check_dpi()
|
|
img=cv2.imread(self.image_dir)
|
|
img=img.astype(np.uint8)
|
|
|
|
_,page_coord=self.early_page_for_num_of_column_classification()
|
|
model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier)
|
|
|
|
img_1ch=cv2.imread(self.image_dir,0)
|
|
|
|
width_early=img_1ch.shape[1]
|
|
|
|
img_1ch=img_1ch[page_coord[0]:page_coord[1],page_coord[2]:page_coord[3]]
|
|
|
|
#plt.imshow(img_1ch)
|
|
#plt.show()
|
|
img_1ch=img_1ch/255.
|
|
|
|
img_1ch=cv2.resize( img_1ch, ( 448,448) ,interpolation=cv2.INTER_NEAREST)
|
|
|
|
img_in=np.zeros((1,img_1ch.shape[0],img_1ch.shape[1],3))
|
|
img_in[0,:,:,0]=img_1ch[:,:]
|
|
img_in[0,:,:,1]=img_1ch[:,:]
|
|
img_in[0,:,:,2]=img_1ch[:,:]
|
|
|
|
label_p_pred=model_num_classifier.predict(img_in)
|
|
num_col=np.argmax(label_p_pred[0])+1
|
|
|
|
print(num_col,label_p_pred,'num_col_classifier')
|
|
|
|
session_col_classifier.close()
|
|
del model_num_classifier
|
|
del session_col_classifier
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
#sys.exit()
|
|
if num_col==1 and width_early<1100:
|
|
img_w_new=2000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2000)
|
|
|
|
elif num_col==1 and width_early>=2500:
|
|
img_w_new=2000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2000)
|
|
elif num_col==1 and width_early>=1100 and width_early<2500:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
elif num_col==2 and width_early<2000:
|
|
img_w_new=2400
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2400)
|
|
|
|
elif num_col==2 and width_early>=3500:
|
|
img_w_new=2400
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2400)
|
|
|
|
elif num_col==2 and width_early>=2000 and width_early<3500:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
elif num_col==3 and width_early<2000:
|
|
img_w_new=3000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 3000)
|
|
|
|
elif num_col==3 and width_early>=4000:
|
|
img_w_new=3000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 3000)
|
|
|
|
elif num_col==3 and width_early>=2000 and width_early<4000:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
elif num_col==4 and width_early<2500:
|
|
img_w_new=4000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 4000)
|
|
|
|
elif num_col==4 and width_early>=5000:
|
|
img_w_new=4000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 4000)
|
|
|
|
elif num_col==4 and width_early>=2500 and width_early<5000:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
|
|
elif num_col==5 and width_early<3700:
|
|
img_w_new=5000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 5000)
|
|
|
|
elif num_col==5 and width_early>=7000:
|
|
img_w_new=5000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 5000)
|
|
|
|
elif num_col==5 and width_early>=3700 and width_early<7000:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
|
|
elif num_col==6 and width_early<4500:
|
|
img_w_new=6500#5400
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 6500)
|
|
|
|
else:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
|
|
if label_p_pred[0][int(num_col-1)]<0.9 and img_w_new<width_early:
|
|
img_new=np.copy(img)
|
|
num_column_is_classified=False
|
|
else:
|
|
img_new=self.resize_image(img,img_h_new,img_w_new)
|
|
num_column_is_classified=True
|
|
|
|
if img_new.shape[1]>img.shape[1]:
|
|
img_new=self.predict_enhancement(img_new)
|
|
is_image_enhanced=True
|
|
|
|
return img,img_new,is_image_enhanced
|
|
|
|
def resize_and_enhance_image_with_column_classifier(self,is_image_enhanced):
|
|
self.check_dpi()
|
|
img=cv2.imread(self.image_dir)
|
|
|
|
img=img.astype(np.uint8)
|
|
|
|
_,page_coord=self.early_page_for_num_of_column_classification()
|
|
model_num_classifier, session_col_classifier = self.start_new_session_and_model(self.model_dir_of_col_classifier)
|
|
|
|
img_1ch=cv2.imread(self.image_dir,0)
|
|
img_1ch=img_1ch.astype(np.uint8)
|
|
|
|
width_early=img_1ch.shape[1]
|
|
|
|
img_1ch=img_1ch[page_coord[0]:page_coord[1],page_coord[2]:page_coord[3]]
|
|
|
|
#plt.imshow(img_1ch)
|
|
#plt.show()
|
|
img_1ch=img_1ch/255.
|
|
|
|
img_1ch=cv2.resize( img_1ch, ( 448,448) ,interpolation=cv2.INTER_NEAREST)
|
|
|
|
img_in=np.zeros((1,img_1ch.shape[0],img_1ch.shape[1],3))
|
|
img_in[0,:,:,0]=img_1ch[:,:]
|
|
img_in[0,:,:,1]=img_1ch[:,:]
|
|
img_in[0,:,:,2]=img_1ch[:,:]
|
|
|
|
|
|
#plt.imshow(img_in[0,:,:,:])
|
|
#plt.show()
|
|
|
|
label_p_pred=model_num_classifier.predict(img_in)
|
|
num_col=np.argmax(label_p_pred[0])+1
|
|
|
|
print(num_col,label_p_pred,'num_col_classifier')
|
|
|
|
session_col_classifier.close()
|
|
del model_num_classifier
|
|
del session_col_classifier
|
|
del img_in
|
|
del img_1ch
|
|
del page_coord
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
|
|
print(self.dpi)
|
|
|
|
if self.dpi<298:
|
|
|
|
#sys.exit()
|
|
if num_col==1 and width_early<1100:
|
|
img_w_new=2000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2000)
|
|
|
|
elif num_col==1 and width_early>=2500:
|
|
img_w_new=2000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2000)
|
|
elif num_col==1 and width_early>=1100 and width_early<2500:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
elif num_col==2 and width_early<2000:
|
|
img_w_new=2400
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2400)
|
|
|
|
elif num_col==2 and width_early>=3500:
|
|
img_w_new=2400
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 2400)
|
|
|
|
elif num_col==2 and width_early>=2000 and width_early<3500:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
elif num_col==3 and width_early<2000:
|
|
img_w_new=3000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 3000)
|
|
|
|
elif num_col==3 and width_early>=4000:
|
|
img_w_new=3000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 3000)
|
|
|
|
elif num_col==3 and width_early>=2000 and width_early<4000:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
elif num_col==4 and width_early<2500:
|
|
img_w_new=4000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 4000)
|
|
|
|
elif num_col==4 and width_early>=5000:
|
|
img_w_new=4000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 4000)
|
|
|
|
elif num_col==4 and width_early>=2500 and width_early<5000:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
|
|
elif num_col==5 and width_early<3700:
|
|
img_w_new=5000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 5000)
|
|
|
|
elif num_col==5 and width_early>=7000:
|
|
img_w_new=5000
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 5000)
|
|
|
|
elif num_col==5 and width_early>=3700 and width_early<7000:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
|
|
elif num_col==6 and width_early<4500:
|
|
img_w_new=6500#5400
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * 6500)
|
|
|
|
else:
|
|
img_w_new=width_early
|
|
img_h_new=int(img.shape[0]/float(img.shape[1]) * width_early)
|
|
|
|
|
|
|
|
if label_p_pred[0][int(num_col-1)]<0.9 and img_w_new<width_early:
|
|
img_new=np.copy(img)
|
|
num_column_is_classified=False
|
|
else:
|
|
img_new=self.resize_image(img,img_h_new,img_w_new)
|
|
num_column_is_classified=True
|
|
|
|
#img_new=self.resize_image(img,img_h_new,img_w_new)
|
|
image_res=self.predict_enhancement(img_new)
|
|
#cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif",self.image)
|
|
#self.image=self.image.astype(np.uint16)
|
|
|
|
#self.scale_x=1
|
|
#self.scale_y=1
|
|
#self.height_org = self.image.shape[0]
|
|
#self.width_org = self.image.shape[1]
|
|
is_image_enhanced=True
|
|
else:
|
|
"""
|
|
if img.shape[0]<=2530 and img.shape[0]>=img.shape[1]:
|
|
img_h_new=3000
|
|
img_w_new=int(img.shape[1]/float(img.shape[0]) * 3000)
|
|
img_new=self.resize_image(img,img_h_new,img_w_new)
|
|
image_res=self.predict_enhancement(img_new)
|
|
#cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif",self.image)
|
|
#self.image=self.image.astype(np.uint16)
|
|
##self.scale_x=1
|
|
##self.scale_y=1
|
|
##self.height_org = self.image.shape[0]
|
|
##self.width_org = self.image.shape[1]
|
|
is_image_enhanced=True
|
|
else:
|
|
is_image_enhanced=False
|
|
image_res=np.copy(img)
|
|
|
|
"""
|
|
is_image_enhanced=False
|
|
num_column_is_classified=True
|
|
image_res=np.copy(img)
|
|
|
|
|
|
|
|
|
|
return is_image_enhanced,img,image_res,num_col,num_column_is_classified
|
|
def resize_and_enhance_image(self,is_image_enhanced):
|
|
self.check_dpi()
|
|
img=cv2.imread(self.image_dir)
|
|
img=img.astype(np.uint8)
|
|
#sys.exit()
|
|
|
|
|
|
print(self.dpi)
|
|
|
|
if self.dpi<298:
|
|
if img.shape[0]<1000:
|
|
img_h_new=int(img.shape[0]*3)
|
|
img_w_new=int(img.shape[1]*3)
|
|
if img_h_new<2800:
|
|
img_h_new=3000
|
|
img_w_new=int(img.shape[1]/float(img.shape[0]) * 3000)
|
|
elif img.shape[0]>=1000 and img.shape[0]<2000:
|
|
img_h_new=int(img.shape[0]*2)
|
|
img_w_new=int(img.shape[1]*2)
|
|
if img_h_new<2800:
|
|
img_h_new=3000
|
|
img_w_new=int(img.shape[1]/float(img.shape[0]) * 3000)
|
|
else:
|
|
img_h_new=int(img.shape[0]*1.5)
|
|
img_w_new=int(img.shape[1]*1.5)
|
|
img_new=self.resize_image(img,img_h_new,img_w_new)
|
|
image_res=self.predict_enhancement(img_new)
|
|
#cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif",self.image)
|
|
#self.image=self.image.astype(np.uint16)
|
|
|
|
#self.scale_x=1
|
|
#self.scale_y=1
|
|
#self.height_org = self.image.shape[0]
|
|
#self.width_org = self.image.shape[1]
|
|
is_image_enhanced=True
|
|
else:
|
|
is_image_enhanced=False
|
|
image_res=np.copy(img)
|
|
|
|
return is_image_enhanced,img,image_res
|
|
|
|
|
|
def resize_and_enhance_image_new(self,is_image_enhanced):
|
|
#self.check_dpi()
|
|
img=cv2.imread(self.image_dir)
|
|
img=img.astype(np.uint8)
|
|
#sys.exit()
|
|
|
|
image_res=np.copy(img)
|
|
|
|
|
|
return is_image_enhanced,img,image_res
|
|
|
|
|
|
|
|
|
|
def get_image_and_scales(self,img_org,img_res,scale):
|
|
self.image = np.copy(img_res)
|
|
self.image_org=np.copy(img_org)
|
|
self.height_org = self.image.shape[0]
|
|
self.width_org = self.image.shape[1]
|
|
|
|
|
|
|
|
self.img_hight_int =int(self.image.shape[0]*scale)
|
|
self.img_width_int = int(self.image.shape[1]*scale)
|
|
self.scale_y = self.img_hight_int / float(self.image.shape[0])
|
|
self.scale_x = self.img_width_int / float(self.image.shape[1])
|
|
|
|
self.image = self.resize_image(self.image, self.img_hight_int, self.img_width_int)
|
|
del img_res
|
|
del img_org
|
|
def get_image_and_scales_after_enhancing(self,img_org,img_res):
|
|
|
|
#self.image = cv2.imread(self.image_dir)
|
|
|
|
self.image=np.copy(img_res)
|
|
self.image=self.image.astype(np.uint8)
|
|
self.image_org=np.copy(img_org)
|
|
self.height_org = self.image_org.shape[0]
|
|
self.width_org = self.image_org.shape[1]
|
|
|
|
|
|
|
|
self.scale_y = img_res.shape[0] / float(self.image_org.shape[0])
|
|
self.scale_x = img_res.shape[1]/ float(self.image_org.shape[1])
|
|
|
|
del img_org
|
|
del img_res
|
|
|
|
|
|
|
|
def get_image_and_scales_deskewd(self,img_deskewd):
|
|
|
|
self.image = img_deskewd
|
|
self.image_org=np.copy(self.image)
|
|
self.height_org = self.image.shape[0]
|
|
self.width_org = self.image.shape[1]
|
|
|
|
|
|
self.img_hight_int =int(self.image.shape[0]*1)
|
|
self.img_width_int = int(self.image.shape[1]*1)
|
|
self.scale_y = self.img_hight_int / float(self.image.shape[0])
|
|
self.scale_x = self.img_width_int / float(self.image.shape[1])
|
|
|
|
self.image = self.resize_image(self.image, self.img_hight_int, self.img_width_int)
|
|
|
|
def start_new_session_and_model(self, model_dir):
|
|
config = tf.ConfigProto()
|
|
config.gpu_options.allow_growth = True
|
|
|
|
session = tf.InteractiveSession()
|
|
model = load_model(model_dir, compile=False)
|
|
|
|
return model, session
|
|
|
|
def return_bonding_box_of_contours(self,cnts):
|
|
boxes_tot=[]
|
|
for i in range(len(cnts)):
|
|
x,y,w,h = cv2.boundingRect(cnts[i])
|
|
|
|
box=[x,y,w,h]
|
|
boxes_tot.append(box)
|
|
return boxes_tot
|
|
|
|
def find_features_of_lines(self,contours_main):
|
|
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
|
|
slope_lines=[]
|
|
|
|
for kk in range(len(contours_main)):
|
|
[vx,vy,x,y] = cv2.fitLine(contours_main[kk], cv2.DIST_L2,0,0.01,0.01)
|
|
slope_lines.append( ( (vy/vx)/np.pi*180 )[0] )
|
|
|
|
slope_lines_org=slope_lines
|
|
slope_lines=np.array(slope_lines)
|
|
slope_lines[(slope_lines<10) & (slope_lines>-10)]=0
|
|
|
|
slope_lines[(slope_lines<-200) | (slope_lines>200)]=1
|
|
slope_lines[ (slope_lines!=0) & (slope_lines!=1)]=2
|
|
|
|
dis_x=np.abs(x_max_main-x_min_main)
|
|
return slope_lines,dis_x, x_min_main ,x_max_main ,np.array(cy_main),np.array(slope_lines_org),y_min_main ,y_max_main,np.array(cx_main)
|
|
|
|
def return_parent_contours(self,contours,hierarchy):
|
|
contours_parent=[ contours[i] for i in range(len(contours) ) if hierarchy[0][i][3]==-1 ]
|
|
return contours_parent
|
|
|
|
def isNaN(self,num):
|
|
return num != num
|
|
def early_deskewing_slope_calculation_based_on_lines(self,region_pre_p):
|
|
# lines are labels by 6 in this model
|
|
seperators_closeup=( (region_pre_p[:,:,:]==6))*1
|
|
|
|
seperators_closeup=seperators_closeup.astype(np.uint8)
|
|
imgray = cv2.cvtColor(seperators_closeup, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_lines,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=self.find_features_of_lines(contours_lines)
|
|
|
|
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
|
args=np.array( range(len(slope_lines) ))
|
|
len_x=seperators_closeup.shape[1]/4.0
|
|
|
|
args_hor=args[slope_lines==0]
|
|
dist_x_hor=dist_x[slope_lines==0]
|
|
x_min_main_hor=x_min_main[slope_lines==0]
|
|
x_max_main_hor=x_max_main[slope_lines==0]
|
|
cy_main_hor=cy_main[slope_lines==0]
|
|
|
|
args_hor=args_hor[dist_x_hor>=len_x/2.0]
|
|
x_max_main_hor=x_max_main_hor[dist_x_hor>=len_x/2.0]
|
|
x_min_main_hor=x_min_main_hor[dist_x_hor>=len_x/2.0]
|
|
cy_main_hor=cy_main_hor[dist_x_hor>=len_x/2.0]
|
|
slope_lines_org_hor=slope_lines_org_hor[dist_x_hor>=len_x/2.0]
|
|
|
|
|
|
slope_lines_org_hor=slope_lines_org_hor[np.abs(slope_lines_org_hor)<1.2]
|
|
slope_mean_hor=np.mean(slope_lines_org_hor)
|
|
|
|
if np.abs(slope_mean_hor)>1.2:
|
|
slope_mean_hor=0
|
|
|
|
#deskewed_new=rotate_image(image_regions_eraly_p[:,:,:],slope_mean_hor)
|
|
|
|
|
|
args_ver=args[slope_lines==1]
|
|
y_min_main_ver=y_min_main[slope_lines==1]
|
|
y_max_main_ver=y_max_main[slope_lines==1]
|
|
x_min_main_ver=x_min_main[slope_lines==1]
|
|
x_max_main_ver=x_max_main[slope_lines==1]
|
|
cx_main_ver=cx_main[slope_lines==1]
|
|
dist_y_ver=y_max_main_ver-y_min_main_ver
|
|
len_y=seperators_closeup.shape[0]/3.0
|
|
|
|
return slope_mean_hor,cx_main_ver,dist_y_ver
|
|
|
|
def return_contours_of_interested_region(self,region_pre_p,pixel,min_area=0.0002):
|
|
|
|
# pixels of images are identified by 5
|
|
if len(region_pre_p.shape)==3:
|
|
cnts_images=(region_pre_p[:,:,0]==pixel)*1
|
|
else:
|
|
cnts_images=(region_pre_p[:,:]==pixel)*1
|
|
cnts_images=cnts_images.astype(np.uint8)
|
|
cnts_images=np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_imgs,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
contours_imgs=self.return_parent_contours(contours_imgs,hiearchy)
|
|
contours_imgs=self.filter_contours_area_of_image_tables(thresh,contours_imgs,hiearchy,max_area=1,min_area=min_area)
|
|
|
|
return contours_imgs
|
|
|
|
|
|
def return_contours_of_interested_region_by_min_size(self,region_pre_p,pixel,min_size=0.00003):
|
|
|
|
# pixels of images are identified by 5
|
|
if len(region_pre_p.shape)==3:
|
|
cnts_images=(region_pre_p[:,:,0]==pixel)*1
|
|
else:
|
|
cnts_images=(region_pre_p[:,:]==pixel)*1
|
|
cnts_images=cnts_images.astype(np.uint8)
|
|
cnts_images=np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_imgs,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
contours_imgs=self.return_parent_contours(contours_imgs,hiearchy)
|
|
contours_imgs=self.filter_contours_area_of_image_tables(thresh,contours_imgs,hiearchy,max_area=1,min_area=min_size)
|
|
|
|
return contours_imgs
|
|
|
|
|
|
def return_contours_of_interested_textline(self,region_pre_p,pixel):
|
|
|
|
# pixels of images are identified by 5
|
|
if len(region_pre_p.shape)==3:
|
|
cnts_images=(region_pre_p[:,:,0]==pixel)*1
|
|
else:
|
|
cnts_images=(region_pre_p[:,:]==pixel)*1
|
|
cnts_images=cnts_images.astype(np.uint8)
|
|
cnts_images=np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_imgs,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
contours_imgs=self.return_parent_contours(contours_imgs,hiearchy)
|
|
contours_imgs=self.filter_contours_area_of_image_tables(thresh,contours_imgs,hiearchy,max_area=1,min_area=0.000000003)
|
|
return contours_imgs
|
|
def find_images_contours_and_replace_table_and_graphic_pixels_by_image(self,region_pre_p):
|
|
|
|
# pixels of images are identified by 5
|
|
cnts_images=(region_pre_p[:,:,0]==5)*1
|
|
cnts_images=cnts_images.astype(np.uint8)
|
|
cnts_images=np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_imgs,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
contours_imgs=self.return_parent_contours(contours_imgs,hiearchy)
|
|
#print(len(contours_imgs),'contours_imgs')
|
|
contours_imgs=self.filter_contours_area_of_image_tables(thresh,contours_imgs,hiearchy,max_area=1,min_area=0.0003)
|
|
|
|
#print(len(contours_imgs),'contours_imgs')
|
|
|
|
boxes_imgs=self.return_bonding_box_of_contours(contours_imgs)
|
|
|
|
for i in range(len(boxes_imgs)):
|
|
x1=int(boxes_imgs[i][0] )
|
|
x2=int(boxes_imgs[i][0]+ boxes_imgs[i][2])
|
|
y1=int(boxes_imgs[i][1] )
|
|
y2=int(boxes_imgs[i][1]+ boxes_imgs[i][3])
|
|
region_pre_p[y1:y2,x1:x2,0][region_pre_p[y1:y2,x1:x2,0]==8]=5
|
|
region_pre_p[y1:y2,x1:x2,0][region_pre_p[y1:y2,x1:x2,0]==7]=5
|
|
return region_pre_p
|
|
|
|
def do_prediction(self,patches,img,model,marginal_of_patch_percent=0.1):
|
|
|
|
img_height_model = model.layers[len(model.layers) - 1].output_shape[1]
|
|
img_width_model = model.layers[len(model.layers) - 1].output_shape[2]
|
|
n_classes = model.layers[len(model.layers) - 1].output_shape[3]
|
|
|
|
|
|
|
|
if patches:
|
|
if img.shape[0]<img_height_model:
|
|
img=self.resize_image(img,img_height_model,img.shape[1])
|
|
|
|
if img.shape[1]<img_width_model:
|
|
img=self.resize_image(img,img.shape[0],img_width_model)
|
|
|
|
#print(img_height_model,img_width_model)
|
|
#margin = int(0.2 * img_width_model)
|
|
margin = int(marginal_of_patch_percent * img_height_model)
|
|
|
|
width_mid = img_width_model - 2 * margin
|
|
height_mid = img_height_model - 2 * margin
|
|
|
|
|
|
img = img / float(255.0)
|
|
#print(sys.getsizeof(img))
|
|
#print(np.max(img))
|
|
|
|
img=img.astype(np.float16)
|
|
|
|
#print(sys.getsizeof(img))
|
|
|
|
img_h = img.shape[0]
|
|
img_w = img.shape[1]
|
|
|
|
prediction_true = np.zeros((img_h, img_w, 3))
|
|
mask_true = np.zeros((img_h, img_w))
|
|
nxf = img_w / float(width_mid)
|
|
nyf = img_h / float(height_mid)
|
|
|
|
if nxf > int(nxf):
|
|
nxf = int(nxf) + 1
|
|
else:
|
|
nxf = int(nxf)
|
|
|
|
if nyf > int(nyf):
|
|
nyf = int(nyf) + 1
|
|
else:
|
|
nyf = int(nyf)
|
|
|
|
for i in range(nxf):
|
|
for j in range(nyf):
|
|
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + img_width_model
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + img_width_model
|
|
|
|
if j == 0:
|
|
index_y_d = j * height_mid
|
|
index_y_u = index_y_d + img_height_model
|
|
elif j > 0:
|
|
index_y_d = j * height_mid
|
|
index_y_u = index_y_d + img_height_model
|
|
|
|
if index_x_u > img_w:
|
|
index_x_u = img_w
|
|
index_x_d = img_w - img_width_model
|
|
if index_y_u > img_h:
|
|
index_y_u = img_h
|
|
index_y_d = img_h - img_height_model
|
|
|
|
|
|
|
|
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
|
|
label_p_pred = model.predict(
|
|
img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]))
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
if i==0 and j==0:
|
|
seg_color = seg_color[0:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
|
seg = seg[0:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i==nxf-1 and j==nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - 0, :]
|
|
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - 0]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - 0,
|
|
:] = seg_color
|
|
|
|
elif i==0 and j==nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - 0, 0:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - 0, 0:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + 0:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i==nxf-1 and j==0:
|
|
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
|
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
|
|
|
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
|
:] = seg_color
|
|
|
|
elif i==0 and j!=0 and j!=nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - margin, 0:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - margin, 0:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + 0:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i==nxf-1 and j!=0 and j!=nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - 0, :]
|
|
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - 0]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - 0,
|
|
:] = seg_color
|
|
|
|
elif i!=0 and i!=nxf-1 and j==0:
|
|
seg_color = seg_color[0:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
|
|
seg = seg[0:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + 0:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
elif i!=0 and i!=nxf-1 and j==nyf-1:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - 0, margin:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - 0, margin:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - 0, index_x_d + margin:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
else:
|
|
seg_color = seg_color[margin:seg_color.shape[0] - margin, margin:seg_color.shape[1] - margin, :]
|
|
seg = seg[margin:seg.shape[0] - margin, margin:seg.shape[1] - margin]
|
|
|
|
mask_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin] = seg
|
|
prediction_true[index_y_d + margin:index_y_u - margin, index_x_d + margin:index_x_u - margin,
|
|
:] = seg_color
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
del img
|
|
del mask_true
|
|
del seg_color
|
|
del seg
|
|
del img_patch
|
|
|
|
if not patches:
|
|
img_h_page=img.shape[0]
|
|
img_w_page=img.shape[1]
|
|
img = img /float( 255.0)
|
|
img = self.resize_image(img, img_height_model, img_width_model)
|
|
|
|
label_p_pred = model.predict(
|
|
img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
seg_color =np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
prediction_true = self.resize_image(seg_color, img_h_page, img_w_page)
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
|
|
del img
|
|
del seg_color
|
|
del label_p_pred
|
|
del seg
|
|
del model
|
|
gc.collect()
|
|
|
|
return prediction_true
|
|
|
|
def early_page_for_num_of_column_classification(self):
|
|
img=cv2.imread(self.image_dir)
|
|
img=img.astype(np.uint8)
|
|
patches=False
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
###img = self.otsu_copy(self.image)
|
|
for ii in range(1):
|
|
img = cv2.GaussianBlur(img, (5, 5), 0)
|
|
|
|
|
|
img_page_prediction=self.do_prediction(patches,img,model_page)
|
|
|
|
imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY)
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
thresh = cv2.dilate(thresh, self.kernel, iterations=3)
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
|
|
cnt = contours[np.argmax(cnt_size)]
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt)
|
|
|
|
box = [x, y, w, h]
|
|
|
|
croped_page, page_coord = self.crop_image_inside_box(box, img)
|
|
|
|
session_page.close()
|
|
del model_page
|
|
del session_page
|
|
del contours
|
|
del thresh
|
|
del img
|
|
del cnt_size
|
|
del cnt
|
|
del box
|
|
del x
|
|
del y
|
|
del w
|
|
del h
|
|
del imgray
|
|
del img_page_prediction
|
|
|
|
|
|
gc.collect()
|
|
return croped_page, page_coord
|
|
|
|
def extract_page(self):
|
|
patches=False
|
|
model_page, session_page = self.start_new_session_and_model(self.model_page_dir)
|
|
###img = self.otsu_copy(self.image)
|
|
for ii in range(1):
|
|
img = cv2.GaussianBlur(self.image, (5, 5), 0)
|
|
|
|
|
|
img_page_prediction=self.do_prediction(patches,img,model_page)
|
|
|
|
imgray = cv2.cvtColor(img_page_prediction, cv2.COLOR_BGR2GRAY)
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
thresh = cv2.dilate(thresh, self.kernel, iterations=3)
|
|
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cnt_size = np.array([cv2.contourArea(contours[j]) for j in range(len(contours))])
|
|
|
|
cnt = contours[np.argmax(cnt_size)]
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt)
|
|
|
|
|
|
if x<=30:
|
|
w=w+x
|
|
x=0
|
|
if (self.image.shape[1]-(x+w) )<=30:
|
|
w=w+(self.image.shape[1]-(x+w) )
|
|
|
|
if y<=30:
|
|
h=h+y
|
|
y=0
|
|
if (self.image.shape[0]-(y+h) )<=30:
|
|
h=h+(self.image.shape[0]-(y+h) )
|
|
|
|
|
|
|
|
box = [x, y, w, h]
|
|
|
|
croped_page, page_coord = self.crop_image_inside_box(box, self.image)
|
|
|
|
self.cont_page=[]
|
|
self.cont_page.append( np.array( [ [ page_coord[2] , page_coord[0] ] ,
|
|
[ page_coord[3] , page_coord[0] ] ,
|
|
[ page_coord[3] , page_coord[1] ] ,
|
|
[ page_coord[2] , page_coord[1] ]] ) )
|
|
|
|
session_page.close()
|
|
del model_page
|
|
del session_page
|
|
del contours
|
|
del thresh
|
|
del img
|
|
del imgray
|
|
|
|
gc.collect()
|
|
return croped_page, page_coord
|
|
|
|
def extract_drop_capital_13(self, img,patches,cols):
|
|
|
|
|
|
img_height_h=img.shape[0]
|
|
img_width_h=img.shape[1]
|
|
patches=False
|
|
|
|
|
|
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully_np)
|
|
|
|
img_1=img[:int(img.shape[0]/3.),:,:]
|
|
img_2=img[int(img.shape[0]/3.):int(2*img.shape[0]/3.),:,:]
|
|
img_3=img[int(2*img.shape[0]/3.):,:,:]
|
|
|
|
|
|
|
|
#img_1 = self.otsu_copy_binary(img_1)#self.otsu_copy(img)
|
|
#img_1 = img_1.astype(np.uint16)
|
|
|
|
plt.imshow(img_1)
|
|
plt.show()
|
|
#img_2 = self.otsu_copy_binary(img_2)#self.otsu_copy(img)
|
|
#img_2 = img_2.astype(np.uint16)
|
|
|
|
plt.imshow(img_2)
|
|
plt.show()
|
|
#img_3 = self.otsu_copy_binary(img_3)#self.otsu_copy(img)
|
|
#img_3 = img_3.astype(np.uint16)
|
|
|
|
|
|
plt.imshow(img_3)
|
|
plt.show()
|
|
|
|
prediction_regions_1=self.do_prediction(patches,img_1,model_region)
|
|
|
|
|
|
plt.imshow(prediction_regions_1)
|
|
plt.show()
|
|
|
|
prediction_regions_2=self.do_prediction(patches,img_2,model_region)
|
|
|
|
plt.imshow(prediction_regions_2)
|
|
plt.show()
|
|
prediction_regions_3=self.do_prediction(patches,img_3,model_region)
|
|
|
|
|
|
plt.imshow(prediction_regions_3)
|
|
plt.show()
|
|
prediction_regions=np.zeros((img_height_h,img_width_h))
|
|
|
|
prediction_regions[:int(img.shape[0]/3.),:]=prediction_regions_1[:,:,0]
|
|
prediction_regions[int(img.shape[0]/3.):int(2*img.shape[0]/3.),:]=prediction_regions_2[:,:,0]
|
|
prediction_regions[int(2*img.shape[0]/3.):,:]=prediction_regions_3[:,:,0]
|
|
|
|
|
|
|
|
session_region.close()
|
|
del img_1
|
|
del img_2
|
|
del img_3
|
|
del prediction_regions_1
|
|
del prediction_regions_2
|
|
del prediction_regions_3
|
|
del model_region
|
|
del session_region
|
|
del img
|
|
gc.collect()
|
|
return prediction_regions
|
|
|
|
|
|
|
|
def extract_text_regions(self, img,patches,cols):
|
|
img_height_h=img.shape[0]
|
|
img_width_h=img.shape[1]
|
|
|
|
###if patches and cols>=3 :
|
|
###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully)
|
|
###if not patches:
|
|
###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully_np)
|
|
|
|
###if patches and cols==2 :
|
|
###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_2col)
|
|
|
|
###if patches and cols==1 :
|
|
###model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_2col)
|
|
|
|
|
|
|
|
###if patches and cols>=2:
|
|
|
|
###img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
###img = img.astype(np.uint8)
|
|
|
|
|
|
###if patches and cols==1:
|
|
|
|
###img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
###img = img.astype(np.uint8)
|
|
###img= self.resize_image(img, int(img_height_h*1), int(img_width_h*1) )
|
|
|
|
|
|
if patches :
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully)
|
|
if not patches:
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_fully_np)
|
|
|
|
if patches and cols==1:
|
|
img2 = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img2 = img2.astype(np.uint8)
|
|
img2= self.resize_image(img2, int(img_height_h*0.7), int(img_width_h*0.7) )
|
|
|
|
marginal_of_patch_percent=0.1
|
|
prediction_regions2=self.do_prediction(patches,img2,model_region,marginal_of_patch_percent)
|
|
prediction_regions2=self.resize_image(prediction_regions2, img_height_h, img_width_h )
|
|
|
|
if patches and cols==2:
|
|
img2 = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img2 = img2.astype(np.uint8)
|
|
img2= self.resize_image(img2, int(img_height_h*0.4), int(img_width_h*0.4) )
|
|
|
|
marginal_of_patch_percent=0.1
|
|
prediction_regions2=self.do_prediction(patches,img2,model_region,marginal_of_patch_percent)
|
|
prediction_regions2=self.resize_image(prediction_regions2, img_height_h, img_width_h )
|
|
elif patches and cols>2:
|
|
img2 = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img2 = img2.astype(np.uint8)
|
|
img2= self.resize_image(img2, int(img_height_h*0.3), int(img_width_h*0.3) )
|
|
|
|
marginal_of_patch_percent=0.1
|
|
prediction_regions2=self.do_prediction(patches,img2,model_region,marginal_of_patch_percent)
|
|
prediction_regions2=self.resize_image(prediction_regions2, img_height_h, img_width_h )
|
|
|
|
|
|
if patches and cols==2:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
|
|
img = img.astype(np.uint8)
|
|
|
|
if img_width_h>=2000:
|
|
img= self.resize_image(img, int(img_height_h*0.9), int(img_width_h*0.9) )
|
|
else:
|
|
pass#img= self.resize_image(img, int(img_height_h*1), int(img_width_h*1) )
|
|
img = img.astype(np.uint8)
|
|
|
|
if patches and cols==1:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
|
|
img = img.astype(np.uint8)
|
|
img= self.resize_image(img, int(img_height_h*0.5), int(img_width_h*0.5) )
|
|
img = img.astype(np.uint8)
|
|
|
|
if patches and cols==3:
|
|
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint8)
|
|
#img= self.resize_image(img, int(img_height_h*0.9), int(img_width_h*0.9) )
|
|
|
|
if patches and cols==4:
|
|
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint8)
|
|
#img= self.resize_image(img, int(img_height_h*0.9), int(img_width_h*0.9) )
|
|
|
|
if patches and cols>=5:
|
|
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint8)
|
|
#img= self.resize_image(img, int(img_height_h*0.9), int(img_width_h*0.9) )
|
|
|
|
if not patches:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint8)
|
|
prediction_regions2=None
|
|
|
|
marginal_of_patch_percent=0.1
|
|
prediction_regions=self.do_prediction(patches,img,model_region,marginal_of_patch_percent)
|
|
prediction_regions=self.resize_image(prediction_regions, img_height_h, img_width_h )
|
|
|
|
|
|
|
|
|
|
session_region.close()
|
|
del model_region
|
|
del session_region
|
|
del img
|
|
gc.collect()
|
|
return prediction_regions,prediction_regions2
|
|
|
|
def extract_only_text_regions(self, img,patches):
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_only_text)
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint8)
|
|
img_org=np.copy(img)
|
|
|
|
img_h=img_org.shape[0]
|
|
img_w=img_org.shape[1]
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*1), int(img_org.shape[1]*1))
|
|
|
|
|
|
prediction_regions1=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions1= self.resize_image(prediction_regions1, img_h, img_w)
|
|
|
|
|
|
#prediction_regions1 = cv2.dilate(prediction_regions1, self.kernel, iterations=4)
|
|
#prediction_regions1 = cv2.erode(prediction_regions1, self.kernel, iterations=7)
|
|
#prediction_regions1 = cv2.dilate(prediction_regions1, self.kernel, iterations=2)
|
|
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*1), int(img_org.shape[1]*1))
|
|
|
|
|
|
prediction_regions2=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions2= self.resize_image(prediction_regions2, img_h, img_w)
|
|
|
|
|
|
#prediction_regions2 = cv2.dilate(prediction_regions2, self.kernel, iterations=2)
|
|
prediction_regions2 = cv2.erode(prediction_regions2, self.kernel, iterations=2)
|
|
prediction_regions2 = cv2.dilate(prediction_regions2, self.kernel, iterations=2)
|
|
|
|
|
|
#prediction_regions=( (prediction_regions2[:,:,0]==1) & (prediction_regions1[:,:,0]==1) )
|
|
#prediction_regions=(prediction_regions1[:,:,0]==1)
|
|
|
|
session_region.close()
|
|
del model_region
|
|
del session_region
|
|
gc.collect()
|
|
return prediction_regions1[:,:,0]
|
|
|
|
def extract_binarization(self, img,patches):
|
|
|
|
model_bin, session_bin = self.start_new_session_and_model(self.model_binafrization)
|
|
|
|
|
|
img_h=img.shape[0]
|
|
img_w=img.shape[1]
|
|
|
|
img= self.resize_image(img, int(img.shape[0]*1), int(img.shape[1]*1))
|
|
|
|
|
|
prediction_regions=self.do_prediction(patches,img,model_bin)
|
|
|
|
res=(prediction_regions[:,:,0]!=0)*1
|
|
|
|
|
|
|
|
|
|
img_fin=np.zeros((res.shape[0],res.shape[1],3) )
|
|
res[:,:][res[:,:]==0]=2
|
|
res=res-1
|
|
res=res*255
|
|
img_fin[:,:,0]=res
|
|
img_fin[:,:,1]=res
|
|
img_fin[:,:,2]=res
|
|
|
|
session_bin.close()
|
|
del model_bin
|
|
del session_bin
|
|
gc.collect()
|
|
#plt.imshow(img_fin[:,:,0])
|
|
#plt.show()
|
|
return img_fin
|
|
|
|
def get_slopes_and_deskew_new(self, contours,contours_par,textline_mask_tot,image_page_rotated,boxes,slope_deskew):
|
|
num_cores =cpu_count()
|
|
queue_of_all_params = Queue()
|
|
|
|
processes = []
|
|
nh=np.linspace(0, len(boxes), num_cores+1)
|
|
indexes_by_text_con=np.array(range(len(contours_par)))
|
|
|
|
for i in range(num_cores):
|
|
boxes_per_process=boxes[int(nh[i]):int(nh[i+1])]
|
|
contours_per_process=contours[int(nh[i]):int(nh[i+1])]
|
|
contours_par_per_process=contours_par[int(nh[i]):int(nh[i+1])]
|
|
indexes_text_con_per_process=indexes_by_text_con[int(nh[i]):int(nh[i+1])]
|
|
|
|
processes.append(Process(target=self.do_work_of_slopes_new, args=(queue_of_all_params, boxes_per_process, textline_mask_tot, contours_per_process,contours_par_per_process,indexes_text_con_per_process,image_page_rotated,slope_deskew)))
|
|
|
|
for i in range(num_cores):
|
|
processes[i].start()
|
|
|
|
slopes = []
|
|
all_found_texline_polygons=[]
|
|
all_found_text_regions=[]
|
|
all_found_text_regions_par=[]
|
|
boxes=[]
|
|
all_box_coord=[]
|
|
all_index_text_con=[]
|
|
|
|
for i in range(num_cores):
|
|
list_all_par=queue_of_all_params.get(True)
|
|
|
|
slopes_for_sub_process=list_all_par[0]
|
|
polys_for_sub_process=list_all_par[1]
|
|
boxes_for_sub_process=list_all_par[2]
|
|
contours_for_subprocess=list_all_par[3]
|
|
contours_par_for_subprocess=list_all_par[4]
|
|
boxes_coord_for_subprocess=list_all_par[5]
|
|
indexes_for_subprocess=list_all_par[6]
|
|
|
|
for j in range(len(slopes_for_sub_process)):
|
|
slopes.append(slopes_for_sub_process[j])
|
|
all_found_texline_polygons.append(polys_for_sub_process[j])
|
|
boxes.append(boxes_for_sub_process[j])
|
|
all_found_text_regions.append(contours_for_subprocess[j])
|
|
all_found_text_regions_par.append(contours_par_for_subprocess[j])
|
|
all_box_coord.append(boxes_coord_for_subprocess[j])
|
|
all_index_text_con.append(indexes_for_subprocess[j])
|
|
|
|
for i in range(num_cores):
|
|
processes[i].join()
|
|
#print(slopes,'slopes')
|
|
return slopes,all_found_texline_polygons,boxes,all_found_text_regions,all_found_text_regions_par,all_box_coord,all_index_text_con
|
|
|
|
|
|
def get_slopes_and_deskew_new_curved(self, contours,contours_par,textline_mask_tot,image_page_rotated,boxes,mask_texts_only,num_col,scale_par,slope_deskew):
|
|
num_cores =cpu_count()
|
|
queue_of_all_params = Queue()
|
|
|
|
processes = []
|
|
nh=np.linspace(0, len(boxes), num_cores+1)
|
|
indexes_by_text_con=np.array(range(len(contours_par)))
|
|
|
|
|
|
for i in range(num_cores):
|
|
boxes_per_process=boxes[int(nh[i]):int(nh[i+1])]
|
|
contours_per_process=contours[int(nh[i]):int(nh[i+1])]
|
|
contours_par_per_process=contours_par[int(nh[i]):int(nh[i+1])]
|
|
indexes_text_con_per_process=indexes_by_text_con[int(nh[i]):int(nh[i+1])]
|
|
|
|
processes.append(Process(target=self.do_work_of_slopes_new_curved, args=(queue_of_all_params, boxes_per_process, textline_mask_tot, contours_per_process,contours_par_per_process,image_page_rotated,mask_texts_only,num_col,scale_par,indexes_text_con_per_process,slope_deskew)))
|
|
|
|
for i in range(num_cores):
|
|
processes[i].start()
|
|
|
|
slopes = []
|
|
all_found_texline_polygons=[]
|
|
all_found_text_regions=[]
|
|
all_found_text_regions_par=[]
|
|
boxes=[]
|
|
all_box_coord=[]
|
|
all_index_text_con=[]
|
|
|
|
for i in range(num_cores):
|
|
list_all_par=queue_of_all_params.get(True)
|
|
|
|
polys_for_sub_process=list_all_par[0]
|
|
boxes_for_sub_process=list_all_par[1]
|
|
contours_for_subprocess=list_all_par[2]
|
|
contours_par_for_subprocess=list_all_par[3]
|
|
boxes_coord_for_subprocess=list_all_par[4]
|
|
indexes_for_subprocess=list_all_par[5]
|
|
slopes_for_sub_process=list_all_par[6]
|
|
|
|
for j in range(len(polys_for_sub_process)):
|
|
slopes.append(slopes_for_sub_process[j])
|
|
all_found_texline_polygons.append(polys_for_sub_process[j])
|
|
boxes.append(boxes_for_sub_process[j])
|
|
all_found_text_regions.append(contours_for_subprocess[j])
|
|
all_found_text_regions_par.append(contours_par_for_subprocess[j])
|
|
all_box_coord.append(boxes_coord_for_subprocess[j])
|
|
all_index_text_con.append(indexes_for_subprocess[j])
|
|
|
|
for i in range(num_cores):
|
|
processes[i].join()
|
|
#print(slopes,'slopes')
|
|
return all_found_texline_polygons,boxes,all_found_text_regions,all_found_text_regions_par,all_box_coord,all_index_text_con,slopes
|
|
|
|
|
|
|
|
def do_work_of_slopes_new_curved(self,queue_of_all_params,boxes_text,textline_mask_tot_ea,contours_per_process,contours_par_per_process,image_page_rotated,mask_texts_only,num_col,scale_par,indexes_r_con_per_pro,slope_deskew):
|
|
slopes_per_each_subprocess = []
|
|
bounding_box_of_textregion_per_each_subprocess=[]
|
|
textlines_rectangles_per_each_subprocess=[]
|
|
contours_textregion_per_each_subprocess=[]
|
|
contours_textregion_par_per_each_subprocess=[]
|
|
all_box_coord_per_process=[]
|
|
index_by_text_region_contours=[]
|
|
slope_biggest=0
|
|
|
|
textline_cnt_seperated=np.zeros(textline_mask_tot_ea.shape)
|
|
|
|
|
|
for mv in range(len(boxes_text)):
|
|
|
|
all_text_region_raw=textline_mask_tot_ea[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ]
|
|
all_text_region_raw=all_text_region_raw.astype(np.uint8)
|
|
|
|
img_int_p=all_text_region_raw[:,:]#self.all_text_region_raw[mv]
|
|
|
|
##img_int_p=cv2.erode(img_int_p,self.kernel,iterations = 2)
|
|
|
|
#plt.imshow(img_int_p)
|
|
#plt.show()
|
|
|
|
if img_int_p.shape[0]/img_int_p.shape[1]<0.1:
|
|
|
|
slopes_per_each_subprocess.append(0)
|
|
|
|
slope_first=0
|
|
slope_for_all=[slope_deskew][0]
|
|
|
|
else:
|
|
|
|
|
|
try:
|
|
textline_con,hierachy=self.return_contours_of_image(img_int_p)
|
|
textline_con_fil=self.filter_contours_area_of_image(img_int_p,textline_con,hierachy,max_area=1,min_area=0.0008)
|
|
y_diff_mean=self.find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
sigma_des=int( y_diff_mean * (4./40.0) )
|
|
|
|
if sigma_des<1:
|
|
sigma_des=1
|
|
|
|
img_int_p[img_int_p>0]=1
|
|
#slope_for_all=self.return_deskew_slope_new(img_int_p,sigma_des)
|
|
slope_for_all=self.return_deskew_slop(img_int_p,sigma_des)
|
|
|
|
if abs(slope_for_all)<0.5:
|
|
slope_for_all=[slope_deskew][0]
|
|
#old method
|
|
#slope_for_all=self.textline_contours_to_get_slope_correctly(self.all_text_region_raw[mv],denoised,contours[mv])
|
|
#text_patch_processed=textline_contours_postprocessing(gada)
|
|
|
|
except:
|
|
slope_for_all=999
|
|
|
|
|
|
##slope_for_all=self.return_deskew_slop(img_int_p,sigma_des)
|
|
|
|
if slope_for_all==999:
|
|
slope_for_all=[slope_deskew][0]
|
|
##if np.abs(slope_for_all)>32.5 and slope_for_all!=999:
|
|
##slope_for_all=slope_biggest
|
|
##elif slope_for_all==999:
|
|
##slope_for_all=slope_biggest
|
|
slopes_per_each_subprocess.append(slope_for_all)
|
|
|
|
|
|
|
|
index_by_text_region_contours.append(indexes_r_con_per_pro[mv])
|
|
|
|
crop_img,crop_coor=self.crop_image_inside_box(boxes_text[mv],image_page_rotated)
|
|
if abs(slope_for_all)<45:
|
|
|
|
|
|
#all_box_coord.append(crop_coor)
|
|
|
|
textline_region_in_image=np.zeros(textline_mask_tot_ea.shape)
|
|
cnt_o_t_max=contours_par_per_process[mv]
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt_o_t_max)
|
|
|
|
|
|
mask_biggest=np.zeros(mask_texts_only.shape)
|
|
mask_biggest=cv2.fillPoly(mask_biggest, pts =[cnt_o_t_max], color=(1,1,1))
|
|
|
|
mask_region_in_patch_region=mask_biggest[y:y+h,x:x+w]
|
|
|
|
|
|
textline_biggest_region=mask_biggest*textline_mask_tot_ea
|
|
|
|
#print(slope_for_all,'slope_for_all')
|
|
textline_rotated_seperated=self.seperate_lines_new2(textline_biggest_region[y:y+h,x:x+w],0,num_col,slope_for_all)
|
|
|
|
|
|
#new line added
|
|
##print(np.shape(textline_rotated_seperated),np.shape(mask_biggest))
|
|
textline_rotated_seperated[mask_region_in_patch_region[:,:]!=1]=0
|
|
#till here
|
|
|
|
textline_cnt_seperated[y:y+h,x:x+w]=textline_rotated_seperated
|
|
textline_region_in_image[y:y+h,x:x+w]=textline_rotated_seperated
|
|
|
|
#plt.imshow(textline_region_in_image)
|
|
#plt.show()
|
|
|
|
#plt.imshow(textline_cnt_seperated)
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
pixel_img=1
|
|
cnt_textlines_in_image=self.return_contours_of_interested_textline(textline_region_in_image,pixel_img)
|
|
|
|
|
|
|
|
textlines_cnt_per_region=[]
|
|
for jjjj in range(len(cnt_textlines_in_image)):
|
|
mask_biggest2=np.zeros(mask_texts_only.shape)
|
|
mask_biggest2=cv2.fillPoly(mask_biggest2, pts =[cnt_textlines_in_image[jjjj]], color=(1,1,1))
|
|
if num_col+1==1:
|
|
mask_biggest2=cv2.dilate(mask_biggest2, self.kernel, iterations=5)
|
|
else:
|
|
|
|
mask_biggest2=cv2.dilate(mask_biggest2, self.kernel, iterations=4)
|
|
|
|
pixel_img=1
|
|
|
|
mask_biggest2=self.resize_image(mask_biggest2,int(mask_biggest2.shape[0]*scale_par) ,int(mask_biggest2.shape[1]*scale_par) )
|
|
|
|
cnt_textlines_in_image_ind=self.return_contours_of_interested_textline(mask_biggest2,pixel_img)
|
|
|
|
try:
|
|
#textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0]/scale_par)
|
|
textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0])
|
|
except:
|
|
pass
|
|
|
|
else:
|
|
slope_first=0
|
|
add_boxes_coor_into_textlines=True
|
|
textlines_cnt_per_region=self.textline_contours_postprocessing(all_text_region_raw,slope_for_all,contours_par_per_process[mv],boxes_text[mv],slope_first,add_boxes_coor_into_textlines)
|
|
add_boxes_coor_into_textlines=False
|
|
#print(np.shape(textlines_cnt_per_region),'textlines_cnt_per_region')
|
|
|
|
|
|
|
|
|
|
#textlines_cnt_tot_per_process.append(textlines_cnt_per_region)
|
|
#index_polygons_per_process_per_process.append(index_polygons_per_process[iiii])
|
|
|
|
|
|
textlines_rectangles_per_each_subprocess.append(textlines_cnt_per_region)
|
|
#all_found_texline_polygons.append(cnt_clean_rot)
|
|
bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv] )
|
|
|
|
|
|
|
|
contours_textregion_per_each_subprocess.append(contours_per_process[mv])
|
|
contours_textregion_par_per_each_subprocess.append(contours_par_per_process[mv])
|
|
all_box_coord_per_process.append(crop_coor)
|
|
|
|
queue_of_all_params.put([textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess,contours_textregion_par_per_each_subprocess,all_box_coord_per_process,index_by_text_region_contours,slopes_per_each_subprocess])
|
|
def do_work_of_slopes_new(self,queue_of_all_params,boxes_text,textline_mask_tot_ea,contours_per_process,contours_par_per_process,indexes_r_con_per_pro,image_page_rotated,slope_deskew):
|
|
|
|
slopes_per_each_subprocess = []
|
|
bounding_box_of_textregion_per_each_subprocess=[]
|
|
textlines_rectangles_per_each_subprocess=[]
|
|
contours_textregion_per_each_subprocess=[]
|
|
contours_textregion_par_per_each_subprocess=[]
|
|
all_box_coord_per_process=[]
|
|
index_by_text_region_contours=[]
|
|
slope_biggest=0
|
|
|
|
|
|
|
|
for mv in range(len(boxes_text)):
|
|
|
|
crop_img,crop_coor=self.crop_image_inside_box(boxes_text[mv],image_page_rotated)
|
|
|
|
#all_box_coord.append(crop_coor)
|
|
|
|
|
|
denoised=None
|
|
all_text_region_raw=textline_mask_tot_ea[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ]
|
|
all_text_region_raw=all_text_region_raw.astype(np.uint8)
|
|
|
|
img_int_p=all_text_region_raw[:,:]#self.all_text_region_raw[mv]
|
|
|
|
img_int_p=cv2.erode(img_int_p,self.kernel,iterations = 2)
|
|
|
|
if img_int_p.shape[0]/img_int_p.shape[1]<0.1:
|
|
|
|
slopes_per_each_subprocess.append(0)
|
|
|
|
slope_for_all=[slope_deskew][0]
|
|
|
|
all_text_region_raw=textline_mask_tot_ea[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ]
|
|
###cnt_clean_rot=self.textline_contours_postprocessing(all_text_region_raw,slopes[jj],contours_only_text_parent[jj],boxes_text[jj],slope_first)
|
|
cnt_clean_rot=self.textline_contours_postprocessing(all_text_region_raw,slope_for_all,contours_par_per_process[mv],boxes_text[mv],0)
|
|
|
|
textlines_rectangles_per_each_subprocess.append(cnt_clean_rot)
|
|
|
|
index_by_text_region_contours.append(indexes_r_con_per_pro[mv])
|
|
#all_found_texline_polygons.append(cnt_clean_rot)
|
|
bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv] )
|
|
else:
|
|
|
|
try:
|
|
textline_con,hierachy=self.return_contours_of_image(img_int_p)
|
|
textline_con_fil=self.filter_contours_area_of_image(img_int_p,textline_con,hierachy,max_area=1,min_area=0.00008)
|
|
|
|
y_diff_mean=self.find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
sigma_des=int( y_diff_mean * (4./40.0) )
|
|
|
|
|
|
if sigma_des<1:
|
|
sigma_des=1
|
|
|
|
img_int_p[img_int_p>0]=1
|
|
#slope_for_all=self.return_deskew_slope_new(img_int_p,sigma_des)
|
|
slope_for_all=self.return_deskew_slop(img_int_p,sigma_des)
|
|
|
|
if abs(slope_for_all)<=0.5:
|
|
slope_for_all=[slope_deskew][0]
|
|
|
|
|
|
except:
|
|
slope_for_all=999
|
|
|
|
|
|
##slope_for_all=self.return_deskew_slop(img_int_p,sigma_des)
|
|
|
|
if slope_for_all==999:
|
|
slope_for_all=[slope_deskew][0]
|
|
##if np.abs(slope_for_all)>32.5 and slope_for_all!=999:
|
|
##slope_for_all=slope_biggest
|
|
##elif slope_for_all==999:
|
|
##slope_for_all=slope_biggest
|
|
slopes_per_each_subprocess.append(slope_for_all)
|
|
|
|
|
|
slope_first=0
|
|
|
|
mask_only_con_region=np.zeros(textline_mask_tot_ea.shape)
|
|
mask_only_con_region=cv2.fillPoly(mask_only_con_region,pts=[contours_par_per_process[mv]],color=(1,1,1))
|
|
|
|
|
|
#plt.imshow(mask_only_con_region)
|
|
#plt.show()
|
|
all_text_region_raw=np.copy(textline_mask_tot_ea[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ])
|
|
mask_only_con_region=mask_only_con_region[boxes_text[mv][1]:boxes_text[mv][1]+boxes_text[mv][3] , boxes_text[mv][0]:boxes_text[mv][0]+boxes_text[mv][2] ]
|
|
|
|
|
|
##plt.imshow(textline_mask_tot_ea)
|
|
##plt.show()
|
|
##plt.imshow(all_text_region_raw)
|
|
##plt.show()
|
|
|
|
|
|
##plt.imshow(mask_only_con_region)
|
|
##plt.show()
|
|
|
|
all_text_region_raw[mask_only_con_region==0]=0
|
|
###cnt_clean_rot=self.textline_contours_postprocessing(all_text_region_raw,slopes[jj],contours_only_text_parent[jj],boxes_text[jj],slope_first)
|
|
cnt_clean_rot=self.textline_contours_postprocessing(all_text_region_raw,slope_for_all,contours_par_per_process[mv],boxes_text[mv],slope_first)
|
|
|
|
textlines_rectangles_per_each_subprocess.append(cnt_clean_rot)
|
|
index_by_text_region_contours.append(indexes_r_con_per_pro[mv])
|
|
#all_found_texline_polygons.append(cnt_clean_rot)
|
|
bounding_box_of_textregion_per_each_subprocess.append(boxes_text[mv] )
|
|
|
|
|
|
|
|
|
|
contours_textregion_per_each_subprocess.append(contours_per_process[mv])
|
|
contours_textregion_par_per_each_subprocess.append(contours_par_per_process[mv])
|
|
all_box_coord_per_process.append(crop_coor)
|
|
|
|
queue_of_all_params.put([slopes_per_each_subprocess, textlines_rectangles_per_each_subprocess, bounding_box_of_textregion_per_each_subprocess, contours_textregion_per_each_subprocess,contours_textregion_par_per_each_subprocess,all_box_coord_per_process,index_by_text_region_contours])
|
|
|
|
|
|
def get_text_region_contours_and_boxes(self, image):
|
|
rgb_class_of_texts = (1, 1, 1)
|
|
mask_texts = np.all(image == rgb_class_of_texts, axis=-1)
|
|
|
|
image = np.repeat(mask_texts[:, :, np.newaxis], 3, axis=2) * 255
|
|
image = image.astype(np.uint8)
|
|
|
|
image = cv2.morphologyEx(image, cv2.MORPH_OPEN, self.kernel)
|
|
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, self.kernel)
|
|
|
|
|
|
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours, hirarchy = cv2.findContours(thresh.copy(), cv2.cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
main_contours = self.filter_contours_area_of_image(thresh, contours, hirarchy, max_area=1, min_area=0.00001)
|
|
self.boxes = []
|
|
|
|
for jj in range(len(main_contours)):
|
|
x, y, w, h = cv2.boundingRect(main_contours[jj])
|
|
self.boxes.append([x, y, w, h])
|
|
|
|
|
|
return main_contours
|
|
def boosting_headers_by_longshot_region_segmentation(self,textregion_pre_p,textregion_pre_np,img_only_text):
|
|
textregion_pre_p_org=np.copy(textregion_pre_p)
|
|
# 4 is drop capitals
|
|
headers_in_longshot= (textregion_pre_np[:,:,0]==2)*1
|
|
#headers_in_longshot= ( (textregion_pre_np[:,:,0]==2) | (textregion_pre_np[:,:,0]==1) )*1
|
|
textregion_pre_p[:,:,0][(headers_in_longshot[:,:] ==1) & (textregion_pre_p[:,:,0] !=4)]=2
|
|
textregion_pre_p[:,:,0][textregion_pre_p[:,:,0]==1]=0
|
|
#textregion_pre_p[:,:,0][( img_only_text[:,:]==1) & (textregion_pre_p[:,:,0]!=7) & (textregion_pre_p[:,:,0]!=2)]=1 # eralier it was so, but by this manner the drop capitals are alse deleted
|
|
textregion_pre_p[:,:,0][( img_only_text[:,:]==1) & (textregion_pre_p[:,:,0]!=7) & (textregion_pre_p[:,:,0]!=4) & (textregion_pre_p[:,:,0]!=2)]=1
|
|
return textregion_pre_p
|
|
|
|
def boosting_text_only_regions_by_header(self,textregion_pre_np,img_only_text):
|
|
result= (( img_only_text[:,:]==1) | (textregion_pre_np[:,:,0]==2) ) *1
|
|
return result
|
|
|
|
def get_all_image_patches_coordination(self, image_page):
|
|
self.all_box_coord=[]
|
|
for jk in range(len(self.boxes)):
|
|
_,crop_coor=self.crop_image_inside_box(self.boxes[jk],image_page)
|
|
self.all_box_coord.append(crop_coor)
|
|
|
|
|
|
def textline_contours(self, img,patches,scaler_h,scaler_w):
|
|
|
|
|
|
|
|
if patches:
|
|
model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir)
|
|
if not patches:
|
|
model_textline, session_textline = self.start_new_session_and_model(self.model_textline_dir_np)
|
|
|
|
##img = self.otsu_copy(img)
|
|
img = img.astype(np.uint8)
|
|
|
|
img_org=np.copy(img)
|
|
img_h=img_org.shape[0]
|
|
img_w=img_org.shape[1]
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*scaler_h), int(img_org.shape[1]*scaler_w))
|
|
|
|
prediction_textline=self.do_prediction(patches,img,model_textline)
|
|
|
|
prediction_textline= self.resize_image(prediction_textline, img_h, img_w)
|
|
|
|
patches=False
|
|
prediction_textline_longshot=self.do_prediction(patches,img,model_textline)
|
|
|
|
prediction_textline_longshot_true_size= self.resize_image(prediction_textline_longshot, img_h, img_w)
|
|
|
|
|
|
#scaler_w=1.5
|
|
#scaler_h=1.5
|
|
#patches=True
|
|
#img= self.resize_image(img_org, int(img_org.shape[0]*scaler_h), int(img_org.shape[1]*scaler_w))
|
|
|
|
#prediction_textline_streched=self.do_prediction(patches,img,model_textline)
|
|
|
|
#prediction_textline_streched= self.resize_image(prediction_textline_streched, img_h, img_w)
|
|
|
|
##plt.imshow(prediction_textline_streched[:,:,0])
|
|
##plt.show()
|
|
|
|
#sys.exit()
|
|
session_textline.close()
|
|
|
|
del model_textline
|
|
del session_textline
|
|
del img
|
|
del img_org
|
|
|
|
gc.collect()
|
|
return prediction_textline[:,:,0],prediction_textline_longshot_true_size[:,:,0]
|
|
|
|
def get_textlines_for_each_textregions(self, textline_mask_tot, boxes):
|
|
textline_mask_tot = cv2.erode(textline_mask_tot, self.kernel, iterations=1)
|
|
self.area_of_cropped = []
|
|
self.all_text_region_raw = []
|
|
for jk in range(len(boxes)):
|
|
crop_img, crop_coor = self.crop_image_inside_box(boxes[jk],
|
|
np.repeat(textline_mask_tot[:, :, np.newaxis], 3, axis=2))
|
|
crop_img=crop_img.astype(np.uint8)
|
|
self.all_text_region_raw.append(crop_img[:, :, 0])
|
|
self.area_of_cropped.append(crop_img.shape[0] * crop_img.shape[1])
|
|
def seperate_lines_new_inside_teils2(self, img_patch, thetha):
|
|
|
|
|
|
(h, w) = img_patch.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180. * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
#contour_text_interest_copy = contour_text_interest.copy()
|
|
|
|
#x_cont = contour_text_interest[:, 0, 0]
|
|
#y_cont = contour_text_interest[:, 0, 1]
|
|
#x_cont = x_cont - np.min(x_cont)
|
|
#y_cont = y_cont - np.min(y_cont)
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_patch.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_patch.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
textline_patch_sum_along_width = img_patch.sum(axis=1)
|
|
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
|
|
y_padded = np.zeros(len(y) + 40)
|
|
y_padded[20:len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
if 1>0:
|
|
|
|
try:
|
|
|
|
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
|
|
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
|
|
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
|
|
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
|
|
|
|
|
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
|
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
|
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
|
|
|
arg_neg_must_be_deleted= np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3 ]
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
|
|
|
|
peaks_new=peaks_e[:]
|
|
peaks_neg_new=peaks_neg_e[:]
|
|
|
|
clusters_to_be_deleted=[]
|
|
if len(arg_diff_cluster)>0:
|
|
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
|
|
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
|
|
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
|
|
|
|
else:
|
|
peaks_new_tot=peaks_e[:]
|
|
|
|
|
|
textline_con,hierachy=self.return_contours_of_image(img_patch)
|
|
textline_con_fil=self.filter_contours_area_of_image(img_patch,textline_con,hierachy,max_area=1,min_area=0.0008)
|
|
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
sigma_gaus=int( y_diff_mean * (7./40.0) )
|
|
#print(sigma_gaus,'sigma_gaus')
|
|
except:
|
|
sigma_gaus=12
|
|
if sigma_gaus<3:
|
|
sigma_gaus=3
|
|
#print(sigma_gaus,'sigma')
|
|
|
|
|
|
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
|
|
y_padded_up_to_down=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
|
|
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
|
|
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
|
|
|
|
|
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
|
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
|
|
|
|
|
peaks_new=peaks[:]
|
|
peaks_neg_new=peaks_neg[:]
|
|
|
|
try:
|
|
neg_peaks_max=np.max(y_padded_smoothed[peaks])
|
|
|
|
|
|
arg_neg_must_be_deleted= np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg]/float(neg_peaks_max)<0.24 ]
|
|
|
|
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
|
|
|
|
|
|
clusters_to_be_deleted=[]
|
|
|
|
|
|
if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0:
|
|
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
elif len(arg_neg_must_be_deleted)>=2 and len(arg_diff_cluster)==0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
|
|
|
|
|
if len(arg_neg_must_be_deleted)==1:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
|
|
|
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]]]
|
|
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
|
|
#plt.plot(y_padded_up_to_down_padded)
|
|
#plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
|
|
#plt.show()
|
|
|
|
#plt.plot(y_padded_up_to_down_padded)
|
|
#plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
|
|
#plt.show()
|
|
|
|
#plt.plot(y_padded_smoothed)
|
|
#plt.plot(peaks,y_padded_smoothed[peaks],'*')
|
|
#plt.show()
|
|
|
|
#plt.plot(y_padded_smoothed)
|
|
#plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
|
|
#plt.show()
|
|
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
except:
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
peaks_new_tot=peaks[:]
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
|
|
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
|
|
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
|
|
peaks_values=y_padded_smoothed[peaks]
|
|
|
|
|
|
###peaks_neg = peaks_neg - 20 - 20
|
|
###peaks = peaks - 20
|
|
peaks_neg_true=peaks_neg[:]
|
|
peaks_pos_true=peaks[:]
|
|
|
|
if len(peaks_neg_true)>0:
|
|
peaks_neg_true=np.array(peaks_neg_true)
|
|
|
|
peaks_neg_true = peaks_neg_true - 20 - 20
|
|
|
|
|
|
#print(peaks_neg_true)
|
|
for i in range(len(peaks_neg_true)):
|
|
img_patch[peaks_neg_true[i]-6:peaks_neg_true[i]+6,:]=0
|
|
|
|
|
|
else:
|
|
pass
|
|
|
|
if len(peaks_pos_true)>0:
|
|
peaks_pos_true=np.array(peaks_pos_true)
|
|
peaks_pos_true = peaks_pos_true - 20
|
|
|
|
for i in range(len(peaks_pos_true)):
|
|
##img_patch[peaks_pos_true[i]-8:peaks_pos_true[i]+8,:]=1
|
|
img_patch[peaks_pos_true[i]-6:peaks_pos_true[i]+6,:]=1
|
|
else:
|
|
pass
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
#img_patch = cv2.erode(img_patch,kernel,iterations = 3)
|
|
#######################img_patch = cv2.erode(img_patch,kernel,iterations = 2)
|
|
img_patch = cv2.erode(img_patch,kernel,iterations = 1)
|
|
return img_patch
|
|
|
|
def seperate_lines_new_inside_teils(self, img_path, thetha):
|
|
(h, w) = img_path.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180. * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_path.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_path.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
mada_n = img_path.sum(axis=1)
|
|
|
|
##plt.plot(mada_n)
|
|
##plt.show()
|
|
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = mada_n[:] # [first_nonzero:last_nonzero]
|
|
y_help = np.zeros(len(y) + 40)
|
|
y_help[20:len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
if len(peaks_real)<=2 and len(peaks_real)>1:
|
|
sigma_gaus=10
|
|
else:
|
|
sigma_gaus=5
|
|
|
|
|
|
z= gaussian_filter1d(y_help, sigma_gaus)
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
zneg= gaussian_filter1d(zneg, sigma_gaus)
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
for nn in range(len(peaks_neg)):
|
|
if peaks_neg[nn]>len(z)-1:
|
|
peaks_neg[nn]=len(z)-1
|
|
if peaks_neg[nn]<0:
|
|
peaks_neg[nn]=0
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg) )
|
|
|
|
cut_off=20
|
|
peaks_neg_true=[]
|
|
forest=[]
|
|
|
|
for i in range(len(peaks_neg)):
|
|
if i==0:
|
|
forest.append(peaks_neg[i])
|
|
if i<(len(peaks_neg)-1):
|
|
if diff_peaks[i]<=cut_off:
|
|
forest.append(peaks_neg[i+1])
|
|
if diff_peaks[i]>cut_off:
|
|
#print(forest[np.argmin(z[forest]) ] )
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
forest=[]
|
|
forest.append(peaks_neg[i+1])
|
|
if i==(len(peaks_neg)-1):
|
|
#print(print(forest[np.argmin(z[forest]) ] ))
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
|
|
|
|
diff_peaks_pos=np.abs( np.diff(peaks) )
|
|
|
|
cut_off=20
|
|
peaks_pos_true=[]
|
|
forest=[]
|
|
|
|
for i in range(len(peaks)):
|
|
if i==0:
|
|
forest.append(peaks[i])
|
|
if i<(len(peaks)-1):
|
|
if diff_peaks_pos[i]<=cut_off:
|
|
forest.append(peaks[i+1])
|
|
if diff_peaks_pos[i]>cut_off:
|
|
#print(forest[np.argmin(z[forest]) ] )
|
|
if not self.isNaN(forest[np.argmax(z[forest]) ]):
|
|
peaks_pos_true.append(forest[np.argmax(z[forest]) ])
|
|
forest=[]
|
|
forest.append(peaks[i+1])
|
|
if i==(len(peaks)-1):
|
|
#print(print(forest[np.argmin(z[forest]) ] ))
|
|
if not self.isNaN(forest[np.argmax(z[forest]) ]):
|
|
peaks_pos_true.append(forest[np.argmax(z[forest]) ])
|
|
|
|
#print(len(peaks_neg_true) ,len(peaks_pos_true) ,'lensss')
|
|
|
|
if len(peaks_neg_true)>0:
|
|
peaks_neg_true=np.array(peaks_neg_true)
|
|
"""
|
|
#plt.figure(figsize=(40,40))
|
|
#plt.subplot(1,2,1)
|
|
#plt.title('Textline segmentation von Textregion')
|
|
#plt.imshow(img_path)
|
|
#plt.xlabel('X')
|
|
#plt.ylabel('Y')
|
|
#plt.subplot(1,2,2)
|
|
#plt.title('Dichte entlang X')
|
|
#base = pyplot.gca().transData
|
|
#rot = transforms.Affine2D().rotate_deg(90)
|
|
#plt.plot(zneg,np.array(range(len(zneg))))
|
|
#plt.plot(zneg[peaks_neg_true],peaks_neg_true,'*')
|
|
#plt.gca().invert_yaxis()
|
|
|
|
#plt.xlabel('Dichte')
|
|
#plt.ylabel('Y')
|
|
##plt.plot([0,len(y)], [grenze,grenze])
|
|
#plt.show()
|
|
"""
|
|
peaks_neg_true = peaks_neg_true - 20 - 20
|
|
|
|
|
|
#print(peaks_neg_true)
|
|
for i in range(len(peaks_neg_true)):
|
|
img_path[peaks_neg_true[i]-6:peaks_neg_true[i]+6,:]=0
|
|
|
|
|
|
else:
|
|
pass
|
|
|
|
if len(peaks_pos_true)>0:
|
|
peaks_pos_true=np.array(peaks_pos_true)
|
|
peaks_pos_true = peaks_pos_true - 20
|
|
|
|
for i in range(len(peaks_pos_true)):
|
|
img_path[peaks_pos_true[i]-8:peaks_pos_true[i]+8,:]=1
|
|
else:
|
|
pass
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
#img_path = cv2.erode(img_path,kernel,iterations = 3)
|
|
img_path = cv2.erode(img_path,kernel,iterations = 2)
|
|
return img_path
|
|
|
|
|
|
|
|
def seperate_lines_new(self, img_path, thetha,num_col):
|
|
|
|
if num_col==1:
|
|
num_patches=int(img_path.shape[1]/200.)
|
|
else:
|
|
num_patches=int(img_path.shape[1]/100.)
|
|
#num_patches=int(img_path.shape[1]/200.)
|
|
if num_patches==0:
|
|
num_patches=1
|
|
(h, w) = img_path.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180. * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_path.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_path.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
mada_n = img_path.sum(axis=1)
|
|
|
|
##plt.plot(mada_n)
|
|
##plt.show()
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = mada_n[:] # [first_nonzero:last_nonzero]
|
|
y_help = np.zeros(len(y) + 40)
|
|
y_help[20:len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
if len(peaks_real)<=2 and len(peaks_real)>1:
|
|
sigma_gaus=10
|
|
else:
|
|
sigma_gaus=6
|
|
|
|
|
|
z= gaussian_filter1d(y_help, sigma_gaus)
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
zneg= gaussian_filter1d(zneg, sigma_gaus)
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
|
|
for nn in range(len(peaks_neg)):
|
|
if peaks_neg[nn]>len(z)-1:
|
|
peaks_neg[nn]=len(z)-1
|
|
if peaks_neg[nn]<0:
|
|
peaks_neg[nn]=0
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg) )
|
|
cut_off=20
|
|
peaks_neg_true=[]
|
|
forest=[]
|
|
|
|
for i in range(len(peaks_neg)):
|
|
if i==0:
|
|
forest.append(peaks_neg[i])
|
|
if i<(len(peaks_neg)-1):
|
|
if diff_peaks[i]<=cut_off:
|
|
forest.append(peaks_neg[i+1])
|
|
if diff_peaks[i]>cut_off:
|
|
#print(forest[np.argmin(z[forest]) ] )
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
#print(len(z),forest)
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
forest=[]
|
|
forest.append(peaks_neg[i+1])
|
|
if i==(len(peaks_neg)-1):
|
|
#print(print(forest[np.argmin(z[forest]) ] ))
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
|
|
|
|
|
|
peaks_neg_true=np.array(peaks_neg_true)
|
|
|
|
"""
|
|
#plt.figure(figsize=(40,40))
|
|
#plt.subplot(1,2,1)
|
|
#plt.title('Textline segmentation von Textregion')
|
|
#plt.imshow(img_path)
|
|
#plt.xlabel('X')
|
|
#plt.ylabel('Y')
|
|
#plt.subplot(1,2,2)
|
|
#plt.title('Dichte entlang X')
|
|
#base = pyplot.gca().transData
|
|
#rot = transforms.Affine2D().rotate_deg(90)
|
|
#plt.plot(zneg,np.array(range(len(zneg))))
|
|
#plt.plot(zneg[peaks_neg_true],peaks_neg_true,'*')
|
|
#plt.gca().invert_yaxis()
|
|
|
|
#plt.xlabel('Dichte')
|
|
#plt.ylabel('Y')
|
|
##plt.plot([0,len(y)], [grenze,grenze])
|
|
#plt.show()
|
|
"""
|
|
|
|
peaks_neg_true = peaks_neg_true - 20 - 20
|
|
peaks = peaks - 20
|
|
|
|
#dis_up=peaks_neg_true[14]-peaks_neg_true[0]
|
|
#dis_down=peaks_neg_true[18]-peaks_neg_true[14]
|
|
|
|
img_patch_ineterst=img_path[:,:]#[peaks_neg_true[14]-dis_up:peaks_neg_true[15]+dis_down ,:]
|
|
|
|
##plt.imshow(img_patch_ineterst)
|
|
##plt.show()
|
|
|
|
|
|
|
|
|
|
length_x=int(img_path.shape[1]/float(num_patches))
|
|
margin = int(0.04 * length_x)
|
|
|
|
width_mid = length_x - 2 * margin
|
|
|
|
|
|
|
|
|
|
|
|
nxf = img_path.shape[1] / float(width_mid)
|
|
|
|
if nxf > int(nxf):
|
|
nxf = int(nxf) + 1
|
|
else:
|
|
nxf = int(nxf)
|
|
|
|
slopes_tile_wise=[]
|
|
for i in range(nxf):
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
|
|
|
|
if index_x_u > img_path.shape[1]:
|
|
index_x_u = img_path.shape[1]
|
|
index_x_d = img_path.shape[1] - length_x
|
|
|
|
|
|
|
|
|
|
#img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
img_xline=img_patch_ineterst[:,index_x_d:index_x_u]
|
|
|
|
|
|
sigma=2
|
|
try:
|
|
slope_xline=self.return_deskew_slop(img_xline,sigma)
|
|
except:
|
|
slope_xline=0
|
|
slopes_tile_wise.append(slope_xline)
|
|
#print(slope_xline,'xlineeee')
|
|
img_line_rotated=self.rotate_image(img_xline,slope_xline)
|
|
img_line_rotated[:,:][img_line_rotated[:,:]!=0]=1
|
|
|
|
"""
|
|
|
|
xline=np.linspace(0,img_path.shape[1],nx)
|
|
slopes_tile_wise=[]
|
|
|
|
for ui in range( nx-1 ):
|
|
img_xline=img_patch_ineterst[:,int(xline[ui]):int(xline[ui+1])]
|
|
|
|
|
|
##plt.imshow(img_xline)
|
|
##plt.show()
|
|
|
|
sigma=3
|
|
try:
|
|
slope_xline=self.return_deskew_slop(img_xline,sigma)
|
|
except:
|
|
slope_xline=0
|
|
slopes_tile_wise.append(slope_xline)
|
|
print(slope_xline,'xlineeee')
|
|
img_line_rotated=self.rotate_image(img_xline,slope_xline)
|
|
|
|
##plt.imshow(img_line_rotated)
|
|
##plt.show()
|
|
"""
|
|
|
|
#dis_up=peaks_neg_true[14]-peaks_neg_true[0]
|
|
#dis_down=peaks_neg_true[18]-peaks_neg_true[14]
|
|
|
|
img_patch_ineterst=img_path[:,:]#[peaks_neg_true[14]-dis_up:peaks_neg_true[14]+dis_down ,:]
|
|
|
|
img_patch_ineterst_revised=np.zeros(img_patch_ineterst.shape)
|
|
|
|
|
|
for i in range(nxf):
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
|
|
|
|
if index_x_u > img_path.shape[1]:
|
|
index_x_u = img_path.shape[1]
|
|
index_x_d = img_path.shape[1] - length_x
|
|
|
|
img_xline=img_patch_ineterst[:,index_x_d:index_x_u]
|
|
|
|
img_int=np.zeros((img_xline.shape[0],img_xline.shape[1]))
|
|
img_int[:,:]=img_xline[:,:]#img_patch_org[:,:,0]
|
|
|
|
img_resized=np.zeros((int( img_int.shape[0]*(1.2) ) , int( img_int.shape[1]*(3) ) ))
|
|
|
|
img_resized[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]=img_int[:,:]
|
|
##plt.imshow(img_xline)
|
|
##plt.show()
|
|
img_line_rotated=self.rotate_image(img_resized,slopes_tile_wise[i])
|
|
img_line_rotated[:,:][img_line_rotated[:,:]!=0]=1
|
|
|
|
|
|
|
|
img_patch_seperated=self.seperate_lines_new_inside_teils(img_line_rotated,0)
|
|
|
|
##plt.imshow(img_patch_seperated)
|
|
##plt.show()
|
|
img_patch_seperated_returned=self.rotate_image(img_patch_seperated,-slopes_tile_wise[i])
|
|
img_patch_seperated_returned[:,:][img_patch_seperated_returned[:,:]!=0]=1
|
|
|
|
img_patch_seperated_returned_true_size=img_patch_seperated_returned[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]
|
|
|
|
img_patch_seperated_returned_true_size = img_patch_seperated_returned_true_size[:, margin:length_x - margin]
|
|
img_patch_ineterst_revised[:,index_x_d + margin:index_x_u - margin]=img_patch_seperated_returned_true_size
|
|
|
|
|
|
"""
|
|
for ui in range( nx-1 ):
|
|
img_xline=img_patch_ineterst[:,int(xline[ui]):int(xline[ui+1])]
|
|
|
|
|
|
img_int=np.zeros((img_xline.shape[0],img_xline.shape[1]))
|
|
img_int[:,:]=img_xline[:,:]#img_patch_org[:,:,0]
|
|
|
|
img_resized=np.zeros((int( img_int.shape[0]*(1.2) ) , int( img_int.shape[1]*(3) ) ))
|
|
|
|
img_resized[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]=img_int[:,:]
|
|
##plt.imshow(img_xline)
|
|
##plt.show()
|
|
img_line_rotated=self.rotate_image(img_resized,slopes_tile_wise[ui])
|
|
|
|
|
|
#img_patch_seperated=self.seperate_lines_new_inside_teils(img_line_rotated,0)
|
|
|
|
img_patch_seperated=self.seperate_lines_new_inside_teils(img_line_rotated,0)
|
|
|
|
img_patch_seperated_returned=self.rotate_image(img_patch_seperated,-slopes_tile_wise[ui])
|
|
##plt.imshow(img_patch_seperated)
|
|
##plt.show()
|
|
print(img_patch_seperated_returned.shape)
|
|
#plt.imshow(img_patch_seperated_returned[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ])
|
|
#plt.show()
|
|
|
|
img_patch_ineterst_revised[:,int(xline[ui]):int(xline[ui+1])]=img_patch_seperated_returned[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]
|
|
|
|
|
|
"""
|
|
|
|
#print(img_patch_ineterst_revised.shape,np.unique(img_patch_ineterst_revised))
|
|
##plt.imshow(img_patch_ineterst_revised)
|
|
##plt.show()
|
|
return img_patch_ineterst_revised
|
|
|
|
def seperate_lines_new2(self, img_path, thetha,num_col,slope_region):
|
|
|
|
if num_col==1:
|
|
num_patches=int(img_path.shape[1]/200.)
|
|
else:
|
|
num_patches=int(img_path.shape[1]/140.)
|
|
#num_patches=int(img_path.shape[1]/200.)
|
|
if num_patches==0:
|
|
num_patches=1
|
|
|
|
|
|
img_patch_ineterst=img_path[:,:]#[peaks_neg_true[14]-dis_up:peaks_neg_true[15]+dis_down ,:]
|
|
|
|
#plt.imshow(img_patch_ineterst)
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
length_x=int(img_path.shape[1]/float(num_patches))
|
|
#margin = int(0.04 * length_x) just recently this was changed because it break lines into 2
|
|
margin = int(0.04 * length_x)
|
|
#print(margin,'margin')
|
|
#if margin<=4:
|
|
#margin = int(0.08 * length_x)
|
|
|
|
#margin=0
|
|
|
|
width_mid = length_x - 2 * margin
|
|
|
|
|
|
|
|
|
|
|
|
nxf = img_path.shape[1] / float(width_mid)
|
|
|
|
if nxf > int(nxf):
|
|
nxf = int(nxf) + 1
|
|
else:
|
|
nxf = int(nxf)
|
|
|
|
slopes_tile_wise=[]
|
|
for i in range(nxf):
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
|
|
|
|
if index_x_u > img_path.shape[1]:
|
|
index_x_u = img_path.shape[1]
|
|
index_x_d = img_path.shape[1] - length_x
|
|
|
|
|
|
|
|
|
|
#img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
img_xline=img_patch_ineterst[:,index_x_d:index_x_u]
|
|
|
|
|
|
sigma=2
|
|
try:
|
|
slope_xline=self.return_deskew_slop(img_xline,sigma)
|
|
except:
|
|
slope_xline=0
|
|
|
|
if abs(slope_region)<25 and abs(slope_xline)>25:
|
|
slope_xline=[slope_region][0]
|
|
#if abs(slope_region)>70 and abs(slope_xline)<25:
|
|
#slope_xline=[slope_region][0]
|
|
slopes_tile_wise.append(slope_xline)
|
|
#print(slope_xline,'xlineeee')
|
|
img_line_rotated=self.rotate_image(img_xline,slope_xline)
|
|
img_line_rotated[:,:][img_line_rotated[:,:]!=0]=1
|
|
|
|
|
|
#print(slopes_tile_wise,'slopes_tile_wise')
|
|
img_patch_ineterst=img_path[:,:]#[peaks_neg_true[14]-dis_up:peaks_neg_true[14]+dis_down ,:]
|
|
|
|
img_patch_ineterst_revised=np.zeros(img_patch_ineterst.shape)
|
|
|
|
|
|
for i in range(nxf):
|
|
if i == 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
elif i > 0:
|
|
index_x_d = i * width_mid
|
|
index_x_u = index_x_d + length_x
|
|
|
|
|
|
if index_x_u > img_path.shape[1]:
|
|
index_x_u = img_path.shape[1]
|
|
index_x_d = img_path.shape[1] - length_x
|
|
|
|
img_xline=img_patch_ineterst[:,index_x_d:index_x_u]
|
|
|
|
img_int=np.zeros((img_xline.shape[0],img_xline.shape[1]))
|
|
img_int[:,:]=img_xline[:,:]#img_patch_org[:,:,0]
|
|
|
|
img_resized=np.zeros((int( img_int.shape[0]*(1.2) ) , int( img_int.shape[1]*(3) ) ))
|
|
|
|
img_resized[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]=img_int[:,:]
|
|
#plt.imshow(img_xline)
|
|
#plt.show()
|
|
img_line_rotated=self.rotate_image(img_resized,slopes_tile_wise[i])
|
|
img_line_rotated[:,:][img_line_rotated[:,:]!=0]=1
|
|
|
|
|
|
|
|
img_patch_seperated=self.seperate_lines_new_inside_teils2(img_line_rotated,0)
|
|
|
|
|
|
img_patch_seperated_returned=self.rotate_image(img_patch_seperated,-slopes_tile_wise[i])
|
|
img_patch_seperated_returned[:,:][img_patch_seperated_returned[:,:]!=0]=1
|
|
|
|
img_patch_seperated_returned_true_size=img_patch_seperated_returned[ int( img_int.shape[0]*(.1)):int( img_int.shape[0]*(.1))+img_int.shape[0] , int( img_int.shape[1]*(1)):int( img_int.shape[1]*(1))+img_int.shape[1] ]
|
|
|
|
img_patch_seperated_returned_true_size = img_patch_seperated_returned_true_size[:, margin:length_x - margin]
|
|
img_patch_ineterst_revised[:,index_x_d + margin:index_x_u - margin]=img_patch_seperated_returned_true_size
|
|
|
|
|
|
#plt.imshow(img_patch_ineterst_revised)
|
|
#plt.show()
|
|
return img_patch_ineterst_revised
|
|
|
|
def seperate_lines(self, img_patch, contour_text_interest, thetha,x_help,y_help):
|
|
|
|
|
|
(h, w) = img_patch.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180. * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
contour_text_interest_copy = contour_text_interest.copy()
|
|
|
|
x_cont = contour_text_interest[:, 0, 0]
|
|
y_cont = contour_text_interest[:, 0, 1]
|
|
x_cont = x_cont - np.min(x_cont)
|
|
y_cont = y_cont - np.min(y_cont)
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_patch.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_patch.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
textline_patch_sum_along_width = img_patch.sum(axis=1)
|
|
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
|
|
y_padded = np.zeros(len(y) + 40)
|
|
y_padded[20:len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
|
|
if 1>0:
|
|
|
|
try:
|
|
|
|
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
|
|
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
|
|
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
|
|
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
|
|
|
|
|
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
|
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
|
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
|
|
|
arg_neg_must_be_deleted= np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3 ]
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
|
|
|
|
peaks_new=peaks_e[:]
|
|
peaks_neg_new=peaks_neg_e[:]
|
|
|
|
clusters_to_be_deleted=[]
|
|
if len(arg_diff_cluster)>0:
|
|
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
|
|
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
|
|
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
|
|
|
|
else:
|
|
peaks_new_tot=peaks_e[:]
|
|
|
|
|
|
textline_con,hierachy=self.return_contours_of_image(img_patch)
|
|
textline_con_fil=self.filter_contours_area_of_image(img_patch,textline_con,hierachy,max_area=1,min_area=0.0008)
|
|
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
sigma_gaus=int( y_diff_mean * (7./40.0) )
|
|
#print(sigma_gaus,'sigma_gaus')
|
|
except:
|
|
sigma_gaus=12
|
|
if sigma_gaus<3:
|
|
sigma_gaus=3
|
|
#print(sigma_gaus,'sigma')
|
|
|
|
|
|
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
|
|
y_padded_up_to_down=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
|
|
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
|
|
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
|
|
|
|
|
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
|
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
neg_peaks_max=np.max(y_padded_smoothed[peaks])
|
|
|
|
|
|
arg_neg_must_be_deleted= np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg]/float(neg_peaks_max)<0.42 ]
|
|
|
|
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
except:
|
|
arg_neg_must_be_deleted=[]
|
|
arg_diff_cluster=[]
|
|
|
|
|
|
try:
|
|
peaks_new=peaks[:]
|
|
peaks_neg_new=peaks_neg[:]
|
|
clusters_to_be_deleted=[]
|
|
|
|
|
|
if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0:
|
|
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
elif len(arg_neg_must_be_deleted)>=2 and len(arg_diff_cluster)==0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
|
|
|
|
|
|
|
if len(arg_neg_must_be_deleted)==1:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
|
|
|
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]]]
|
|
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
|
|
##plt.plot(y_padded_up_to_down_padded)
|
|
##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
|
|
##plt.show()
|
|
|
|
##plt.plot(y_padded_up_to_down_padded)
|
|
##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
|
|
##plt.show()
|
|
|
|
##plt.plot(y_padded_smoothed)
|
|
##plt.plot(peaks,y_padded_smoothed[peaks],'*')
|
|
##plt.show()
|
|
|
|
##plt.plot(y_padded_smoothed)
|
|
##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
|
|
##plt.show()
|
|
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
|
|
|
|
else:
|
|
peaks_new_tot=peaks[:]
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
except:
|
|
pass
|
|
|
|
|
|
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
|
|
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
|
|
peaks_values=y_padded_smoothed[peaks]
|
|
|
|
|
|
peaks_neg = peaks_neg - 20 - 20
|
|
peaks = peaks - 20
|
|
|
|
for jj in range(len(peaks_neg)):
|
|
if peaks_neg[jj] > len(x) - 1:
|
|
peaks_neg[jj] = len(x) - 1
|
|
|
|
for jj in range(len(peaks)):
|
|
if peaks[jj] > len(x) - 1:
|
|
peaks[jj] = len(x) - 1
|
|
|
|
|
|
|
|
textline_boxes = []
|
|
textline_boxes_rot = []
|
|
|
|
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
|
|
for jj in range(len(peaks)):
|
|
|
|
if jj==(len(peaks)-1):
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down =y_max_cont-1##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
else:
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
|
|
|
|
|
|
if point_down_narrow >= img_patch.shape[0]:
|
|
point_down_narrow = img_patch.shape[0] - 2
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
|
|
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
|
|
elif len(peaks) < 1:
|
|
pass
|
|
|
|
elif len(peaks) == 1:
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[0] + first_nonzero), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
#x_min = x_min_cont
|
|
#x_max = x_max_cont
|
|
|
|
y_min = y_min_cont
|
|
y_max = y_max_cont
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(y_min)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(y_min)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(y_max)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(y_max)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
|
|
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(y_min)],
|
|
[int(x_max), int(y_min)],
|
|
[int(x_max), int(y_max)],
|
|
[int(x_min), int(y_max)]]))
|
|
|
|
|
|
|
|
elif len(peaks) == 2:
|
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
|
for jj in range(len(peaks)):
|
|
if jj == 0:
|
|
point_up = 0#peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
elif jj == 1:
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside)
|
|
x_max = np.max(xvinside)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
|
|
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
else:
|
|
for jj in range(len(peaks)):
|
|
|
|
if jj == 0:
|
|
dis_to_next = peaks[jj + 1] - peaks[jj]
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next)
|
|
elif jj == len(peaks) - 1:
|
|
dis_to_next = peaks[jj] - peaks[jj - 1]
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.7 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
else:
|
|
dis_to_next_down = peaks[jj + 1] - peaks[jj]
|
|
dis_to_next_up = peaks[jj] - peaks[jj - 1]
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next_up)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next_down)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
|
|
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
|
|
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
|
|
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
|
|
x_min_rot1=x_min_rot1-x_help
|
|
x_max_rot2=x_max_rot2-x_help
|
|
x_max_rot3=x_max_rot3-x_help
|
|
x_min_rot4=x_min_rot4-x_help
|
|
|
|
point_up_rot1=point_up_rot1-y_help
|
|
point_up_rot2=point_up_rot2-y_help
|
|
point_down_rot3=point_down_rot3-y_help
|
|
point_down_rot4=point_down_rot4-y_help
|
|
|
|
|
|
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
|
|
|
|
return peaks, textline_boxes_rot
|
|
|
|
def return_rotated_contours(self,slope,img_patch):
|
|
dst = self.rotate_image(img_patch, slope)
|
|
dst = dst.astype(np.uint8)
|
|
dst = dst[:, :, 0]
|
|
dst[dst != 0] = 1
|
|
|
|
imgray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
|
|
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
|
|
contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
return contours
|
|
|
|
def seperate_lines_vertical_cont(self, img_patch, contour_text_interest, thetha,box_ind,add_boxes_coor_into_textlines):
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
pixel=255
|
|
min_area=0
|
|
max_area=1
|
|
|
|
|
|
if len(img_patch.shape)==3:
|
|
cnts_images=(img_patch[:,:,0]==pixel)*1
|
|
else:
|
|
cnts_images=(img_patch[:,:]==pixel)*1
|
|
cnts_images=cnts_images.astype(np.uint8)
|
|
cnts_images=np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_imgs,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
contours_imgs=self.return_parent_contours(contours_imgs,hiearchy)
|
|
contours_imgs=self.filter_contours_area_of_image_tables(thresh,contours_imgs,hiearchy,max_area=max_area,min_area=min_area)
|
|
|
|
|
|
cont_final=[]
|
|
###print(add_boxes_coor_into_textlines,'ikki')
|
|
for i in range(len(contours_imgs)):
|
|
img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3))
|
|
img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255))
|
|
|
|
|
|
|
|
img_contour = img_contour.astype(np.uint8)
|
|
|
|
img_contour = cv2.dilate(img_contour, kernel, iterations=4)
|
|
imgrayrot = cv2.cvtColor(img_contour, cv2.COLOR_BGR2GRAY)
|
|
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
|
|
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
##contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[
|
|
##0]
|
|
##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
|
|
##if add_boxes_coor_into_textlines:
|
|
##print(np.shape(contours_text_rot[0]),'sjppo')
|
|
##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0]
|
|
##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1]
|
|
cont_final.append(contours_text_rot[0])
|
|
|
|
##print(cont_final,'nadizzzz')
|
|
return None,cont_final
|
|
|
|
def seperate_lines_vertical(self, img_patch, contour_text_interest, thetha):
|
|
|
|
|
|
thetha=thetha+90
|
|
|
|
(h, w) = img_patch.shape[:2]
|
|
center = (w // 2, h // 2)
|
|
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
|
|
x_d = M[0, 2]
|
|
y_d = M[1, 2]
|
|
|
|
thetha = thetha / 180. * np.pi
|
|
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
|
|
contour_text_interest_copy = contour_text_interest.copy()
|
|
|
|
x_cont = contour_text_interest[:, 0, 0]
|
|
y_cont = contour_text_interest[:, 0, 1]
|
|
x_cont = x_cont - np.min(x_cont)
|
|
y_cont = y_cont - np.min(y_cont)
|
|
|
|
x_min_cont = 0
|
|
x_max_cont = img_patch.shape[1]
|
|
y_min_cont = 0
|
|
y_max_cont = img_patch.shape[0]
|
|
|
|
xv = np.linspace(x_min_cont, x_max_cont, 1000)
|
|
|
|
textline_patch_sum_along_width = img_patch.sum(axis=0)
|
|
|
|
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
|
|
|
|
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
|
|
y_padded = np.zeros(len(y) + 40)
|
|
y_padded[20:len(y) + 20] = y
|
|
x = np.array(range(len(y)))
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
if 1>0:
|
|
|
|
try:
|
|
|
|
y_padded_smoothed_e= gaussian_filter1d(y_padded, 2)
|
|
y_padded_up_to_down_e=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded_e=np.zeros(len(y_padded_up_to_down_e)+40)
|
|
y_padded_up_to_down_padded_e[20:len(y_padded_up_to_down_e)+20]=y_padded_up_to_down_e
|
|
y_padded_up_to_down_padded_e= gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
|
|
|
|
|
|
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
|
|
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
|
|
neg_peaks_max=np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
|
|
|
|
arg_neg_must_be_deleted= np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e]/float(neg_peaks_max)<0.3 ]
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
|
|
|
|
peaks_new=peaks_e[:]
|
|
peaks_neg_new=peaks_neg_e[:]
|
|
|
|
clusters_to_be_deleted=[]
|
|
if len(arg_diff_cluster)>0:
|
|
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
|
|
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks_e[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks_e[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks_e[clusters_to_be_deleted[m][m1]]]
|
|
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg_e[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
|
|
|
|
else:
|
|
peaks_new_tot=peaks_e[:]
|
|
|
|
|
|
textline_con,hierachy=self.return_contours_of_image(img_patch)
|
|
textline_con_fil=self.filter_contours_area_of_image(img_patch,textline_con,hierachy,max_area=1,min_area=0.0008)
|
|
y_diff_mean=np.mean(np.diff(peaks_new_tot))#self.find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
sigma_gaus=int( y_diff_mean * (7./40.0) )
|
|
#print(sigma_gaus,'sigma_gaus')
|
|
except:
|
|
sigma_gaus=12
|
|
if sigma_gaus<3:
|
|
sigma_gaus=3
|
|
#print(sigma_gaus,'sigma')
|
|
|
|
|
|
y_padded_smoothed= gaussian_filter1d(y_padded, sigma_gaus)
|
|
y_padded_up_to_down=-y_padded+np.max(y_padded)
|
|
y_padded_up_to_down_padded=np.zeros(len(y_padded_up_to_down)+40)
|
|
y_padded_up_to_down_padded[20:len(y_padded_up_to_down)+20]=y_padded_up_to_down
|
|
y_padded_up_to_down_padded= gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
|
|
|
|
|
|
peaks, _ = find_peaks(y_padded_smoothed, height=0)
|
|
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
|
|
|
|
|
|
#plt.plot(y_padded_up_to_down_padded)
|
|
#plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
|
|
#plt.title('negs')
|
|
#plt.show()
|
|
|
|
|
|
|
|
#plt.plot(y_padded_smoothed)
|
|
#plt.plot(peaks,y_padded_smoothed[peaks],'*')
|
|
#plt.title('poss')
|
|
#plt.show()
|
|
|
|
|
|
|
|
neg_peaks_max=np.max(y_padded_up_to_down_padded[peaks_neg])
|
|
|
|
|
|
arg_neg_must_be_deleted= np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg]/float(neg_peaks_max)<0.42 ]
|
|
|
|
|
|
diff_arg_neg_must_be_deleted=np.diff(arg_neg_must_be_deleted)
|
|
|
|
|
|
|
|
arg_diff=np.array(range(len(diff_arg_neg_must_be_deleted)))
|
|
arg_diff_cluster=arg_diff[diff_arg_neg_must_be_deleted>1]
|
|
|
|
|
|
peaks_new=peaks[:]
|
|
peaks_neg_new=peaks_neg[:]
|
|
clusters_to_be_deleted=[]
|
|
|
|
|
|
if len(arg_diff_cluster)>=2 and len(arg_diff_cluster)>0:
|
|
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0:arg_diff_cluster[0]+1])
|
|
for i in range(len(arg_diff_cluster)-1):
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i]+1:arg_diff_cluster[i+1]+1])
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster)-1]+1:])
|
|
elif len(arg_neg_must_be_deleted)>=2 and len(arg_diff_cluster)==0:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
|
|
|
|
|
|
|
|
if len(arg_neg_must_be_deleted)==1:
|
|
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
|
|
|
|
|
|
if len(clusters_to_be_deleted)>0:
|
|
peaks_new_extra=[]
|
|
for m in range(len(clusters_to_be_deleted)):
|
|
min_cluster=np.min(peaks[clusters_to_be_deleted[m]])
|
|
max_cluster=np.max(peaks[clusters_to_be_deleted[m]])
|
|
peaks_new_extra.append( int( (min_cluster+max_cluster)/2.0) )
|
|
for m1 in range(len(clusters_to_be_deleted[m])):
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]-1]]
|
|
peaks_new=peaks_new[peaks_new!=peaks[clusters_to_be_deleted[m][m1]]]
|
|
|
|
peaks_neg_new=peaks_neg_new[peaks_neg_new!=peaks_neg[clusters_to_be_deleted[m][m1]]]
|
|
peaks_new_tot=[]
|
|
for i1 in peaks_new:
|
|
peaks_new_tot.append(i1)
|
|
for i1 in peaks_new_extra:
|
|
peaks_new_tot.append(i1)
|
|
peaks_new_tot=np.sort(peaks_new_tot)
|
|
|
|
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
|
|
|
|
else:
|
|
peaks_new_tot=peaks[:]
|
|
peaks=peaks_new_tot[:]
|
|
peaks_neg=peaks_neg_new[:]
|
|
|
|
mean_value_of_peaks=np.mean(y_padded_smoothed[peaks])
|
|
std_value_of_peaks=np.std(y_padded_smoothed[peaks])
|
|
peaks_values=y_padded_smoothed[peaks]
|
|
|
|
|
|
peaks_neg = peaks_neg - 20 - 20
|
|
peaks = peaks - 20
|
|
|
|
for jj in range(len(peaks_neg)):
|
|
if peaks_neg[jj] > len(x) - 1:
|
|
peaks_neg[jj] = len(x) - 1
|
|
|
|
for jj in range(len(peaks)):
|
|
if peaks[jj] > len(x) - 1:
|
|
peaks[jj] = len(x) - 1
|
|
|
|
|
|
|
|
textline_boxes = []
|
|
textline_boxes_rot = []
|
|
|
|
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
|
|
#print('11')
|
|
for jj in range(len(peaks)):
|
|
|
|
if jj==(len(peaks)-1):
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down =x_max_cont-1##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down =x_max_cont-1##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
else:
|
|
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
|
|
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
|
|
|
|
if peaks_values[jj]>mean_value_of_peaks-std_value_of_peaks/2.:
|
|
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
else:
|
|
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
|
|
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
|
|
|
|
point_down_narrow = peaks[jj] + first_nonzero + int(
|
|
1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
|
|
|
|
|
|
|
|
if point_down_narrow >= img_patch.shape[0]:
|
|
point_down_narrow = img_patch.shape[0] - 2
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
|
|
elif len(peaks) < 1:
|
|
pass
|
|
|
|
elif len(peaks) == 1:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
|
|
y_min = y_min_cont
|
|
y_max = y_max_cont
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(y_min)],
|
|
[int(x_max), int(y_min)],
|
|
[int(x_max), int(y_max)],
|
|
[int(x_min), int(y_max)]]))
|
|
|
|
|
|
|
|
elif len(peaks) == 2:
|
|
dis_to_next = np.abs(peaks[1] - peaks[0])
|
|
for jj in range(len(peaks)):
|
|
if jj == 0:
|
|
point_up = 0#peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
elif jj == 1:
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.8 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.8 * dis_to_next)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside)
|
|
x_max = np.max(xvinside)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
else:
|
|
for jj in range(len(peaks)):
|
|
|
|
if jj == 0:
|
|
dis_to_next = peaks[jj + 1] - peaks[jj]
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
if point_up < 0:
|
|
point_up = 1
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next)
|
|
elif jj == len(peaks) - 1:
|
|
dis_to_next = peaks[jj] - peaks[jj - 1]
|
|
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.7 * dis_to_next)
|
|
if point_down >= img_patch.shape[0]:
|
|
point_down = img_patch.shape[0] - 2
|
|
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next)
|
|
else:
|
|
dis_to_next_down = peaks[jj + 1] - peaks[jj]
|
|
dis_to_next_up = peaks[jj] - peaks[jj - 1]
|
|
|
|
point_up = peaks[jj] + first_nonzero - int(1. / 1.9 * dis_to_next_up)
|
|
point_down = peaks[jj] + first_nonzero + int(1. / 1.9 * dis_to_next_down)
|
|
|
|
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True)
|
|
for mj in range(len(xv))]
|
|
distances = np.array(distances)
|
|
|
|
xvinside = xv[distances >= 0]
|
|
|
|
if len(xvinside) == 0:
|
|
x_min = x_min_cont
|
|
x_max = x_max_cont
|
|
else:
|
|
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
|
|
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
|
|
|
|
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
|
|
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
|
|
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
|
|
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
|
|
|
|
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
|
|
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
|
|
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
|
|
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
|
|
|
|
|
|
if x_min_rot1<0:
|
|
x_min_rot1=0
|
|
if x_min_rot4<0:
|
|
x_min_rot4=0
|
|
if point_up_rot1<0:
|
|
point_up_rot1=0
|
|
if point_up_rot2<0:
|
|
point_up_rot2=0
|
|
|
|
|
|
|
|
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)],
|
|
[int(x_max_rot2), int(point_up_rot2)],
|
|
[int(x_max_rot3), int(point_down_rot3)],
|
|
[int(x_min_rot4), int(point_down_rot4)]]))
|
|
|
|
textline_boxes.append(np.array([[int(x_min), int(point_up)],
|
|
[int(x_max), int(point_up)],
|
|
[int(x_max), int(point_down)],
|
|
[int(x_min), int(point_down)]]))
|
|
|
|
|
|
return peaks, textline_boxes_rot
|
|
|
|
def textline_contours_postprocessing(self, textline_mask, slope, contour_text_interest, box_ind,slope_first,add_boxes_coor_into_textlines=False):
|
|
|
|
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
|
|
textline_mask = textline_mask.astype(np.uint8)
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_OPEN, kernel)
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, kernel)
|
|
textline_mask = cv2.erode(textline_mask, kernel, iterations=2)
|
|
#textline_mask = cv2.erode(textline_mask, kernel, iterations=1)
|
|
|
|
#print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz')
|
|
try:
|
|
#if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
|
#plt.imshow(textline_mask)
|
|
#plt.show()
|
|
|
|
#if abs(slope)>1:
|
|
#x_help=30
|
|
#y_help=2
|
|
#else:
|
|
#x_help=2
|
|
#y_help=2
|
|
|
|
x_help=30
|
|
y_help=2
|
|
|
|
|
|
textline_mask_help=np.zeros((textline_mask.shape[0]+int(2*y_help),textline_mask.shape[1]+int(2*x_help),3))
|
|
textline_mask_help[y_help:y_help+textline_mask.shape[0],x_help:x_help+textline_mask.shape[1],:]=np.copy(textline_mask[:,:,:])
|
|
|
|
|
|
|
|
dst = self.rotate_image(textline_mask_help, slope)
|
|
dst = dst[:, :, 0]
|
|
dst[dst != 0] = 1
|
|
|
|
#if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
|
#plt.imshow(dst)
|
|
#plt.show()
|
|
|
|
contour_text_copy = contour_text_interest.copy()
|
|
|
|
contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[
|
|
0]
|
|
contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
|
|
|
|
img_contour = np.zeros((box_ind[3], box_ind[2], 3))
|
|
img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255))
|
|
|
|
#if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
|
#plt.imshow(img_contour)
|
|
#plt.show()
|
|
|
|
img_contour_help=np.zeros((img_contour.shape[0]+int(2*y_help),img_contour.shape[1]+int(2*x_help),3))
|
|
|
|
|
|
img_contour_help[y_help:y_help+img_contour.shape[0],x_help:x_help+img_contour.shape[1],:]=np.copy(img_contour[:,:,:])
|
|
|
|
|
|
|
|
img_contour_rot = self.rotate_image(img_contour_help, slope)
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(img_contour_rot_help)
|
|
#plt.show()
|
|
|
|
#plt.imshow(dst_help)
|
|
#plt.show()
|
|
|
|
#if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
|
|
#plt.imshow(img_contour_rot_help)
|
|
#plt.show()
|
|
|
|
#plt.imshow(dst_help)
|
|
#plt.show()
|
|
|
|
img_contour_rot = img_contour_rot.astype(np.uint8)
|
|
#dst_help = dst_help.astype(np.uint8)
|
|
imgrayrot = cv2.cvtColor(img_contour_rot, cv2.COLOR_BGR2GRAY)
|
|
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
|
|
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))]
|
|
ind_big_con = np.argmax(len_con_text_rot)
|
|
|
|
#print('juzaa')
|
|
if abs(slope)>45:
|
|
#print(add_boxes_coor_into_textlines,'avval')
|
|
_, contours_rotated_clean = self.seperate_lines_vertical_cont(textline_mask, contours_text_rot[ind_big_con], box_ind,slope,add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
|
|
else:
|
|
_, contours_rotated_clean = self.seperate_lines(dst, contours_text_rot[ind_big_con], slope,x_help,y_help)
|
|
|
|
|
|
|
|
except:
|
|
|
|
contours_rotated_clean = []
|
|
|
|
return contours_rotated_clean
|
|
|
|
def textline_contours_to_get_slope_correctly(self, textline_mask, img_patch, contour_interest):
|
|
|
|
slope_new = 0 # deskew_images(img_patch)
|
|
|
|
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
|
|
|
|
textline_mask = textline_mask.astype(np.uint8)
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_OPEN, self.kernel)
|
|
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, self.kernel)
|
|
textline_mask = cv2.erode(textline_mask, self.kernel, iterations=1)
|
|
imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY)
|
|
_, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, self.kernel)
|
|
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, self.kernel)
|
|
|
|
contours, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
main_contours = self.filter_contours_area_of_image_tables(thresh, contours, hirarchy, max_area=1, min_area=0.003)
|
|
|
|
textline_maskt = textline_mask[:, :, 0]
|
|
textline_maskt[textline_maskt != 0] = 1
|
|
|
|
peaks_point, _ = self.seperate_lines(textline_maskt, contour_interest, slope_new)
|
|
|
|
mean_dis = np.mean(np.diff(peaks_point))
|
|
|
|
len_x = thresh.shape[1]
|
|
|
|
slope_lines = []
|
|
contours_slope_new = []
|
|
|
|
for kk in range(len(main_contours)):
|
|
|
|
if len(main_contours[kk].shape)==2:
|
|
xminh=np.min(main_contours[kk][:,0])
|
|
xmaxh=np.max(main_contours[kk][:,0])
|
|
|
|
yminh=np.min(main_contours[kk][:,1])
|
|
ymaxh=np.max(main_contours[kk][:,1])
|
|
elif len(main_contours[kk].shape)==3:
|
|
xminh=np.min(main_contours[kk][:,0,0])
|
|
xmaxh=np.max(main_contours[kk][:,0,0])
|
|
|
|
yminh=np.min(main_contours[kk][:,0,1])
|
|
ymaxh=np.max(main_contours[kk][:,0,1])
|
|
|
|
|
|
if ymaxh - yminh <= mean_dis and (
|
|
xmaxh - xminh) >= 0.3 * len_x: # xminh>=0.05*len_x and xminh<=0.4*len_x and xmaxh<=0.95*len_x and xmaxh>=0.6*len_x:
|
|
contours_slope_new.append(main_contours[kk])
|
|
|
|
rows, cols = thresh.shape[:2]
|
|
[vx, vy, x, y] = cv2.fitLine(main_contours[kk], cv2.DIST_L2, 0, 0.01, 0.01)
|
|
|
|
slope_lines.append((vy / vx) / np.pi * 180)
|
|
|
|
if len(slope_lines) >= 2:
|
|
|
|
slope = np.mean(slope_lines) # slope_true/np.pi*180
|
|
else:
|
|
slope = 999
|
|
|
|
else:
|
|
slope = 0
|
|
|
|
return slope
|
|
def return_contours_of_image(self,image):
|
|
|
|
if len(image.shape)==2:
|
|
image=np.repeat(image[:, :, np.newaxis], 3, axis=2)
|
|
image=image.astype(np.uint8)
|
|
else:
|
|
image=image.astype(np.uint8)
|
|
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
return contours,hierachy
|
|
|
|
def find_contours_mean_y_diff(self,contours_main):
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
return np.mean( np.diff( np.sort( np.array(cy_main) ) ) )
|
|
|
|
|
|
def isNaN(self,num):
|
|
return num != num
|
|
|
|
def find_num_col_olddd(self,regions_without_seperators,sigma_,multiplier=3.8 ):
|
|
regions_without_seperators_0=regions_without_seperators[:,:].sum(axis=1)
|
|
|
|
meda_n_updown=regions_without_seperators_0[len(regions_without_seperators_0)::-1]
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(regions_without_seperators_0) if x), 0))
|
|
last_nonzero=(next((i for i, x in enumerate(meda_n_updown) if x), 0))
|
|
|
|
last_nonzero=len(regions_without_seperators_0)-last_nonzero
|
|
|
|
|
|
y=regions_without_seperators_0#[first_nonzero:last_nonzero]
|
|
|
|
y_help=np.zeros(len(y)+20)
|
|
|
|
y_help[10:len(y)+10]=y
|
|
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
|
|
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+20)
|
|
|
|
zneg[10:len(zneg_rev)+10]=zneg_rev
|
|
|
|
z=gaussian_filter1d(y, sigma_)
|
|
zneg= gaussian_filter1d(zneg, sigma_)
|
|
|
|
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
peaks_neg=peaks_neg-10-10
|
|
|
|
|
|
|
|
last_nonzero=last_nonzero-0#100
|
|
first_nonzero=first_nonzero+0#+100
|
|
|
|
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
|
|
|
|
interest_pos=z[peaks]
|
|
|
|
interest_pos=interest_pos[interest_pos>10]
|
|
|
|
interest_neg=z[peaks_neg]
|
|
|
|
|
|
if interest_neg[0]<0.1:
|
|
interest_neg=interest_neg[1:]
|
|
if interest_neg[len(interest_neg)-1]<0.1:
|
|
interest_neg=interest_neg[:len(interest_neg)-1]
|
|
|
|
|
|
|
|
min_peaks_pos=np.min(interest_pos)
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
peaks_neg_fin=peaks_neg#[(interest_neg<grenze)]
|
|
interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
num_col=(len(interest_neg_fin))+1
|
|
|
|
|
|
p_l=0
|
|
p_u=len(y)-1
|
|
p_m=int(len(y)/2.)
|
|
p_g_l=int(len(y)/3.)
|
|
p_g_u=len(y)-int(len(y)/3.)
|
|
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg_fin) )
|
|
diff_peaks_annormal=diff_peaks[diff_peaks<30]
|
|
|
|
|
|
return interest_neg_fin
|
|
|
|
def find_num_col_deskew(self,regions_without_seperators,sigma_,multiplier=3.8 ):
|
|
regions_without_seperators_0=regions_without_seperators[:,:].sum(axis=1)
|
|
|
|
meda_n_updown=regions_without_seperators_0[len(regions_without_seperators_0)::-1]
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(regions_without_seperators_0) if x), 0))
|
|
last_nonzero=(next((i for i, x in enumerate(meda_n_updown) if x), 0))
|
|
|
|
last_nonzero=len(regions_without_seperators_0)-last_nonzero
|
|
|
|
|
|
y=regions_without_seperators_0#[first_nonzero:last_nonzero]
|
|
|
|
y_help=np.zeros(len(y)+20)
|
|
|
|
y_help[10:len(y)+10]=y
|
|
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
|
|
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+20)
|
|
|
|
zneg[10:len(zneg_rev)+10]=zneg_rev
|
|
|
|
z=gaussian_filter1d(y, sigma_)
|
|
zneg= gaussian_filter1d(zneg, sigma_)
|
|
|
|
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
peaks_neg=peaks_neg-10-10
|
|
|
|
#print(np.std(z),'np.std(z)np.std(z)np.std(z)')
|
|
|
|
##plt.plot(z)
|
|
##plt.show()
|
|
|
|
##plt.imshow(regions_without_seperators)
|
|
##plt.show()
|
|
"""
|
|
last_nonzero=last_nonzero-0#100
|
|
first_nonzero=first_nonzero+0#+100
|
|
|
|
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
|
|
"""
|
|
interest_pos=z[peaks]
|
|
|
|
interest_pos=interest_pos[interest_pos>10]
|
|
|
|
interest_neg=z[peaks_neg]
|
|
|
|
min_peaks_pos=np.mean(interest_pos)
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
#print(interest_pos)
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
peaks_neg_fin=peaks_neg[(interest_neg<grenze)]
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
"""
|
|
if interest_neg[0]<0.1:
|
|
interest_neg=interest_neg[1:]
|
|
if interest_neg[len(interest_neg)-1]<0.1:
|
|
interest_neg=interest_neg[:len(interest_neg)-1]
|
|
|
|
|
|
|
|
min_peaks_pos=np.min(interest_pos)
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
"""
|
|
#interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
#peaks_neg_fin=peaks_neg#[(interest_neg<grenze)]
|
|
#interest_neg_fin=interest_neg#[(interest_neg<grenze)]
|
|
|
|
num_col=(len(interest_neg_fin))+1
|
|
|
|
|
|
p_l=0
|
|
p_u=len(y)-1
|
|
p_m=int(len(y)/2.)
|
|
p_g_l=int(len(y)/3.)
|
|
p_g_u=len(y)-int(len(y)/3.)
|
|
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg_fin) )
|
|
diff_peaks_annormal=diff_peaks[diff_peaks<30]
|
|
|
|
#print(len(interest_neg_fin),np.mean(interest_neg_fin))
|
|
return interest_neg_fin,np.std(z)
|
|
def return_deskew_slop(self,img_patch_org,sigma_des,main_page=False):
|
|
|
|
|
|
if main_page and self.dir_of_all is not None:
|
|
|
|
|
|
plt.figure(figsize=(70,40))
|
|
plt.rcParams['font.size']='50'
|
|
plt.subplot(1,2,1)
|
|
plt.imshow(img_patch_org)
|
|
plt.subplot(1,2,2)
|
|
plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3),np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))),linewidth=8)
|
|
plt.xlabel('Density of textline prediction in direction of X axis',fontsize=60)
|
|
plt.ylabel('Height',fontsize=60)
|
|
plt.yticks([0,len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))])
|
|
plt.gca().invert_yaxis()
|
|
|
|
plt.savefig(os.path.join(self.dir_of_all,self.f_name+'_density_of_textline.png'))
|
|
#print(np.max(img_patch_org.sum(axis=0)) ,np.max(img_patch_org.sum(axis=1)),'axislar')
|
|
|
|
#img_patch_org=self.resize_image(img_patch_org,int(img_patch_org.shape[0]*2.5),int(img_patch_org.shape[1]/2.5))
|
|
|
|
#print(np.max(img_patch_org.sum(axis=0)) ,np.max(img_patch_org.sum(axis=1)),'axislar2')
|
|
|
|
img_int=np.zeros((img_patch_org.shape[0],img_patch_org.shape[1]))
|
|
img_int[:,:]=img_patch_org[:,:]#img_patch_org[:,:,0]
|
|
|
|
img_resized=np.zeros((int( img_int.shape[0]*(1.8) ) , int( img_int.shape[1]*(2.6) ) ))
|
|
|
|
|
|
|
|
img_resized[ int( img_int.shape[0]*(.4)):int( img_int.shape[0]*(.4))+img_int.shape[0] , int( img_int.shape[1]*(.8)):int( img_int.shape[1]*(.8))+img_int.shape[1] ]=img_int[:,:]
|
|
|
|
|
|
if main_page and img_patch_org.shape[1]>img_patch_org.shape[0]:
|
|
|
|
#plt.imshow(img_resized)
|
|
#plt.show()
|
|
angels=np.array([-45, 0 , 45 , 90 , ])#np.linspace(-12,12,100)#np.array([0 , 45 , 90 , -45])
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
#plt.imshow(img_rot)
|
|
#plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
|
#neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(var_spectrum,'var_spectrum')
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(rot,var_spectrum,'var_spectrum')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
|
|
angels=np.linspace(ang_int-22.5,ang_int+22.5,100)
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
##plt.imshow(img_rot)
|
|
##plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(indexer,'indexer')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
elif main_page and img_patch_org.shape[1]<=img_patch_org.shape[0]:
|
|
|
|
#plt.imshow(img_resized)
|
|
#plt.show()
|
|
angels=np.linspace(-12,12,100)#np.array([0 , 45 , 90 , -45])
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
#plt.imshow(img_rot)
|
|
#plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
|
#neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(var_spectrum,'var_spectrum')
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(rot,var_spectrum,'var_spectrum')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
if self.dir_of_all is not None:
|
|
print('galdi?')
|
|
plt.figure(figsize=(60,30))
|
|
plt.rcParams['font.size']='50'
|
|
plt.plot(angels,np.array(var_res),'-o',markersize=25,linewidth=4)
|
|
plt.xlabel('angle',fontsize=50)
|
|
plt.ylabel('variance of sum of rotated textline in direction of x axis',fontsize=50)
|
|
|
|
plt.plot(angels[np.argmax(var_res)],var_res[np.argmax(np.array(var_res))] ,'*',markersize=50,label='Angle of deskewing=' +str("{:.2f}".format(angels[np.argmax(var_res)]))+r'$\degree$')
|
|
plt.legend(loc='best')
|
|
plt.savefig(os.path.join(self.dir_of_all,self.f_name+'_rotation_angle.png'))
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
|
|
early_slope_edge=11
|
|
if abs(ang_int)>early_slope_edge and ang_int<0:
|
|
|
|
angels=np.linspace(-90,-12,100)
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
##plt.imshow(img_rot)
|
|
##plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(indexer,'indexer')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
elif abs(ang_int)>early_slope_edge and ang_int>0:
|
|
|
|
angels=np.linspace(90,12,100)
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
##plt.imshow(img_rot)
|
|
##plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(indexer,'indexer')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
else:
|
|
|
|
|
|
angels=np.linspace(-25,25,60)
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
#plt.imshow(img_rot)
|
|
#plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
|
|
|
|
#neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(var_spectrum,'var_spectrum')
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(rot,var_spectrum,'var_spectrum')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
#print(ang_int,'ang_int')
|
|
|
|
early_slope_edge=22
|
|
if abs(ang_int)>early_slope_edge and ang_int<0:
|
|
|
|
angels=np.linspace(-90,-25,60)
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
##plt.imshow(img_rot)
|
|
##plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(indexer,'indexer')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
elif abs(ang_int)>early_slope_edge and ang_int>0:
|
|
|
|
angels=np.linspace(90,25,60)
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
indexer=0
|
|
for rot in angels:
|
|
img_rot=self.rotate_image(img_resized,rot)
|
|
##plt.imshow(img_rot)
|
|
##plt.show()
|
|
img_rot[img_rot!=0]=1
|
|
#res_me=np.mean(self.find_num_col_deskew(img_rot,sigma_des,2.0 ))
|
|
try:
|
|
neg_peaks,var_spectrum=self.find_num_col_deskew(img_rot,sigma_des,20.3 )
|
|
#print(indexer,'indexer')
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
|
|
ang_int=angels[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
return ang_int
|
|
|
|
def return_deskew_slope_new(self,img_patch,sigma_des):
|
|
max_x_y=max(img_patch.shape[0],img_patch.shape[1])
|
|
|
|
##img_patch=self.resize_image(img_patch,max_x_y,max_x_y)
|
|
|
|
|
|
|
|
img_patch_copy=np.zeros((img_patch.shape[0],img_patch.shape[1]))
|
|
img_patch_copy[:,:]=img_patch[:,:]#img_patch_org[:,:,0]
|
|
|
|
|
|
img_patch_padded=np.zeros((int( max_x_y*(1.4) ) , int( max_x_y*(1.4) ) ))
|
|
|
|
img_patch_padded_center_p=int(img_patch_padded.shape[0]/2.)
|
|
len_x_org_patch_half=int(img_patch_copy.shape[1]/2.)
|
|
len_y_org_patch_half=int(img_patch_copy.shape[0]/2.)
|
|
|
|
img_patch_padded[img_patch_padded_center_p-len_y_org_patch_half:img_patch_padded_center_p-len_y_org_patch_half+img_patch_copy.shape[0],img_patch_padded_center_p-len_x_org_patch_half:img_patch_padded_center_p-len_x_org_patch_half+img_patch_copy.shape[1] ]=img_patch_copy[:,:]
|
|
#img_patch_padded[ int( img_patch_copy.shape[0]*(.1)):int( img_patch_copy.shape[0]*(.1))+img_patch_copy.shape[0] , int( img_patch_copy.shape[1]*(.8)):int( img_patch_copy.shape[1]*(.8))+img_patch_copy.shape[1] ]=img_patch_copy[:,:]
|
|
angles=np.linspace(-25,25,80)
|
|
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
#plt.imshow(img_patch)
|
|
#plt.show()
|
|
indexer=0
|
|
for rot in angles:
|
|
#print(rot,'rot')
|
|
img_rotated=self.rotate_image(img_patch_padded,rot)
|
|
img_rotated[img_rotated!=0]=1
|
|
|
|
#plt.imshow(img_rotated)
|
|
#plt.show()
|
|
|
|
try:
|
|
neg_peaks,var_spectrum=self.get_standard_deviation_of_summed_textline_patch_along_width(img_rotated,sigma_des,20.3 )
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
#print(var_res)
|
|
|
|
ang_int=angles[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
if abs(ang_int)>15:
|
|
angles=np.linspace(-90,-50,30)
|
|
res=[]
|
|
num_of_peaks=[]
|
|
index_cor=[]
|
|
var_res=[]
|
|
|
|
#plt.imshow(img_patch)
|
|
#plt.show()
|
|
indexer=0
|
|
for rot in angles:
|
|
#print(rot,'rot')
|
|
img_rotated=self.rotate_image(img_patch_padded,rot)
|
|
img_rotated[img_rotated!=0]=1
|
|
|
|
#plt.imshow(img_rotated)
|
|
#plt.show()
|
|
|
|
try:
|
|
neg_peaks,var_spectrum=self.get_standard_deviation_of_summed_textline_patch_along_width(img_rotated,sigma_des,20.3 )
|
|
res_me=np.mean(neg_peaks)
|
|
if res_me==0:
|
|
res_me=1000000000000000000000
|
|
else:
|
|
pass
|
|
|
|
res_num=len(neg_peaks)
|
|
except:
|
|
res_me=1000000000000000000000
|
|
res_num=0
|
|
var_spectrum=0
|
|
if self.isNaN(res_me):
|
|
pass
|
|
else:
|
|
res.append( res_me )
|
|
var_res.append(var_spectrum)
|
|
num_of_peaks.append( res_num )
|
|
index_cor.append(indexer)
|
|
indexer=indexer+1
|
|
|
|
|
|
try:
|
|
var_res=np.array(var_res)
|
|
#print(var_res)
|
|
|
|
ang_int=angles[np.argmax(var_res)]#angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
|
|
except:
|
|
ang_int=0
|
|
|
|
return ang_int
|
|
|
|
|
|
def do_work_of_slopes(self,q,poly,box_sub,boxes_per_process,textline_mask_tot,contours_per_process):
|
|
slope_biggest=0
|
|
slopes_sub = []
|
|
boxes_sub_new=[]
|
|
poly_sub=[]
|
|
for mv in range(len(boxes_per_process)):
|
|
|
|
|
|
crop_img, _ = self.crop_image_inside_box(boxes_per_process[mv],
|
|
np.repeat(textline_mask_tot[:, :, np.newaxis], 3, axis=2))
|
|
crop_img=crop_img[:,:,0]
|
|
crop_img=cv2.erode(crop_img,self.kernel,iterations = 2)
|
|
|
|
try:
|
|
textline_con,hierachy=self.return_contours_of_image(crop_img)
|
|
textline_con_fil=self.filter_contours_area_of_image(crop_img,textline_con,hierachy,max_area=1,min_area=0.0008)
|
|
y_diff_mean=self.find_contours_mean_y_diff(textline_con_fil)
|
|
|
|
sigma_des=int( y_diff_mean * (4./40.0) )
|
|
|
|
if sigma_des<1:
|
|
sigma_des=1
|
|
|
|
crop_img[crop_img>0]=1
|
|
slope_corresponding_textregion=self.return_deskew_slop(crop_img,sigma_des)
|
|
|
|
|
|
except:
|
|
slope_corresponding_textregion=999
|
|
|
|
if slope_corresponding_textregion==999:
|
|
slope_corresponding_textregion=slope_biggest
|
|
##if np.abs(slope_corresponding_textregion)>12.5 and slope_corresponding_textregion!=999:
|
|
##slope_corresponding_textregion=slope_biggest
|
|
##elif slope_corresponding_textregion==999:
|
|
##slope_corresponding_textregion=slope_biggest
|
|
slopes_sub.append(slope_corresponding_textregion)
|
|
|
|
cnt_clean_rot = self.textline_contours_postprocessing(crop_img
|
|
, slope_corresponding_textregion,
|
|
contours_per_process[mv], boxes_per_process[mv])
|
|
|
|
poly_sub.append(cnt_clean_rot)
|
|
boxes_sub_new.append(boxes_per_process[mv] )
|
|
|
|
|
|
q.put(slopes_sub)
|
|
poly.put(poly_sub)
|
|
box_sub.put(boxes_sub_new )
|
|
|
|
def get_slopes_and_deskew(self, contours,textline_mask_tot):
|
|
|
|
slope_biggest=0#self.return_deskew_slop(img_int_p,sigma_des)
|
|
|
|
num_cores = cpu_count()
|
|
q = Queue()
|
|
poly=Queue()
|
|
box_sub=Queue()
|
|
|
|
processes = []
|
|
nh=np.linspace(0, len(self.boxes), num_cores+1)
|
|
|
|
|
|
for i in range(num_cores):
|
|
boxes_per_process=self.boxes[int(nh[i]):int(nh[i+1])]
|
|
contours_per_process=contours[int(nh[i]):int(nh[i+1])]
|
|
processes.append(Process(target=self.do_work_of_slopes, args=(q,poly,box_sub, boxes_per_process, textline_mask_tot, contours_per_process)))
|
|
|
|
for i in range(num_cores):
|
|
processes[i].start()
|
|
|
|
self.slopes = []
|
|
self.all_found_texline_polygons=[]
|
|
self.boxes=[]
|
|
|
|
for i in range(num_cores):
|
|
slopes_for_sub_process=q.get(True)
|
|
boxes_for_sub_process=box_sub.get(True)
|
|
polys_for_sub_process=poly.get(True)
|
|
|
|
for j in range(len(slopes_for_sub_process)):
|
|
self.slopes.append(slopes_for_sub_process[j])
|
|
self.all_found_texline_polygons.append(polys_for_sub_process[j])
|
|
self.boxes.append(boxes_for_sub_process[j])
|
|
|
|
for i in range(num_cores):
|
|
processes[i].join()
|
|
|
|
|
|
def order_of_regions_old(self, textline_mask,contours_main):
|
|
mada_n=textline_mask.sum(axis=1)
|
|
y=mada_n[:]
|
|
|
|
y_help=np.zeros(len(y)+40)
|
|
y_help[20:len(y)+20]=y
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
|
|
|
|
sigma_gaus=8
|
|
|
|
z= gaussian_filter1d(y_help, sigma_gaus)
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
zneg= gaussian_filter1d(zneg, sigma_gaus)
|
|
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
peaks_neg=peaks_neg-20-20
|
|
peaks=peaks-20
|
|
|
|
|
|
|
|
if contours_main!=None:
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
|
|
|
|
|
|
if contours_main!=None:
|
|
indexer_main=np.array(range(len(contours_main)))
|
|
|
|
|
|
if contours_main!=None:
|
|
len_main=len(contours_main)
|
|
else:
|
|
len_main=0
|
|
|
|
|
|
matrix_of_orders=np.zeros((len_main,5))
|
|
|
|
matrix_of_orders[:,0]=np.array( range( len_main ) )
|
|
|
|
matrix_of_orders[:len_main,1]=1
|
|
matrix_of_orders[len_main:,1]=2
|
|
|
|
matrix_of_orders[:len_main,2]=cx_main
|
|
matrix_of_orders[:len_main,3]=cy_main
|
|
|
|
matrix_of_orders[:len_main,4]=np.array( range( len_main ) )
|
|
|
|
peaks_neg_new=[]
|
|
peaks_neg_new.append(0)
|
|
for iii in range(len(peaks_neg)):
|
|
peaks_neg_new.append(peaks_neg[iii])
|
|
peaks_neg_new.append(textline_mask.shape[0])
|
|
|
|
final_indexers_sorted=[]
|
|
for i in range(len(peaks_neg_new)-1):
|
|
top=peaks_neg_new[i]
|
|
down=peaks_neg_new[i+1]
|
|
|
|
indexes_in=matrix_of_orders[:,0][(matrix_of_orders[:,3]>=top) & ((matrix_of_orders[:,3]<down))]
|
|
cxs_in=matrix_of_orders[:,2][(matrix_of_orders[:,3]>=top) & ((matrix_of_orders[:,3]<down))]
|
|
|
|
sorted_inside=np.argsort(cxs_in)
|
|
|
|
ind_in_int=indexes_in[sorted_inside]
|
|
|
|
for j in range(len(ind_in_int)):
|
|
final_indexers_sorted.append(int(ind_in_int[j]) )
|
|
|
|
|
|
return final_indexers_sorted, matrix_of_orders
|
|
|
|
|
|
|
|
|
|
def order_and_id_of_texts_old(self, found_polygons_text_region ,matrix_of_orders ,indexes_sorted ):
|
|
id_of_texts=[]
|
|
order_of_texts=[]
|
|
index_b=0
|
|
for mm in range(len(found_polygons_text_region)):
|
|
id_of_texts.append('r'+str(index_b) )
|
|
index_matrix=matrix_of_orders[:,0][( matrix_of_orders[:,1]==1 ) & ( matrix_of_orders[:,4]==mm ) ]
|
|
order_of_texts.append(np.where(indexes_sorted == index_matrix)[0][0])
|
|
|
|
index_b+=1
|
|
|
|
order_of_texts
|
|
return order_of_texts, id_of_texts
|
|
|
|
def write_into_page_xml_only_textlines(self,contours,page_coord ,all_found_texline_polygons,all_box_coord,dir_of_image):
|
|
|
|
found_polygons_text_region=contours
|
|
|
|
|
|
|
|
# create the file structure
|
|
data = ET.Element('PcGts')
|
|
|
|
data.set('xmlns',"http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15")
|
|
data.set('xmlns:xsi',"http://www.w3.org/2001/XMLSchema-instance")
|
|
data.set('xsi:schemaLocation',"http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15")
|
|
|
|
|
|
|
|
metadata=ET.SubElement(data,'Metadata')
|
|
|
|
author=ET.SubElement(metadata, 'Creator')
|
|
author.text = 'SBB_QURATOR'
|
|
|
|
|
|
created=ET.SubElement(metadata, 'Created')
|
|
created.text = '2019-06-17T18:15:12'
|
|
|
|
changetime=ET.SubElement(metadata, 'LastChange')
|
|
changetime.text = '2019-06-17T18:15:12'
|
|
|
|
|
|
|
|
page=ET.SubElement(data,'Page')
|
|
|
|
page.set('imageFilename', self.image_dir)
|
|
page.set('imageHeight',str(self.height_org) )
|
|
page.set('imageWidth',str(self.width_org) )
|
|
page.set('type',"content")
|
|
page.set('readingDirection',"left-to-right")
|
|
page.set('textLineOrder',"top-to-bottom" )
|
|
|
|
|
|
|
|
page_print_sub=ET.SubElement(page, 'PrintSpace')
|
|
coord_page = ET.SubElement(page_print_sub, 'Coords')
|
|
points_page_print=''
|
|
|
|
for lmm in range(len(self.cont_page[0])):
|
|
if len(self.cont_page[0][lmm])==2:
|
|
points_page_print=points_page_print+str( int( (self.cont_page[0][lmm][0])/self.scale_x ) )
|
|
points_page_print=points_page_print+','
|
|
points_page_print=points_page_print+str( int( (self.cont_page[0][lmm][1])/self.scale_y ) )
|
|
else:
|
|
points_page_print=points_page_print+str( int((self.cont_page[0][lmm][0][0])/self.scale_x) )
|
|
points_page_print=points_page_print+','
|
|
points_page_print=points_page_print+str( int((self.cont_page[0][lmm][0][1])/self.scale_y) )
|
|
|
|
if lmm<(len(self.cont_page[0])-1):
|
|
points_page_print=points_page_print+' '
|
|
coord_page.set('points',points_page_print)
|
|
|
|
|
|
if len(contours)>0:
|
|
|
|
id_indexer=0
|
|
id_indexer_l=0
|
|
|
|
for mm in range(len(found_polygons_text_region)):
|
|
textregion=ET.SubElement(page, 'TextRegion')
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
textregion.set('type','paragraph')
|
|
#if mm==0:
|
|
# textregion.set('type','header')
|
|
#else:
|
|
# textregion.set('type','paragraph')
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_text_region[mm])):
|
|
if len(found_polygons_text_region[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_text_region[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_text_region[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_text_region[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_text_region[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_text_region[mm])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord_text.set('points',points_co)
|
|
|
|
|
|
|
|
for j in range(len(all_found_texline_polygons[mm])):
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
|
id_indexer_l+=1
|
|
|
|
|
|
coord = ET.SubElement(textline, 'Coords')
|
|
|
|
texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
uni=ET.SubElement(texteq, 'Unicode')
|
|
uni.text = ' '
|
|
|
|
#points = ET.SubElement(coord, 'Points')
|
|
|
|
points_co=''
|
|
for l in range(len(all_found_texline_polygons[mm][j])):
|
|
#point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
|
|
#point.set('x',str(found_polygons[j][l][0]))
|
|
#point.set('y',str(found_polygons[j][l][1]))
|
|
if len(all_found_texline_polygons[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][1] +page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if l<(len(all_found_texline_polygons[mm][j])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord.set('points',points_co)
|
|
|
|
texteqreg=ET.SubElement(textregion, 'TextEquiv')
|
|
|
|
unireg=ET.SubElement(texteqreg, 'Unicode')
|
|
unireg.text = ' '
|
|
|
|
|
|
|
|
|
|
|
|
#print(dir_of_image)
|
|
print(self.f_name)
|
|
#print(os.path.join(dir_of_image, self.f_name) + ".xml")
|
|
tree = ET.ElementTree(data)
|
|
tree.write(os.path.join(dir_of_image, self.f_name) + ".xml")
|
|
|
|
|
|
|
|
def write_into_page_xml_full(self,contours,contours_h,page_coord,dir_of_image,order_of_texts , id_of_texts,all_found_texline_polygons,all_found_texline_polygons_h,all_box_coord,all_box_coord_h,found_polygons_text_region_img,found_polygons_tables,found_polygons_drop_capitals,found_polygons_marginals,all_found_texline_polygons_marginals,all_box_coord_marginals,slopes,slopes_marginals):
|
|
|
|
found_polygons_text_region=contours
|
|
found_polygons_text_region_h=contours_h
|
|
|
|
|
|
# create the file structure
|
|
data = ET.Element('PcGts')
|
|
|
|
data.set('xmlns',"http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15")
|
|
data.set('xmlns:xsi',"http://www.w3.org/2001/XMLSchema-instance")
|
|
data.set('xsi:schemaLocation',"http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15")
|
|
|
|
|
|
|
|
metadata=ET.SubElement(data,'Metadata')
|
|
|
|
author=ET.SubElement(metadata, 'Creator')
|
|
author.text = 'SBB_QURATOR'
|
|
|
|
|
|
created=ET.SubElement(metadata, 'Created')
|
|
created.text = '2019-06-17T18:15:12'
|
|
|
|
changetime=ET.SubElement(metadata, 'LastChange')
|
|
changetime.text = '2019-06-17T18:15:12'
|
|
|
|
|
|
|
|
page=ET.SubElement(data,'Page')
|
|
|
|
page.set('imageFilename', self.image_dir)
|
|
page.set('imageHeight',str(self.height_org) )
|
|
page.set('imageWidth',str(self.width_org) )
|
|
page.set('type',"content")
|
|
page.set('readingDirection',"left-to-right")
|
|
page.set('textLineOrder',"top-to-bottom" )
|
|
|
|
|
|
|
|
page_print_sub=ET.SubElement(page, 'PrintSpace')
|
|
coord_page = ET.SubElement(page_print_sub, 'Coords')
|
|
points_page_print=''
|
|
|
|
for lmm in range(len(self.cont_page[0])):
|
|
if len(self.cont_page[0][lmm])==2:
|
|
points_page_print=points_page_print+str( int( (self.cont_page[0][lmm][0])/self.scale_x ) )
|
|
points_page_print=points_page_print+','
|
|
points_page_print=points_page_print+str( int( (self.cont_page[0][lmm][1])/self.scale_y ) )
|
|
else:
|
|
points_page_print=points_page_print+str( int((self.cont_page[0][lmm][0][0])/self.scale_x) )
|
|
points_page_print=points_page_print+','
|
|
points_page_print=points_page_print+str( int((self.cont_page[0][lmm][0][1])/self.scale_y) )
|
|
|
|
if lmm<(len(self.cont_page[0])-1):
|
|
points_page_print=points_page_print+' '
|
|
coord_page.set('points',points_page_print)
|
|
|
|
|
|
|
|
|
|
if len(contours)>0:
|
|
region_order=ET.SubElement(page, 'ReadingOrder')
|
|
region_order_sub = ET.SubElement(region_order, 'OrderedGroup')
|
|
|
|
region_order_sub.set('id',"ro357564684568544579089")
|
|
|
|
#args_sort=order_of_texts
|
|
for vj in order_of_texts:
|
|
name="coord_text_"+str(vj)
|
|
name = ET.SubElement(region_order_sub, 'RegionRefIndexed')
|
|
name.set('index',str(order_of_texts[vj]) )
|
|
name.set('regionRef',id_of_texts[vj])
|
|
|
|
id_of_marginalia=[]
|
|
indexer_region=len(contours)+len(contours_h)
|
|
for vm in range(len(found_polygons_marginals)):
|
|
id_of_marginalia.append('r'+str(indexer_region))
|
|
|
|
name="coord_text_"+str(indexer_region)
|
|
name = ET.SubElement(region_order_sub, 'RegionRefIndexed')
|
|
name.set('index',str(indexer_region) )
|
|
name.set('regionRef','r'+str(indexer_region))
|
|
indexer_region+=1
|
|
|
|
|
|
id_indexer=0
|
|
id_indexer_l=0
|
|
|
|
for mm in range(len(found_polygons_text_region)):
|
|
textregion=ET.SubElement(page, 'TextRegion')
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
textregion.set('type','paragraph')
|
|
#if mm==0:
|
|
# textregion.set('type','header')
|
|
#else:
|
|
# textregion.set('type','paragraph')
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_text_region[mm])):
|
|
if len(found_polygons_text_region[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_text_region[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_text_region[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_text_region[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_text_region[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_text_region[mm])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord_text.set('points',points_co)
|
|
|
|
|
|
|
|
|
|
|
|
for j in range(len(all_found_texline_polygons[mm])):
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
|
id_indexer_l+=1
|
|
|
|
|
|
coord = ET.SubElement(textline, 'Coords')
|
|
|
|
texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
uni=ET.SubElement(texteq, 'Unicode')
|
|
uni.text = ' '
|
|
|
|
#points = ET.SubElement(coord, 'Points')
|
|
|
|
points_co=''
|
|
for l in range(len(all_found_texline_polygons[mm][j])):
|
|
#point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
if curved_line is None or curved_line=='false' or curved_line=='False' or curved_line=='FALSE' :
|
|
#point.set('x',str(found_polygons[j][l][0]))
|
|
#point.set('y',str(found_polygons[j][l][1]))
|
|
if len(all_found_texline_polygons[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
if (curved_line=='true' or curved_line=='True' or curved_line=='TRUE') and np.abs(slopes[mm])<=45 :
|
|
if len(all_found_texline_polygons[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][0]
|
|
+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][0]
|
|
+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
elif (curved_line=='true' or curved_line=='True' or curved_line=='TRUE') and np.abs(slopes[mm])>45 :
|
|
if len(all_found_texline_polygons[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
if l<(len(all_found_texline_polygons[mm][j])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord.set('points',points_co)
|
|
|
|
texteqreg=ET.SubElement(textregion, 'TextEquiv')
|
|
|
|
unireg=ET.SubElement(texteqreg, 'Unicode')
|
|
unireg.text = ' '
|
|
|
|
|
|
print(len(contours_h))
|
|
if len(contours_h)>0:
|
|
for mm in range(len(found_polygons_text_region_h)):
|
|
textregion=ET.SubElement(page, 'TextRegion')
|
|
try:
|
|
id_indexer=id_indexer
|
|
id_indexer_l=id_indexer_l
|
|
except:
|
|
id_indexer=0
|
|
id_indexer_l=0
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
textregion.set('type','header')
|
|
#if mm==0:
|
|
# textregion.set('type','header')
|
|
#else:
|
|
# textregion.set('type','paragraph')
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_text_region_h[mm])):
|
|
|
|
if len(found_polygons_text_region_h[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_text_region_h[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_text_region_h[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_text_region_h[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_text_region_h[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_text_region_h[mm])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord_text.set('points',points_co)
|
|
|
|
|
|
for j in range(len(all_found_texline_polygons_h[mm])):
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
|
id_indexer_l+=1
|
|
|
|
|
|
coord = ET.SubElement(textline, 'Coords')
|
|
|
|
texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
uni=ET.SubElement(texteq, 'Unicode')
|
|
uni.text = ' '
|
|
|
|
#points = ET.SubElement(coord, 'Points')
|
|
|
|
points_co=''
|
|
for l in range(len(all_found_texline_polygons_h[mm][j])):
|
|
#point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
if curved_line is None or curved_line=='false' or curved_line=='False' or curved_line=='FALSE' :
|
|
#point.set('x',str(found_polygons[j][l][0]))
|
|
#point.set('y',str(found_polygons[j][l][1]))
|
|
if len(all_found_texline_polygons_h[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0]
|
|
+all_box_coord_h[mm][2]+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1]
|
|
+all_box_coord_h[mm][0]+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0]
|
|
+all_box_coord_h[mm][2]+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1]
|
|
+all_box_coord_h[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
if curved_line=='true' or curved_line=='True' or curved_line=='TRUE' :
|
|
if len(all_found_texline_polygons_h[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0]
|
|
+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0]
|
|
+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
|
|
if l<(len(all_found_texline_polygons_h[mm][j])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord.set('points',points_co)
|
|
|
|
texteqreg=ET.SubElement(textregion, 'TextEquiv')
|
|
|
|
unireg=ET.SubElement(texteqreg, 'Unicode')
|
|
unireg.text = ' '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(found_polygons_drop_capitals)>0:
|
|
id_indexer=len(contours_h)+len(contours)+len(found_polygons_marginals)
|
|
for mm in range(len(found_polygons_drop_capitals)):
|
|
textregion=ET.SubElement(page, 'TextRegion')
|
|
|
|
|
|
#id_indexer_l=id_indexer_l
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
textregion.set('type','drop-capital')
|
|
#if mm==0:
|
|
# textregion.set('type','header')
|
|
#else:
|
|
# textregion.set('type','paragraph')
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_drop_capitals[mm])):
|
|
|
|
if len(found_polygons_drop_capitals[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_drop_capitals[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_drop_capitals[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_drop_capitals[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_drop_capitals[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_drop_capitals[mm])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord_text.set('points',points_co)
|
|
|
|
|
|
##for j in range(len(all_found_texline_polygons_h[mm])):
|
|
|
|
##textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
##textline.set('id','l'+str(id_indexer_l))
|
|
|
|
##id_indexer_l+=1
|
|
|
|
|
|
##coord = ET.SubElement(textline, 'Coords')
|
|
|
|
##texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
##uni=ET.SubElement(texteq, 'Unicode')
|
|
##uni.text = ' '
|
|
|
|
###points = ET.SubElement(coord, 'Points')
|
|
|
|
##points_co=''
|
|
##for l in range(len(all_found_texline_polygons_h[mm][j])):
|
|
###point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
##if curved_line is None or curved_line=='false' or curved_line=='False' or curved_line=='FALSE' :
|
|
###point.set('x',str(found_polygons[j][l][0]))
|
|
###point.set('y',str(found_polygons[j][l][1]))
|
|
##if len(all_found_texline_polygons_h[mm][j][l])==2:
|
|
##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0]
|
|
##+all_box_coord_h[mm][2]+page_coord[2])/self.scale_x) )
|
|
##points_co=points_co+','
|
|
##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1]
|
|
##+all_box_coord_h[mm][0]+page_coord[0])/self.scale_y) )
|
|
##else:
|
|
##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0]
|
|
##+all_box_coord_h[mm][2]+page_coord[2])/self.scale_x ) )
|
|
##points_co=points_co+','
|
|
##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1]
|
|
##+all_box_coord_h[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
##if curved_line=='true' or curved_line=='True' or curved_line=='TRUE' :
|
|
##if len(all_found_texline_polygons_h[mm][j][l])==2:
|
|
##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0]
|
|
##+page_coord[2])/self.scale_x) )
|
|
##points_co=points_co+','
|
|
##points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1]
|
|
##+page_coord[0])/self.scale_y) )
|
|
##else:
|
|
##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0]
|
|
##+page_coord[2])/self.scale_x ) )
|
|
##points_co=points_co+','
|
|
##points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1]
|
|
##+page_coord[0])/self.scale_y) )
|
|
|
|
##if l<(len(all_found_texline_polygons_h[mm][j])-1):
|
|
##points_co=points_co+' '
|
|
###print(points_co)
|
|
####coord.set('points',points_co)
|
|
|
|
texteqreg=ET.SubElement(textregion, 'TextEquiv')
|
|
|
|
unireg=ET.SubElement(texteqreg, 'Unicode')
|
|
unireg.text = ' '
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
###id_indexer=id_indexer
|
|
id_indexer_l=id_indexer_l
|
|
except:
|
|
###id_indexer=0
|
|
id_indexer_l=0
|
|
for mm in range(len(found_polygons_marginals)):
|
|
textregion=ET.SubElement(page, 'TextRegion')
|
|
|
|
textregion.set('id',id_of_marginalia[mm])
|
|
|
|
textregion.set('type','marginalia')
|
|
#if mm==0:
|
|
# textregion.set('type','header')
|
|
#else:
|
|
# textregion.set('type','paragraph')
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_marginals[mm])):
|
|
if len(found_polygons_marginals[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_marginals[mm][lmm][0]+page_coord[2] )/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_marginals[mm][lmm][1]+page_coord[0] )/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_marginals[mm][lmm][0][0]+page_coord[2] )/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_marginals[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_marginals[mm])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord_text.set('points',points_co)
|
|
|
|
|
|
for j in range(len(all_found_texline_polygons_marginals[mm])):
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
|
id_indexer_l+=1
|
|
|
|
|
|
coord = ET.SubElement(textline, 'Coords')
|
|
|
|
texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
uni=ET.SubElement(texteq, 'Unicode')
|
|
uni.text = ' '
|
|
|
|
#points = ET.SubElement(coord, 'Points')
|
|
|
|
points_co=''
|
|
for l in range(len(all_found_texline_polygons_marginals[mm][j])):
|
|
#point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
if curved_line is None or curved_line=='false' or curved_line=='False' or curved_line=='FALSE' :
|
|
#point.set('x',str(found_polygons[j][l][0]))
|
|
#point.set('y',str(found_polygons[j][l][1]))
|
|
if len(all_found_texline_polygons_marginals[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][0]
|
|
+all_box_coord_marginals[mm][2]+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][1]
|
|
+all_box_coord_marginals[mm][0]+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][0]
|
|
+all_box_coord_marginals[mm][2]+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]
|
|
+all_box_coord_marginals[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
if curved_line=='true' or curved_line=='True' or curved_line=='TRUE' :
|
|
if len(all_found_texline_polygons_marginals[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][0]
|
|
+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][0]
|
|
+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
|
|
if l<(len(all_found_texline_polygons_marginals[mm][j])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord.set('points',points_co)
|
|
|
|
|
|
texteqreg=ET.SubElement(textregion, 'TextEquiv')
|
|
|
|
unireg=ET.SubElement(texteqreg, 'Unicode')
|
|
unireg.text = ' '
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
id_indexer=len(contours_h)+len(contours)+len(found_polygons_marginals)+len(found_polygons_drop_capitals)
|
|
for mm in range(len(found_polygons_text_region_img)):
|
|
textregion=ET.SubElement(page, 'ImageRegion')
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_text_region_img[mm])):
|
|
|
|
if len(found_polygons_text_region_img[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_text_region_img[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_text_region_img[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_text_region_img[mm])-1):
|
|
points_co=points_co+' '
|
|
|
|
|
|
coord_text.set('points',points_co)
|
|
except:
|
|
pass
|
|
|
|
|
|
try:
|
|
for mm in range(len(found_polygons_tables)):
|
|
textregion=ET.SubElement(page, 'TableRegion')
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_tables[mm])):
|
|
|
|
if len(found_polygons_tables[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_tables[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_tables[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_tables[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_tables[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_tables[mm])-1):
|
|
points_co=points_co+' '
|
|
|
|
|
|
coord_text.set('points',points_co)
|
|
except:
|
|
pass
|
|
|
|
|
|
|
|
|
|
print(dir_of_image)
|
|
print(self.f_name)
|
|
print(os.path.join(dir_of_image, self.f_name) + ".xml")
|
|
tree = ET.ElementTree(data)
|
|
tree.write(os.path.join(dir_of_image, self.f_name) + ".xml")
|
|
|
|
def write_into_page_xml(self,contours,page_coord,dir_of_image,order_of_texts , id_of_texts,all_found_texline_polygons,all_box_coord,found_polygons_text_region_img,found_polygons_marginals,all_found_texline_polygons_marginals,all_box_coord_marginals,curved_line,slopes,slopes_marginals):
|
|
|
|
found_polygons_text_region=contours
|
|
##found_polygons_text_region_h=contours_h
|
|
|
|
|
|
# create the file structure
|
|
data = ET.Element('PcGts')
|
|
|
|
data.set('xmlns',"http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15")
|
|
data.set('xmlns:xsi',"http://www.w3.org/2001/XMLSchema-instance")
|
|
data.set('xsi:schemaLocation',"http://schema.primaresearch.org/PAGE/gts/pagecontent/2017-07-15")
|
|
|
|
|
|
|
|
metadata=ET.SubElement(data,'Metadata')
|
|
|
|
author=ET.SubElement(metadata, 'Creator')
|
|
author.text = 'SBB_QURATOR'
|
|
|
|
|
|
created=ET.SubElement(metadata, 'Created')
|
|
created.text = '2019-06-17T18:15:12'
|
|
|
|
changetime=ET.SubElement(metadata, 'LastChange')
|
|
changetime.text = '2019-06-17T18:15:12'
|
|
|
|
|
|
|
|
page=ET.SubElement(data,'Page')
|
|
|
|
page.set('imageFilename', self.image_dir)
|
|
page.set('imageHeight',str(self.height_org) )
|
|
page.set('imageWidth',str(self.width_org) )
|
|
page.set('type',"content")
|
|
page.set('readingDirection',"left-to-right")
|
|
page.set('textLineOrder',"top-to-bottom" )
|
|
|
|
|
|
|
|
page_print_sub=ET.SubElement(page, 'PrintSpace')
|
|
coord_page = ET.SubElement(page_print_sub, 'Coords')
|
|
points_page_print=''
|
|
|
|
for lmm in range(len(self.cont_page[0])):
|
|
if len(self.cont_page[0][lmm])==2:
|
|
points_page_print=points_page_print+str( int( (self.cont_page[0][lmm][0])/self.scale_x ) )
|
|
points_page_print=points_page_print+','
|
|
points_page_print=points_page_print+str( int( (self.cont_page[0][lmm][1])/self.scale_y ) )
|
|
else:
|
|
points_page_print=points_page_print+str( int((self.cont_page[0][lmm][0][0])/self.scale_x) )
|
|
points_page_print=points_page_print+','
|
|
points_page_print=points_page_print+str( int((self.cont_page[0][lmm][0][1])/self.scale_y) )
|
|
|
|
if lmm<(len(self.cont_page[0])-1):
|
|
points_page_print=points_page_print+' '
|
|
coord_page.set('points',points_page_print)
|
|
|
|
|
|
if len(contours)>0:
|
|
region_order=ET.SubElement(page, 'ReadingOrder')
|
|
region_order_sub = ET.SubElement(region_order, 'OrderedGroup')
|
|
|
|
region_order_sub.set('id',"ro357564684568544579089")
|
|
|
|
indexer_region=0
|
|
|
|
|
|
for vj in order_of_texts:
|
|
name="coord_text_"+str(vj)
|
|
name = ET.SubElement(region_order_sub, 'RegionRefIndexed')
|
|
|
|
name.set('index',str(indexer_region) )
|
|
name.set('regionRef',id_of_texts[vj])
|
|
indexer_region+=1
|
|
|
|
id_of_marginalia=[]
|
|
for vm in range(len(found_polygons_marginals)):
|
|
id_of_marginalia.append('r'+str(indexer_region))
|
|
|
|
name="coord_text_"+str(indexer_region)
|
|
name = ET.SubElement(region_order_sub, 'RegionRefIndexed')
|
|
name.set('index',str(indexer_region) )
|
|
name.set('regionRef','r'+str(indexer_region))
|
|
indexer_region+=1
|
|
|
|
|
|
|
|
|
|
|
|
id_indexer=0
|
|
id_indexer_l=0
|
|
|
|
for mm in range(len(found_polygons_text_region)):
|
|
textregion=ET.SubElement(page, 'TextRegion')
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
textregion.set('type','paragraph')
|
|
#if mm==0:
|
|
# textregion.set('type','header')
|
|
#else:
|
|
# textregion.set('type','paragraph')
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_text_region[mm])):
|
|
if len(found_polygons_text_region[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_text_region[mm][lmm][0]+page_coord[2] )/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_text_region[mm][lmm][1]+page_coord[0] )/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_text_region[mm][lmm][0][0]+page_coord[2] )/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_text_region[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_text_region[mm])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord_text.set('points',points_co)
|
|
|
|
|
|
|
|
for j in range(len(all_found_texline_polygons[mm])):
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
|
id_indexer_l+=1
|
|
|
|
|
|
coord = ET.SubElement(textline, 'Coords')
|
|
|
|
texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
uni=ET.SubElement(texteq, 'Unicode')
|
|
uni.text = ' '
|
|
|
|
#points = ET.SubElement(coord, 'Points')
|
|
|
|
points_co=''
|
|
for l in range(len(all_found_texline_polygons[mm][j])):
|
|
#point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
if curved_line is None or curved_line=='false' or curved_line=='False' or curved_line=='FALSE' :
|
|
#point.set('x',str(found_polygons[j][l][0]))
|
|
#point.set('y',str(found_polygons[j][l][1]))
|
|
if len(all_found_texline_polygons[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
if (curved_line=='true' or curved_line=='True' or curved_line=='TRUE') and abs(slopes[mm])<=45 :
|
|
if len(all_found_texline_polygons[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][0]
|
|
+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][0]
|
|
+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
|
|
elif (curved_line=='true' or curved_line=='True' or curved_line=='TRUE') and abs(slopes[mm])>45:
|
|
if len(all_found_texline_polygons[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons[mm][j][l][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][0]
|
|
+all_box_coord[mm][2]+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons[mm][j][l][0][1]
|
|
+all_box_coord[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
|
|
if l<(len(all_found_texline_polygons[mm][j])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord.set('points',points_co)
|
|
|
|
texteqreg=ET.SubElement(textregion, 'TextEquiv')
|
|
|
|
unireg=ET.SubElement(texteqreg, 'Unicode')
|
|
unireg.text = ' '
|
|
|
|
###print(len(contours_h))
|
|
###if len(contours_h)>0:
|
|
###for mm in range(len(found_polygons_text_region_h)):
|
|
###textregion=ET.SubElement(page, 'TextRegion')
|
|
###try:
|
|
###id_indexer=id_indexer
|
|
###id_indexer_l=id_indexer_l
|
|
###except:
|
|
###id_indexer=0
|
|
###id_indexer_l=0
|
|
###textregion.set('id','r'+str(id_indexer))
|
|
###id_indexer+=1
|
|
|
|
###textregion.set('type','header')
|
|
####if mm==0:
|
|
#### textregion.set('type','header')
|
|
####else:
|
|
#### textregion.set('type','paragraph')
|
|
###coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
###points_co=''
|
|
###for lmm in range(len(found_polygons_text_region_h[mm])):
|
|
|
|
###if len(found_polygons_text_region_h[mm][lmm])==2:
|
|
###points_co=points_co+str( int( (found_polygons_text_region_h[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
###points_co=points_co+','
|
|
###points_co=points_co+str( int( (found_polygons_text_region_h[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
###else:
|
|
###points_co=points_co+str( int((found_polygons_text_region_h[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
###points_co=points_co+','
|
|
###points_co=points_co+str( int((found_polygons_text_region_h[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
###if lmm<(len(found_polygons_text_region_h[mm])-1):
|
|
###points_co=points_co+' '
|
|
####print(points_co)
|
|
###coord_text.set('points',points_co)
|
|
|
|
###for j in range(len(all_found_texline_polygons_h[mm])):
|
|
|
|
###textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
###textline.set('id','l'+str(id_indexer_l))
|
|
|
|
###id_indexer_l+=1
|
|
|
|
|
|
###coord = ET.SubElement(textline, 'Coords')
|
|
|
|
###texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
###uni=ET.SubElement(texteq, 'Unicode')
|
|
###uni.text = ' '
|
|
|
|
####points = ET.SubElement(coord, 'Points')
|
|
|
|
###points_co=''
|
|
###for l in range(len(all_found_texline_polygons_h[mm][j])):
|
|
####point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
|
|
####point.set('x',str(found_polygons[j][l][0]))
|
|
####point.set('y',str(found_polygons[j][l][1]))
|
|
###if len(all_found_texline_polygons_h[mm][j][l])==2:
|
|
###points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][0] +page_coord[2]
|
|
###+all_box_coord_h[mm][2])/self.scale_x) )
|
|
###points_co=points_co+','
|
|
###points_co=points_co+str( int( (all_found_texline_polygons_h[mm][j][l][1] +page_coord[0]
|
|
###+all_box_coord_h[mm][0])/self.scale_y) )
|
|
###else:
|
|
###points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][0] +page_coord[2]
|
|
###+all_box_coord_h[mm][2])/self.scale_x ) )
|
|
###points_co=points_co+','
|
|
###points_co=points_co+str( int( ( all_found_texline_polygons_h[mm][j][l][0][1] +page_coord[0]
|
|
###+all_box_coord_h[mm][0])/self.scale_y) )
|
|
|
|
###if l<(len(all_found_texline_polygons_h[mm][j])-1):
|
|
###points_co=points_co+' '
|
|
####print(points_co)
|
|
###coord.set('points',points_co)
|
|
|
|
###texteqreg=ET.SubElement(textregion, 'TextEquiv')
|
|
|
|
###unireg=ET.SubElement(texteqreg, 'Unicode')
|
|
###unireg.text = ' '
|
|
try:
|
|
#id_indexer_l=0
|
|
|
|
try:
|
|
###id_indexer=id_indexer
|
|
id_indexer_l=id_indexer_l
|
|
except:
|
|
###id_indexer=0
|
|
id_indexer_l=0
|
|
|
|
for mm in range(len(found_polygons_marginals)):
|
|
textregion=ET.SubElement(page, 'TextRegion')
|
|
|
|
textregion.set('id',id_of_marginalia[mm])
|
|
|
|
textregion.set('type','marginalia')
|
|
#if mm==0:
|
|
# textregion.set('type','header')
|
|
#else:
|
|
# textregion.set('type','paragraph')
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_marginals[mm])):
|
|
if len(found_polygons_marginals[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_marginals[mm][lmm][0]+page_coord[2] )/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_marginals[mm][lmm][1]+page_coord[0] )/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_marginals[mm][lmm][0][0]+page_coord[2] )/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_marginals[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_marginals[mm])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord_text.set('points',points_co)
|
|
|
|
for j in range(len(all_found_texline_polygons_marginals[mm])):
|
|
|
|
textline=ET.SubElement(textregion, 'TextLine')
|
|
|
|
textline.set('id','l'+str(id_indexer_l))
|
|
|
|
id_indexer_l+=1
|
|
|
|
|
|
coord = ET.SubElement(textline, 'Coords')
|
|
|
|
texteq=ET.SubElement(textline, 'TextEquiv')
|
|
|
|
uni=ET.SubElement(texteq, 'Unicode')
|
|
uni.text = ' '
|
|
|
|
#points = ET.SubElement(coord, 'Points')
|
|
|
|
points_co=''
|
|
for l in range(len(all_found_texline_polygons_marginals[mm][j])):
|
|
#point = ET.SubElement(coord, 'Point')
|
|
|
|
|
|
if curved_line is None or curved_line=='false' or curved_line=='False' or curved_line=='FALSE' :
|
|
#point.set('x',str(found_polygons[j][l][0]))
|
|
#point.set('y',str(found_polygons[j][l][1]))
|
|
if len(all_found_texline_polygons_marginals[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][0]
|
|
+all_box_coord_marginals[mm][2]+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][1]
|
|
+all_box_coord_marginals[mm][0]+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][0]
|
|
+all_box_coord_marginals[mm][2]+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]
|
|
+all_box_coord_marginals[mm][0]+page_coord[0])/self.scale_y) )
|
|
|
|
if curved_line=='true' or curved_line=='True' or curved_line=='TRUE' :
|
|
if len(all_found_texline_polygons_marginals[mm][j][l])==2:
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][0]
|
|
+page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (all_found_texline_polygons_marginals[mm][j][l][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
else:
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][0]
|
|
+page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( ( all_found_texline_polygons_marginals[mm][j][l][0][1]
|
|
+page_coord[0])/self.scale_y) )
|
|
|
|
if l<(len(all_found_texline_polygons_marginals[mm][j])-1):
|
|
points_co=points_co+' '
|
|
#print(points_co)
|
|
coord.set('points',points_co)
|
|
except:
|
|
pass
|
|
|
|
try:
|
|
|
|
for mm in range(len(found_polygons_text_region_img)):
|
|
textregion=ET.SubElement(page, 'ImageRegion')
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_text_region_img[mm])):
|
|
points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm,0,0]+page_coord[2] )/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm,0,1]+page_coord[0] )/self.scale_y ) )
|
|
|
|
if lmm<(len(found_polygons_text_region_img[mm])-1):
|
|
points_co=points_co+' '
|
|
|
|
|
|
coord_text.set('points',points_co)
|
|
###for mm in range(len(found_polygons_text_region_img)):
|
|
###textregion=ET.SubElement(page, 'ImageRegion')
|
|
|
|
###textregion.set('id','r'+str(id_indexer))
|
|
###id_indexer+=1
|
|
|
|
|
|
###coord_text = ET.SubElement(textregion, 'Coords')
|
|
###print(found_polygons_text_region_img[mm])
|
|
###points_co=''
|
|
###for lmm in range(len(found_polygons_text_region_img[mm])):
|
|
###print(len(found_polygons_text_region_img[mm][lmm]))
|
|
|
|
###if len(found_polygons_text_region_img[mm][lmm])==2:
|
|
###points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm][0]+page_coord[2] )/self.scale_x ) )
|
|
###points_co=points_co+','
|
|
###points_co=points_co+str( int( (found_polygons_text_region_img[mm][lmm][1]+page_coord[0] )/self.scale_y ) )
|
|
###else:
|
|
###points_co=points_co+str( int((found_polygons_text_region_img[mm][lmm][0][0]+page_coord[2] )/self.scale_x) )
|
|
###points_co=points_co+','
|
|
###points_co=points_co+str( int((found_polygons_text_region_img[mm][lmm][0][1]+page_coord[0] )/self.scale_y) )
|
|
|
|
###if lmm<(len(found_polygons_text_region_img[mm])-1):
|
|
###points_co=points_co+' '
|
|
|
|
|
|
###coord_text.set('points',points_co)
|
|
except:
|
|
pass
|
|
|
|
|
|
####try:
|
|
####for mm in range(len(found_polygons_tables)):
|
|
####textregion=ET.SubElement(page, 'TableRegion')
|
|
|
|
####textregion.set('id','r'+str(id_indexer))
|
|
####id_indexer+=1
|
|
|
|
|
|
####coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
####points_co=''
|
|
####for lmm in range(len(found_polygons_tables[mm])):
|
|
|
|
####if len(found_polygons_tables[mm][lmm])==2:
|
|
####points_co=points_co+str( int( (found_polygons_tables[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
####points_co=points_co+','
|
|
####points_co=points_co+str( int( (found_polygons_tables[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
####else:
|
|
####points_co=points_co+str( int((found_polygons_tables[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
####points_co=points_co+','
|
|
####points_co=points_co+str( int((found_polygons_tables[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
####if lmm<(len(found_polygons_tables[mm])-1):
|
|
####points_co=points_co+' '
|
|
|
|
|
|
####coord_text.set('points',points_co)
|
|
####except:
|
|
####pass
|
|
"""
|
|
|
|
try:
|
|
for mm in range(len(found_polygons_drop_capitals)):
|
|
textregion=ET.SubElement(page, 'DropCapitals')
|
|
|
|
textregion.set('id','r'+str(id_indexer))
|
|
id_indexer+=1
|
|
|
|
|
|
coord_text = ET.SubElement(textregion, 'Coords')
|
|
|
|
points_co=''
|
|
for lmm in range(len(found_polygons_drop_capitals[mm])):
|
|
|
|
if len(found_polygons_drop_capitals[mm][lmm])==2:
|
|
points_co=points_co+str( int( (found_polygons_drop_capitals[mm][lmm][0] +page_coord[2])/self.scale_x ) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int( (found_polygons_drop_capitals[mm][lmm][1] +page_coord[0])/self.scale_y ) )
|
|
else:
|
|
points_co=points_co+str( int((found_polygons_drop_capitals[mm][lmm][0][0] +page_coord[2])/self.scale_x) )
|
|
points_co=points_co+','
|
|
points_co=points_co+str( int((found_polygons_drop_capitals[mm][lmm][0][1] +page_coord[0])/self.scale_y) )
|
|
|
|
if lmm<(len(found_polygons_drop_capitals[mm])-1):
|
|
points_co=points_co+' '
|
|
|
|
|
|
coord_text.set('points',points_co)
|
|
except:
|
|
pass
|
|
"""
|
|
|
|
|
|
#print(dir_of_image)
|
|
print(self.f_name)
|
|
#print(os.path.join(dir_of_image, self.f_name) + ".xml")
|
|
tree = ET.ElementTree(data)
|
|
tree.write(os.path.join(dir_of_image, self.f_name) + ".xml")
|
|
#cv2.imwrite(os.path.join(dir_of_image, self.f_name) + ".tif",self.image_org)
|
|
|
|
def deskew_region_prediction(self,regions_prediction, slope):
|
|
image_regions_deskewd=np.zeros(regions_prediction[:,:].shape)
|
|
for ind in np.unique(regions_prediction[:,:]):
|
|
interest_reg=(regions_prediction[:,:]==ind)*1
|
|
interest_reg=interest_reg.astype(np.uint8)
|
|
deskewed_new=self.rotate_image(interest_reg,slope)
|
|
deskewed_new=deskewed_new[:,:]
|
|
deskewed_new[deskewed_new!=0]=ind
|
|
|
|
image_regions_deskewd=image_regions_deskewd+deskewed_new
|
|
return image_regions_deskewd
|
|
|
|
|
|
def deskew_erarly(self,textline_mask):
|
|
textline_mask_org=np.copy(textline_mask)
|
|
#print(textline_mask.shape,np.unique(textline_mask),'hizzzzz')
|
|
#slope_new=0#deskew_images(img_patch)
|
|
|
|
textline_mask=np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2)*255
|
|
|
|
textline_mask=textline_mask.astype(np.uint8)
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
|
|
imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours,hirarchy=cv2.findContours(thresh.copy(), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
#print(hirarchy)
|
|
|
|
|
|
commenst_contours=self.filter_contours_area_of_image(thresh,contours,hirarchy,max_area=0.01,min_area=0.003)
|
|
main_contours=self.filter_contours_area_of_image(thresh,contours,hirarchy,max_area=1,min_area=0.003)
|
|
interior_contours=self.filter_contours_area_of_image_interiors(thresh,contours,hirarchy,max_area=1,min_area=0)
|
|
|
|
img_comm=np.zeros(thresh.shape)
|
|
img_comm_in=cv2.fillPoly(img_comm, pts =main_contours, color=(255,255,255))
|
|
###img_comm_in=cv2.fillPoly(img_comm, pts =interior_contours, color=(0,0,0))
|
|
|
|
|
|
img_comm_in=np.repeat(img_comm_in[:, :, np.newaxis], 3, axis=2)
|
|
img_comm_in=img_comm_in.astype(np.uint8)
|
|
|
|
imgray = cv2.cvtColor(img_comm_in, cv2.COLOR_BGR2GRAY)
|
|
##imgray = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
|
|
|
|
|
##mask = cv2.inRange(imgray, lower_blue, upper_blue)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
#print(np.unique(mask))
|
|
##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
##plt.imshow(thresh)
|
|
##plt.show()
|
|
|
|
contours,hirarchy=cv2.findContours(thresh.copy(), cv2.cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
areas=[cv2.contourArea(contours[jj]) for jj in range(len(contours))]
|
|
|
|
median_area=np.mean(areas)
|
|
contours_slope=contours#self.find_polugons_size_filter(contours,median_area=median_area,scaler_up=100,scaler_down=0.5)
|
|
|
|
if len(contours_slope)>0:
|
|
for jv in range(len(contours_slope)):
|
|
new_poly=list(contours_slope[jv])
|
|
if jv==0:
|
|
merged_all=new_poly
|
|
else:
|
|
merged_all=merged_all+new_poly
|
|
|
|
|
|
merge=np.array(merged_all)
|
|
|
|
|
|
img_in=np.zeros(textline_mask.shape)
|
|
img_p_in=cv2.fillPoly(img_in, pts =[merge], color=(255,255,255))
|
|
|
|
##plt.imshow(img_p_in)
|
|
##plt.show()
|
|
|
|
|
|
|
|
rect = cv2.minAreaRect(merge)
|
|
|
|
box = cv2.boxPoints(rect)
|
|
|
|
box = np.int0(box)
|
|
|
|
|
|
indexes=[0,1,2,3]
|
|
x_list=box[:,0]
|
|
y_list=box[:,1]
|
|
|
|
|
|
|
|
index_y_sort=np.argsort(y_list)
|
|
|
|
index_upper_left=index_y_sort[np.argmin(x_list[index_y_sort[0:2]])]
|
|
index_upper_right=index_y_sort[np.argmax(x_list[index_y_sort[0:2]])]
|
|
|
|
index_lower_left=index_y_sort[np.argmin(x_list[index_y_sort[2:]]) +2]
|
|
index_lower_right=index_y_sort[np.argmax(x_list[index_y_sort[2:]])+2]
|
|
|
|
|
|
alpha1=float(box[index_upper_right][1]-
|
|
box[index_upper_left][1])/(float(box[index_upper_right][0]-box[index_upper_left][0]))
|
|
alpha2=float(box[index_lower_right][1]-
|
|
box[index_lower_left][1])/(float(box[index_lower_right][0]-box[index_lower_left][0]))
|
|
|
|
slope_true=(alpha1+alpha2)/2.0
|
|
|
|
#slope=0#slope_true/np.pi*180
|
|
|
|
|
|
#if abs(slope)>=1:
|
|
#slope=0
|
|
|
|
#dst=self.rotate_image(textline_mask,slope_true)
|
|
#dst=dst[:,:,0]
|
|
#dst[dst!=0]=1
|
|
image_regions_deskewd=np.zeros(textline_mask_org[:,:].shape)
|
|
for ind in np.unique(textline_mask_org[:,:]):
|
|
interest_reg=(textline_mask_org[:,:]==ind)*1
|
|
interest_reg=interest_reg.astype(np.uint8)
|
|
deskewed_new=self.rotate_image(interest_reg,slope_true)
|
|
deskewed_new=deskewed_new[:,:]
|
|
deskewed_new[deskewed_new!=0]=ind
|
|
|
|
image_regions_deskewd=image_regions_deskewd+deskewed_new
|
|
return image_regions_deskewd,slope_true
|
|
|
|
def return_regions_without_seperators(self,regions_pre):
|
|
kernel = np.ones((5,5),np.uint8)
|
|
regions_without_seperators=( (regions_pre[:,:]!=6) & (regions_pre[:,:]!=0) )*1
|
|
#regions_without_seperators=( (image_regions_eraly_p[:,:,:]!=6) & (image_regions_eraly_p[:,:,:]!=0) & (image_regions_eraly_p[:,:,:]!=5) & (image_regions_eraly_p[:,:,:]!=8) & (image_regions_eraly_p[:,:,:]!=7))*1
|
|
|
|
regions_without_seperators=regions_without_seperators.astype(np.uint8)
|
|
|
|
regions_without_seperators = cv2.erode(regions_without_seperators,kernel,iterations = 6)
|
|
|
|
return regions_without_seperators
|
|
|
|
def return_regions_without_seperators_new(self,regions_pre,regions_only_text):
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
regions_without_seperators=( (regions_pre[:,:]!=6) & (regions_pre[:,:]!=0) & (regions_pre[:,:]!=1) & (regions_pre[:,:]!=2))*1
|
|
|
|
#plt.imshow(regions_without_seperators)
|
|
#plt.show()
|
|
|
|
regions_without_seperators_n=( (regions_without_seperators[:,:]==1) | (regions_only_text[:,:]==1) )*1
|
|
|
|
#regions_without_seperators=( (image_regions_eraly_p[:,:,:]!=6) & (image_regions_eraly_p[:,:,:]!=0) & (image_regions_eraly_p[:,:,:]!=5) & (image_regions_eraly_p[:,:,:]!=8) & (image_regions_eraly_p[:,:,:]!=7))*1
|
|
|
|
regions_without_seperators_n=regions_without_seperators_n.astype(np.uint8)
|
|
|
|
regions_without_seperators_n = cv2.erode(regions_without_seperators_n,kernel,iterations = 6)
|
|
|
|
return regions_without_seperators_n
|
|
def image_change_background_pixels_to_zero(self,image_page):
|
|
image_back_zero=np.zeros((image_page.shape[0],image_page.shape[1]))
|
|
image_back_zero[:,:]=image_page[:,:,0]
|
|
image_back_zero[:,:][image_back_zero[:,:]==0]=-255
|
|
image_back_zero[:,:][image_back_zero[:,:]==255]=0
|
|
image_back_zero[:,:][image_back_zero[:,:]==-255]=255
|
|
return image_back_zero
|
|
|
|
def find_num_col_only_image(self,regions_without_seperators,multiplier=3.8):
|
|
regions_without_seperators_0=regions_without_seperators[:,:].sum(axis=0)
|
|
|
|
##plt.plot(regions_without_seperators_0)
|
|
##plt.show()
|
|
|
|
sigma_=15
|
|
|
|
|
|
meda_n_updown=regions_without_seperators_0[len(regions_without_seperators_0)::-1]
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(regions_without_seperators_0) if x), 0))
|
|
last_nonzero=(next((i for i, x in enumerate(meda_n_updown) if x), 0))
|
|
|
|
last_nonzero=len(regions_without_seperators_0)-last_nonzero
|
|
|
|
|
|
y=regions_without_seperators_0#[first_nonzero:last_nonzero]
|
|
|
|
y_help=np.zeros(len(y)+20)
|
|
|
|
y_help[10:len(y)+10]=y
|
|
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
|
|
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+20)
|
|
|
|
zneg[10:len(zneg_rev)+10]=zneg_rev
|
|
|
|
z=gaussian_filter1d(y, sigma_)
|
|
zneg= gaussian_filter1d(zneg, sigma_)
|
|
|
|
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
|
|
peaks_neg=peaks_neg-10-10
|
|
|
|
peaks_neg_org=np.copy(peaks_neg)
|
|
|
|
|
|
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
peaks=peaks[(peaks>.09*regions_without_seperators.shape[1]) & (peaks<0.91*regions_without_seperators.shape[1])]
|
|
|
|
peaks_neg=peaks_neg[ (peaks_neg>500) & (peaks_neg< (regions_without_seperators.shape[1]-500) ) ]
|
|
#print(peaks)
|
|
interest_pos=z[peaks]
|
|
|
|
interest_pos=interest_pos[interest_pos>10]
|
|
|
|
interest_neg=z[peaks_neg]
|
|
min_peaks_pos=np.mean(interest_pos)#np.min(interest_pos)
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
#$print(min_peaks_pos)
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
#print(interest_pos)
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
peaks_neg_fin=peaks_neg[(interest_neg<grenze)]
|
|
|
|
num_col=(len(interest_neg_fin))+1
|
|
|
|
p_l=0
|
|
p_u=len(y)-1
|
|
p_m=int(len(y)/2.)
|
|
p_g_l=int(len(y)/3.)
|
|
p_g_u=len(y)-int(len(y)/3.)
|
|
|
|
if num_col==3:
|
|
if (peaks_neg_fin[0]>p_g_u and peaks_neg_fin[1]>p_g_u) or (peaks_neg_fin[0]<p_g_l and peaks_neg_fin[1]<p_g_l ) or (peaks_neg_fin[0]<p_m and peaks_neg_fin[1]<p_m ) or (peaks_neg_fin[0]>p_m and peaks_neg_fin[1]>p_m ):
|
|
num_col=1
|
|
else:
|
|
pass
|
|
|
|
if num_col==2:
|
|
if (peaks_neg_fin[0]>p_g_u) or (peaks_neg_fin[0]<p_g_l):
|
|
num_col=1
|
|
else:
|
|
pass
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg_fin) )
|
|
|
|
|
|
cut_off=400
|
|
peaks_neg_true=[]
|
|
forest=[]
|
|
|
|
for i in range(len(peaks_neg_fin)):
|
|
if i==0:
|
|
forest.append(peaks_neg_fin[i])
|
|
if i<(len(peaks_neg_fin)-1):
|
|
if diff_peaks[i]<=cut_off:
|
|
forest.append(peaks_neg_fin[i+1])
|
|
if diff_peaks[i]>cut_off:
|
|
#print(forest[np.argmin(z[forest]) ] )
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
forest=[]
|
|
forest.append(peaks_neg_fin[i+1])
|
|
if i==(len(peaks_neg_fin)-1):
|
|
#print(print(forest[np.argmin(z[forest]) ] ))
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
|
|
|
|
|
|
|
|
num_col=(len(peaks_neg_true))+1
|
|
p_l=0
|
|
p_u=len(y)-1
|
|
p_m=int(len(y)/2.)
|
|
p_quarter=int(len(y)/4.)
|
|
p_g_l=int(len(y)/3.)
|
|
p_g_u=len(y)-int(len(y)/3.)
|
|
|
|
p_u_quarter=len(y)-p_quarter
|
|
|
|
if num_col==3:
|
|
if (peaks_neg_true[0]>p_g_u and peaks_neg_true[1]>p_g_u) or (peaks_neg_true[0]<p_g_l and peaks_neg_true[1]<p_g_l ) or (peaks_neg_true[0]<p_m and peaks_neg_true[1]<p_m ) or (peaks_neg_true[0]>p_m and peaks_neg_true[1]>p_m ):
|
|
num_col=1
|
|
peaks_neg_true=[]
|
|
elif (peaks_neg_true[0]<p_g_u and peaks_neg_true[0]>p_g_l) and (peaks_neg_true[1]>p_u_quarter):
|
|
peaks_neg_true=[ peaks_neg_true[0] ]
|
|
elif (peaks_neg_true[1]<p_g_u and peaks_neg_true[1]>p_g_l) and (peaks_neg_true[0]<p_quarter):
|
|
peaks_neg_true=[ peaks_neg_true[1] ]
|
|
else:
|
|
pass
|
|
|
|
if num_col==2:
|
|
if (peaks_neg_true[0]>p_g_u) or (peaks_neg_true[0]<p_g_l):
|
|
num_col=1
|
|
peaks_neg_true=[]
|
|
|
|
if num_col==4:
|
|
if len(np.array(peaks_neg_true)[np.array(peaks_neg_true)<p_g_l])==2 or len( np.array(peaks_neg_true)[np.array(peaks_neg_true)>(len(y)-p_g_l)] )==2:
|
|
num_col=1
|
|
peaks_neg_true=[]
|
|
else:
|
|
pass
|
|
|
|
|
|
#no deeper hill around found hills
|
|
|
|
peaks_fin_true=[]
|
|
for i in range(len(peaks_neg_true)):
|
|
hill_main=peaks_neg_true[i]
|
|
#deep_depth=z[peaks_neg]
|
|
hills_around=peaks_neg_org[( (peaks_neg_org>hill_main) & (peaks_neg_org<=hill_main+400) ) | ( (peaks_neg_org<hill_main) & (peaks_neg_org>=hill_main-400) )]
|
|
deep_depth_around=z[hills_around]
|
|
|
|
#print(hill_main,z[hill_main],hills_around,deep_depth_around,'manoooo')
|
|
try:
|
|
if np.min(deep_depth_around)<z[hill_main]:
|
|
pass
|
|
else:
|
|
peaks_fin_true.append(hill_main)
|
|
except:
|
|
pass
|
|
|
|
|
|
diff_peaks_annormal=diff_peaks[diff_peaks<360]
|
|
|
|
|
|
|
|
if len(diff_peaks_annormal)>0:
|
|
arg_help=np.array(range(len(diff_peaks)))
|
|
arg_help_ann=arg_help[diff_peaks<360]
|
|
|
|
peaks_neg_fin_new=[]
|
|
|
|
for ii in range(len(peaks_neg_fin)):
|
|
if ii in arg_help_ann:
|
|
arg_min=np.argmin([interest_neg_fin[ii],interest_neg_fin[ii+1] ] )
|
|
if arg_min==0:
|
|
peaks_neg_fin_new.append( peaks_neg_fin[ii])
|
|
else:
|
|
peaks_neg_fin_new.append( peaks_neg_fin[ii+1])
|
|
|
|
|
|
elif (ii-1) in arg_help_ann:
|
|
pass
|
|
else:
|
|
peaks_neg_fin_new.append(peaks_neg_fin[ii] )
|
|
else:
|
|
peaks_neg_fin_new=peaks_neg_fin
|
|
|
|
# sometime pages with one columns gives also some negative peaks. delete those peaks
|
|
param=z[peaks_neg_true]/float(min_peaks_pos)*100
|
|
|
|
if len(param[param<=41])==0:
|
|
peaks_neg_true=[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return len(peaks_fin_true), peaks_fin_true
|
|
|
|
def return_hor_spliter_by_index_for_without_verticals(self,peaks_neg_fin_t,x_min_hor_some,x_max_hor_some):
|
|
#print(peaks_neg_fin_t,x_min_hor_some,x_max_hor_some)
|
|
arg_min_hor_sort=np.argsort(x_min_hor_some)
|
|
x_min_hor_some_sort=np.sort(x_min_hor_some)
|
|
x_max_hor_some_sort=x_max_hor_some[arg_min_hor_sort]
|
|
|
|
arg_minmax=np.array(range(len(peaks_neg_fin_t)))
|
|
indexer_lines=[]
|
|
indexes_to_delete=[]
|
|
indexer_lines_deletions_len=[]
|
|
indexr_uniq_ind=[]
|
|
for i in range(len(x_min_hor_some_sort)):
|
|
min_h=peaks_neg_fin_t-x_min_hor_some_sort[i]
|
|
|
|
|
|
max_h=peaks_neg_fin_t-x_max_hor_some_sort[i]
|
|
|
|
|
|
min_h[0]=min_h[0]#+20
|
|
max_h[len(max_h)-1]=max_h[len(max_h)-1]-20
|
|
|
|
|
|
min_h_neg=arg_minmax[(min_h<0)]
|
|
min_h_neg_n=min_h[min_h<0]
|
|
|
|
try:
|
|
min_h_neg=[ min_h_neg[np.argmax(min_h_neg_n)] ]
|
|
except:
|
|
min_h_neg=[]
|
|
|
|
|
|
max_h_neg=arg_minmax[(max_h>0)]
|
|
max_h_neg_n=max_h[max_h>0]
|
|
|
|
if len(max_h_neg_n)>0:
|
|
max_h_neg=[ max_h_neg[np.argmin(max_h_neg_n)] ]
|
|
else:
|
|
max_h_neg=[]
|
|
|
|
|
|
|
|
if len(min_h_neg)>0 and len(max_h_neg)>0:
|
|
deletions=list(range(min_h_neg[0]+1,max_h_neg[0]))
|
|
unique_delets_int=[]
|
|
#print(deletions,len(deletions),'delii')
|
|
if len(deletions)>0:
|
|
|
|
for j in range(len(deletions)):
|
|
indexes_to_delete.append(deletions[j])
|
|
#print(deletions,indexes_to_delete,'badiii')
|
|
unique_delets=np.unique(indexes_to_delete)
|
|
#print(min_h_neg[0],unique_delets)
|
|
unique_delets_int=unique_delets[unique_delets<min_h_neg[0]]
|
|
|
|
indexer_lines_deletions_len.append(len(deletions))
|
|
indexr_uniq_ind.append([deletions])
|
|
|
|
else:
|
|
indexer_lines_deletions_len.append(0)
|
|
indexr_uniq_ind.append(-999)
|
|
|
|
index_line_true=min_h_neg[0]-len(unique_delets_int)
|
|
#print(index_line_true)
|
|
if index_line_true>0 and min_h_neg[0]>=2:
|
|
index_line_true=index_line_true
|
|
else:
|
|
index_line_true=min_h_neg[0]
|
|
|
|
indexer_lines.append(index_line_true)
|
|
|
|
if len(unique_delets_int)>0:
|
|
for dd in range(len(unique_delets_int)):
|
|
indexes_to_delete.append(unique_delets_int[dd])
|
|
else:
|
|
indexer_lines.append(-999)
|
|
indexer_lines_deletions_len.append(-999)
|
|
indexr_uniq_ind.append(-999)
|
|
|
|
peaks_true=[]
|
|
for m in range(len(peaks_neg_fin_t)):
|
|
if m in indexes_to_delete:
|
|
pass
|
|
else:
|
|
peaks_true.append(peaks_neg_fin_t[m])
|
|
return indexer_lines,peaks_true,arg_min_hor_sort,indexer_lines_deletions_len,indexr_uniq_ind
|
|
|
|
|
|
def find_num_col_by_vertical_lines(self,regions_without_seperators,multiplier=3.8):
|
|
regions_without_seperators_0=regions_without_seperators[:,:,0].sum(axis=0)
|
|
|
|
##plt.plot(regions_without_seperators_0)
|
|
##plt.show()
|
|
|
|
sigma_=35#70#35
|
|
|
|
|
|
|
|
z=gaussian_filter1d(regions_without_seperators_0, sigma_)
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
#print(peaks,'peaksnew')
|
|
return peaks
|
|
|
|
|
|
def find_num_col(self,regions_without_seperators,multiplier=3.8):
|
|
regions_without_seperators_0=regions_without_seperators[:,:].sum(axis=0)
|
|
|
|
##plt.plot(regions_without_seperators_0)
|
|
##plt.show()
|
|
|
|
sigma_=35#70#35
|
|
|
|
|
|
meda_n_updown=regions_without_seperators_0[len(regions_without_seperators_0)::-1]
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(regions_without_seperators_0) if x), 0))
|
|
last_nonzero=(next((i for i, x in enumerate(meda_n_updown) if x), 0))
|
|
|
|
#print(last_nonzero)
|
|
#print(isNaN(last_nonzero))
|
|
#last_nonzero=0#halalikh
|
|
last_nonzero=len(regions_without_seperators_0)-last_nonzero
|
|
|
|
|
|
y=regions_without_seperators_0#[first_nonzero:last_nonzero]
|
|
|
|
y_help=np.zeros(len(y)+20)
|
|
|
|
y_help[10:len(y)+10]=y
|
|
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
|
|
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+20)
|
|
|
|
zneg[10:len(zneg_rev)+10]=zneg_rev
|
|
|
|
z=gaussian_filter1d(y, sigma_)
|
|
zneg= gaussian_filter1d(zneg, sigma_)
|
|
|
|
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
peaks, _ = find_peaks(z, height=0)
|
|
|
|
peaks_neg=peaks_neg-10-10
|
|
|
|
|
|
last_nonzero=last_nonzero-100
|
|
first_nonzero=first_nonzero+200
|
|
|
|
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
|
|
|
|
peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
|
|
peaks_neg=peaks_neg[ (peaks_neg>370) & (peaks_neg< (regions_without_seperators.shape[1]-370) ) ]
|
|
|
|
#print(peaks)
|
|
interest_pos=z[peaks]
|
|
|
|
interest_pos=interest_pos[interest_pos>10]
|
|
|
|
|
|
|
|
#plt.plot(z)
|
|
#plt.show()
|
|
interest_neg=z[peaks_neg]
|
|
|
|
|
|
|
|
|
|
min_peaks_pos=np.min(interest_pos)
|
|
max_peaks_pos=np.max(interest_pos)
|
|
|
|
if max_peaks_pos/min_peaks_pos>=35:
|
|
min_peaks_pos=np.mean(interest_pos)
|
|
|
|
min_peaks_neg=0#np.min(interest_neg)
|
|
|
|
#print(np.min(interest_pos),np.max(interest_pos),np.max(interest_pos)/np.min(interest_pos),'minmax')
|
|
#$print(min_peaks_pos)
|
|
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
|
|
#print(interest_pos)
|
|
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
|
|
|
|
#print(interest_neg,'interest_neg')
|
|
#print(grenze,'grenze')
|
|
#print(min_peaks_pos,'min_peaks_pos')
|
|
#print(dis_talaei,'dis_talaei')
|
|
#print(peaks_neg,'peaks_neg')
|
|
|
|
interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
peaks_neg_fin=peaks_neg[(interest_neg<grenze)]
|
|
#interest_neg_fin=interest_neg[(interest_neg<grenze)]
|
|
|
|
num_col=(len(interest_neg_fin))+1
|
|
|
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
|
#print(num_col,'diz')
|
|
p_l=0
|
|
p_u=len(y)-1
|
|
p_m=int(len(y)/2.)
|
|
p_g_l=int(len(y)/4.)
|
|
p_g_u=len(y)-int(len(y)/4.)
|
|
|
|
if num_col==3:
|
|
if (peaks_neg_fin[0]>p_g_u and peaks_neg_fin[1]>p_g_u) or (peaks_neg_fin[0]<p_g_l and peaks_neg_fin[1]<p_g_l ) or ((peaks_neg_fin[0]+200)<p_m and peaks_neg_fin[1]<p_m ) or ((peaks_neg_fin[0]-200)>p_m and peaks_neg_fin[1]>p_m ):
|
|
num_col=1
|
|
peaks_neg_fin=[]
|
|
else:
|
|
pass
|
|
|
|
if num_col==2:
|
|
if (peaks_neg_fin[0]>p_g_u) or (peaks_neg_fin[0]<p_g_l):
|
|
num_col=1
|
|
peaks_neg_fin=[]
|
|
else:
|
|
pass
|
|
|
|
|
|
##print(len(peaks_neg_fin))
|
|
|
|
|
|
|
|
|
|
diff_peaks=np.abs( np.diff(peaks_neg_fin) )
|
|
|
|
cut_off=400
|
|
peaks_neg_true=[]
|
|
forest=[]
|
|
|
|
#print(len(peaks_neg_fin),'len_')
|
|
|
|
for i in range(len(peaks_neg_fin)):
|
|
if i==0:
|
|
forest.append(peaks_neg_fin[i])
|
|
if i<(len(peaks_neg_fin)-1):
|
|
if diff_peaks[i]<=cut_off:
|
|
forest.append(peaks_neg_fin[i+1])
|
|
if diff_peaks[i]>cut_off:
|
|
#print(forest[np.argmin(z[forest]) ] )
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
forest=[]
|
|
forest.append(peaks_neg_fin[i+1])
|
|
if i==(len(peaks_neg_fin)-1):
|
|
#print(print(forest[np.argmin(z[forest]) ] ))
|
|
if not self.isNaN(forest[np.argmin(z[forest]) ]):
|
|
peaks_neg_true.append(forest[np.argmin(z[forest]) ])
|
|
|
|
|
|
num_col=(len(peaks_neg_true))+1
|
|
p_l=0
|
|
p_u=len(y)-1
|
|
p_m=int(len(y)/2.)
|
|
p_quarter=int(len(y)/5.)
|
|
p_g_l=int(len(y)/4.)
|
|
p_g_u=len(y)-int(len(y)/4.)
|
|
|
|
p_u_quarter=len(y)-p_quarter
|
|
|
|
##print(num_col,'early')
|
|
if num_col==3:
|
|
if (peaks_neg_true[0]>p_g_u and peaks_neg_true[1]>p_g_u) or (peaks_neg_true[0]<p_g_l and peaks_neg_true[1]<p_g_l ) or (peaks_neg_true[0]<p_m and (peaks_neg_true[1]+200)<p_m ) or ( (peaks_neg_true[0]-200)>p_m and peaks_neg_true[1]>p_m ):
|
|
num_col=1
|
|
peaks_neg_true=[]
|
|
elif (peaks_neg_true[0]<p_g_u and peaks_neg_true[0]>p_g_l) and (peaks_neg_true[1]>p_u_quarter):
|
|
peaks_neg_true=[ peaks_neg_true[0] ]
|
|
elif (peaks_neg_true[1]<p_g_u and peaks_neg_true[1]>p_g_l) and (peaks_neg_true[0]<p_quarter):
|
|
peaks_neg_true=[ peaks_neg_true[1] ]
|
|
else:
|
|
pass
|
|
|
|
if num_col==2:
|
|
if (peaks_neg_true[0]>p_g_u) or (peaks_neg_true[0]<p_g_l):
|
|
num_col=1
|
|
peaks_neg_true=[]
|
|
else:
|
|
pass
|
|
|
|
diff_peaks_annormal=diff_peaks[diff_peaks<360]
|
|
|
|
|
|
|
|
if len(diff_peaks_annormal)>0:
|
|
arg_help=np.array(range(len(diff_peaks)))
|
|
arg_help_ann=arg_help[diff_peaks<360]
|
|
|
|
peaks_neg_fin_new=[]
|
|
|
|
for ii in range(len(peaks_neg_fin)):
|
|
if ii in arg_help_ann:
|
|
arg_min=np.argmin([interest_neg_fin[ii],interest_neg_fin[ii+1] ] )
|
|
if arg_min==0:
|
|
peaks_neg_fin_new.append( peaks_neg_fin[ii])
|
|
else:
|
|
peaks_neg_fin_new.append( peaks_neg_fin[ii+1])
|
|
|
|
|
|
elif (ii-1) in arg_help_ann:
|
|
pass
|
|
else:
|
|
peaks_neg_fin_new.append(peaks_neg_fin[ii] )
|
|
else:
|
|
peaks_neg_fin_new=peaks_neg_fin
|
|
|
|
|
|
#plt.plot(gaussian_filter1d(y, sigma_))
|
|
#plt.plot(peaks_neg_true,z[peaks_neg_true],'*')
|
|
#plt.plot([0,len(y)], [grenze,grenze])
|
|
#plt.show()
|
|
|
|
##print(len(peaks_neg_true))
|
|
return len(peaks_neg_true), peaks_neg_true
|
|
|
|
def find_new_features_of_contoures(self,contours_main):
|
|
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
try:
|
|
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
argmin_x_main=np.array([np.argmin(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
x_min_from_argmin=np.array([contours_main[j][argmin_x_main[j],0,0] for j in range(len(contours_main))])
|
|
y_corr_x_min_from_argmin=np.array([contours_main[j][argmin_x_main[j],0,1] for j in range(len(contours_main))])
|
|
|
|
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
except:
|
|
x_min_main=np.array([np.min(contours_main[j][:,0]) for j in range(len(contours_main))])
|
|
|
|
argmin_x_main=np.array([np.argmin(contours_main[j][:,0]) for j in range(len(contours_main))])
|
|
|
|
|
|
x_min_from_argmin=np.array([contours_main[j][argmin_x_main[j],0] for j in range(len(contours_main))])
|
|
y_corr_x_min_from_argmin=np.array([contours_main[j][argmin_x_main[j],1] for j in range(len(contours_main))])
|
|
|
|
x_max_main=np.array([np.max(contours_main[j][:,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,1]) for j in range(len(contours_main))])
|
|
|
|
|
|
#dis_x=np.abs(x_max_main-x_min_main)
|
|
|
|
return cx_main,cy_main ,x_min_main , x_max_main, y_min_main ,y_max_main,y_corr_x_min_from_argmin
|
|
def return_points_with_boundies(self,peaks_neg_fin,first_point, last_point):
|
|
peaks_neg_tot=[]
|
|
peaks_neg_tot.append(first_point)
|
|
for ii in range(len(peaks_neg_fin)):
|
|
peaks_neg_tot.append(peaks_neg_fin[ii])
|
|
peaks_neg_tot.append(last_point)
|
|
return peaks_neg_tot
|
|
def contours_in_same_horizon(self,cy_main_hor):
|
|
X1=np.zeros((len(cy_main_hor),len(cy_main_hor)))
|
|
X2=np.zeros((len(cy_main_hor),len(cy_main_hor)))
|
|
|
|
X1[0::1,:]=cy_main_hor[:]
|
|
X2=X1.T
|
|
|
|
X_dif=np.abs(X2-X1)
|
|
args_help=np.array(range(len(cy_main_hor)))
|
|
all_args=[]
|
|
for i in range(len(cy_main_hor)):
|
|
list_h=list(args_help[X_dif[i,:]<=20] )
|
|
list_h.append(i)
|
|
if len(list_h)>1:
|
|
all_args.append(list( set(list_h) ))
|
|
return np.unique(all_args)
|
|
|
|
def return_boxes_of_images_by_order_of_reading_without_seperators(self,spliter_y_new,image_p_rev,regions_without_seperators,matrix_of_lines_ch,seperators_closeup_n):
|
|
|
|
boxes=[]
|
|
|
|
|
|
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
|
# holes in the text and also finding spliter which covers more than one columns.
|
|
for i in range(len(spliter_y_new)-1):
|
|
#print(spliter_y_new[i],spliter_y_new[i+1])
|
|
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> spliter_y_new[i] ) & (matrix_of_lines_ch[:,7]< spliter_y_new[i+1] ) ]
|
|
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
|
|
|
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
|
|
|
# check to see is there any vertical seperator to find holes.
|
|
if np.abs(spliter_y_new[i+1]-spliter_y_new[i])>1./3.*regions_without_seperators.shape[0]:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
|
|
|
#org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
|
#org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
|
##plt.figure(figsize=(20,20))
|
|
##plt.plot(org_img_dichte)
|
|
##plt.show()
|
|
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
|
|
|
num_col, peaks_neg_fin=self.find_num_col_only_image(image_p_rev[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=2.4)
|
|
|
|
#num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
|
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
|
|
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
|
|
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
|
|
arg_org_hor_some=matrix_new[:,0][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
peaks_neg_tot=self.return_points_with_boundies(peaks_neg_fin,0, seperators_closeup_n[:,:,0].shape[1])
|
|
|
|
start_index_of_hor,newest_peaks,arg_min_hor_sort,lines_length_dels,lines_indexes_deleted=self.return_hor_spliter_by_index_for_without_verticals(peaks_neg_tot,x_min_hor_some,x_max_hor_some)
|
|
|
|
arg_org_hor_some_sort=arg_org_hor_some[arg_min_hor_sort]
|
|
|
|
|
|
start_index_of_hor_with_subset=[start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]#start_index_of_hor[lines_length_dels>0]
|
|
arg_min_hor_sort_with_subset=[arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
lines_indexes_deleted_with_subset=[lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
lines_length_dels_with_subset=[lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
|
|
arg_org_hor_some_sort_subset=[arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
|
|
#arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0]
|
|
#lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0]
|
|
#lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0]
|
|
|
|
|
|
|
|
|
|
#print(len(arg_min_hor_sort),len(arg_org_hor_some_sort),'vizzzzzz')
|
|
|
|
|
|
|
|
vahid_subset=np.zeros((len(start_index_of_hor_with_subset),len(start_index_of_hor_with_subset)))-1
|
|
for kkk1 in range(len(start_index_of_hor_with_subset)):
|
|
|
|
#print(lines_indexes_deleted,'hiii')
|
|
index_del_sub=np.unique(lines_indexes_deleted_with_subset[kkk1])
|
|
|
|
for kkk2 in range(len(start_index_of_hor_with_subset)):
|
|
|
|
if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]):
|
|
vahid_subset[kkk1,kkk2]=kkk1
|
|
else:
|
|
pass
|
|
#print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0]))
|
|
|
|
|
|
|
|
# check the len of matrix if it has no length means that there is no spliter at all
|
|
|
|
if len(vahid_subset>0):
|
|
#print('hihoo')
|
|
|
|
|
|
# find parenets args
|
|
line_int=np.zeros(vahid_subset.shape[0])
|
|
|
|
childs_id=[]
|
|
arg_child=[]
|
|
for li in range(vahid_subset.shape[0]):
|
|
if np.all(vahid_subset[:,li]==-1):
|
|
line_int[li]=-1
|
|
else:
|
|
line_int[li]=1
|
|
|
|
|
|
#childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1]
|
|
#helpi=[]
|
|
#for nad in range(len(childs_args_in)):
|
|
# helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]])
|
|
|
|
|
|
arg_child.append(arg_min_hor_sort_with_subset[li] )
|
|
|
|
|
|
|
|
|
|
arg_parent=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
start_index_of_hor_parent=[start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
#arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
#arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
|
|
|
|
#arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
|
start_index_of_hor_child=[start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
|
|
|
|
|
cy_hor_some_sort=cy_hor_some[arg_parent]
|
|
|
|
|
|
newest_y_spliter_tot=[]
|
|
|
|
for tj in range(len(newest_peaks)-1):
|
|
newest_y_spliter=[]
|
|
newest_y_spliter.append(spliter_y_new[i])
|
|
if tj in np.unique(start_index_of_hor_parent):
|
|
cy_help=np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent)==tj]
|
|
cy_help_sort=np.sort(cy_help)
|
|
|
|
#print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
|
for mj in range(len(cy_help_sort)):
|
|
newest_y_spliter.append(cy_help_sort[mj])
|
|
newest_y_spliter.append(spliter_y_new[i+1])
|
|
|
|
newest_y_spliter_tot.append(newest_y_spliter)
|
|
|
|
|
|
|
|
|
|
else:
|
|
line_int=[]
|
|
newest_y_spliter_tot=[]
|
|
|
|
for tj in range(len(newest_peaks)-1):
|
|
newest_y_spliter=[]
|
|
newest_y_spliter.append(spliter_y_new[i])
|
|
|
|
newest_y_spliter.append(spliter_y_new[i+1])
|
|
|
|
newest_y_spliter_tot.append(newest_y_spliter)
|
|
|
|
|
|
|
|
# if line_int is all -1 means that big spliters have no child and we can easily go through
|
|
if np.all(np.array(line_int)==-1):
|
|
for j in range(len(newest_peaks)-1):
|
|
newest_y_spliter=newest_y_spliter_tot[j]
|
|
|
|
|
|
for n in range(len(newest_y_spliter)-1):
|
|
#print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa')
|
|
##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]])
|
|
##plt.show()
|
|
|
|
#print(matrix_new[:,0][ (matrix_new[:,9]==1 )])
|
|
for jvt in matrix_new[:,0][ (matrix_new[:,9]==1 ) & (matrix_new[:,6]> newest_y_spliter[n] ) & (matrix_new[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_new[:,1]) < newest_peaks[j+1] ) & (( matrix_new[:,1])> newest_peaks[j] ) ] :
|
|
pass
|
|
|
|
###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
|
#print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
#num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.4)
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
else:
|
|
for j in range(len(newest_peaks)-1):
|
|
newest_y_spliter=newest_y_spliter_tot[j]
|
|
|
|
if j in start_index_of_hor_parent:
|
|
|
|
x_min_ch=x_min_hor_some[arg_child]
|
|
x_max_ch=x_max_hor_some[arg_child]
|
|
cy_hor_some_sort_child=cy_hor_some[arg_child]
|
|
cy_hor_some_sort_child=np.sort(cy_hor_some_sort_child)
|
|
|
|
for n in range(len(newest_y_spliter)-1):
|
|
|
|
cy_child_in=cy_hor_some_sort_child[( cy_hor_some_sort_child>newest_y_spliter[n] ) & ( cy_hor_some_sort_child<newest_y_spliter[n+1] ) ]
|
|
|
|
if len(cy_child_in)>0:
|
|
###num_col_ch, peaks_neg_ch=find_num_col( regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
|
|
|
num_col_ch, peaks_neg_ch=self.find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
|
|
|
peaks_neg_ch=peaks_neg_ch[:]+newest_peaks[j]
|
|
|
|
peaks_neg_ch_tot=self.return_points_with_boundies(peaks_neg_ch,newest_peaks[j], newest_peaks[j+1])
|
|
|
|
|
|
ss_in_ch,nst_p_ch,arg_n_ch,lines_l_del_ch,lines_in_del_ch=self.return_hor_spliter_by_index_for_without_verticals(peaks_neg_ch_tot,x_min_ch,x_max_ch)
|
|
|
|
newest_y_spliter_ch_tot=[]
|
|
|
|
for tjj in range(len(nst_p_ch)-1):
|
|
newest_y_spliter_new=[]
|
|
newest_y_spliter_new.append(newest_y_spliter[n])
|
|
if tjj in np.unique(ss_in_ch):
|
|
|
|
|
|
#print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
|
for mjj in range(len(cy_child_in)):
|
|
newest_y_spliter_new.append(cy_child_in[mjj])
|
|
newest_y_spliter_new.append(newest_y_spliter[n+1])
|
|
|
|
newest_y_spliter_ch_tot.append(newest_y_spliter_new)
|
|
|
|
|
|
|
|
|
|
for jn in range(len(nst_p_ch)-1):
|
|
newest_y_spliter_h=newest_y_spliter_ch_tot[jn]
|
|
|
|
for nd in range(len(newest_y_spliter_h)-1):
|
|
|
|
matrix_new_new2=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter_h[nd] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter_h[nd+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < nst_p_ch[jn+1] ) & (( matrix_of_lines_ch[:,1]-500)>nst_p_ch[jn] ) ]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new2[:,9][matrix_new_new2[:,9]==1] )>0 and np.max(matrix_new_new2[:,8][matrix_new_new2[:,9]==1])>=0.2*(np.abs(newest_y_spliter_h[nd+1]-newest_y_spliter_h[nd] )):
|
|
#num_col_sub_ch, peaks_neg_fin_sub_ch=find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]):int(newest_y_spliter_h[nd+1]),nst_p_ch[jn]:nst_p_ch[jn+1]],multiplier=2.3)
|
|
|
|
num_col_sub_ch, peaks_neg_fin_sub_ch=self.find_num_col_only_image(image_p_rev[int(newest_y_spliter_h[nd]):int(newest_y_spliter_h[nd+1]),nst_p_ch[jn]:nst_p_ch[jn+1]],multiplier=2.3)
|
|
#print(peaks_neg_fin_sub_ch,'gada kutullllllll')
|
|
else:
|
|
peaks_neg_fin_sub_ch=[]
|
|
|
|
peaks_sub_ch=[]
|
|
peaks_sub_ch.append(nst_p_ch[jn])
|
|
|
|
for kjj in range(len(peaks_neg_fin_sub_ch)):
|
|
peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj]+nst_p_ch[jn])
|
|
|
|
peaks_sub_ch.append(nst_p_ch[jn+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for khh in range(len(peaks_sub_ch)-1):
|
|
boxes.append([ peaks_sub_ch[khh], peaks_sub_ch[khh+1] ,newest_y_spliter_h[nd],newest_y_spliter_h[nd+1]])
|
|
|
|
|
|
|
|
else:
|
|
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
###num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
for n in range(len(newest_y_spliter)-1):
|
|
|
|
for jvt in matrix_new[:,0][ (matrix_new[:,9]==1 ) & (matrix_new[:,6]> newest_y_spliter[n] ) & (matrix_new[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_new[:,1]) < newest_peaks[j+1] ) & (( matrix_new[:,1])> newest_peaks[j] ) ] :
|
|
pass
|
|
|
|
#plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
|
#print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
###num_col_sub, peaks_neg_fin_sub=find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.0)
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col_only_image(image_p_rev[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=2.3)
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
boxes.append([ 0, seperators_closeup_n[:,:,0].shape[1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
|
return boxes
|
|
|
|
def return_boxes_of_images_by_order_of_reading_without_seperators_2cols(self,spliter_y_new,image_p_rev,regions_without_seperators,matrix_of_lines_ch,seperators_closeup_n):
|
|
|
|
boxes=[]
|
|
|
|
|
|
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
|
# holes in the text and also finding spliter which covers more than one columns.
|
|
for i in range(len(spliter_y_new)-1):
|
|
#print(spliter_y_new[i],spliter_y_new[i+1])
|
|
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> spliter_y_new[i] ) & (matrix_of_lines_ch[:,7]< spliter_y_new[i+1] ) ]
|
|
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
|
|
|
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
|
|
|
# check to see is there any vertical seperator to find holes.
|
|
if np.abs(spliter_y_new[i+1]-spliter_y_new[i])>1./3.*regions_without_seperators.shape[0]:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
|
|
|
#org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
|
#org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
|
##plt.figure(figsize=(20,20))
|
|
##plt.plot(org_img_dichte)
|
|
##plt.show()
|
|
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
|
|
|
try:
|
|
num_col, peaks_neg_fin=self.find_num_col_only_image(image_p_rev[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=2.4)
|
|
except:
|
|
peaks_neg_fin=[]
|
|
num_col=0
|
|
|
|
peaks_neg_tot=self.return_points_with_boundies(peaks_neg_fin,0, seperators_closeup_n[:,:,0].shape[1])
|
|
|
|
for kh in range(len(peaks_neg_tot)-1):
|
|
boxes.append([ peaks_neg_tot[kh], peaks_neg_tot[kh+1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
|
else:
|
|
boxes.append([ 0, seperators_closeup_n[:,:,0].shape[1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return boxes
|
|
def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(self, regions_pre_p):
|
|
seperators_closeup=( (regions_pre_p[:,:]==6))*1
|
|
|
|
seperators_closeup=seperators_closeup.astype(np.uint8)
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
|
|
seperators_closeup = cv2.dilate(seperators_closeup,kernel,iterations = 1)
|
|
seperators_closeup = cv2.erode(seperators_closeup,kernel,iterations = 1)
|
|
|
|
seperators_closeup = cv2.erode(seperators_closeup,kernel,iterations = 1)
|
|
seperators_closeup = cv2.dilate(seperators_closeup,kernel,iterations = 1)
|
|
|
|
if len(seperators_closeup.shape)==2:
|
|
seperators_closeup_n=np.zeros((seperators_closeup.shape[0],seperators_closeup.shape[1],3))
|
|
seperators_closeup_n[:,:,0]=seperators_closeup
|
|
seperators_closeup_n[:,:,1]=seperators_closeup
|
|
seperators_closeup_n[:,:,2]=seperators_closeup
|
|
else:
|
|
seperators_closeup_n=seperators_closeup[:,:,:]
|
|
#seperators_closeup=seperators_closeup.astype(np.uint8)
|
|
seperators_closeup_n=seperators_closeup_n.astype(np.uint8)
|
|
imgray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_lines,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=self.find_features_of_lines(contours_lines)
|
|
|
|
dist_y=np.abs(y_max_main-y_min_main)
|
|
|
|
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
|
args=np.array( range(len(slope_lines) ))
|
|
len_x=seperators_closeup.shape[1]*0
|
|
len_y=seperators_closeup.shape[0]*.01
|
|
|
|
args_hor=args[slope_lines==0]
|
|
dist_x_hor=dist_x[slope_lines==0]
|
|
dist_y_hor=dist_y[slope_lines==0]
|
|
x_min_main_hor=x_min_main[slope_lines==0]
|
|
x_max_main_hor=x_max_main[slope_lines==0]
|
|
cy_main_hor=cy_main[slope_lines==0]
|
|
y_min_main_hor=y_min_main[slope_lines==0]
|
|
y_max_main_hor=y_max_main[slope_lines==0]
|
|
|
|
args_hor=args_hor[dist_x_hor>=len_x]
|
|
x_max_main_hor=x_max_main_hor[dist_x_hor>=len_x]
|
|
x_min_main_hor=x_min_main_hor[dist_x_hor>=len_x]
|
|
cy_main_hor=cy_main_hor[dist_x_hor>=len_x]
|
|
y_min_main_hor=y_min_main_hor[dist_x_hor>=len_x]
|
|
y_max_main_hor=y_max_main_hor[dist_x_hor>=len_x]
|
|
slope_lines_org_hor=slope_lines_org_hor[dist_x_hor>=len_x]
|
|
dist_y_hor=dist_y_hor[dist_x_hor>=len_x]
|
|
dist_x_hor=dist_x_hor[dist_x_hor>=len_x]
|
|
|
|
|
|
args_ver=args[slope_lines==1]
|
|
dist_y_ver=dist_y[slope_lines==1]
|
|
dist_x_ver=dist_x[slope_lines==1]
|
|
x_min_main_ver=x_min_main[slope_lines==1]
|
|
x_max_main_ver=x_max_main[slope_lines==1]
|
|
y_min_main_ver=y_min_main[slope_lines==1]
|
|
y_max_main_ver=y_max_main[slope_lines==1]
|
|
cx_main_ver=cx_main[slope_lines==1]
|
|
|
|
args_ver=args_ver[dist_y_ver>=len_y]
|
|
x_max_main_ver=x_max_main_ver[dist_y_ver>=len_y]
|
|
x_min_main_ver=x_min_main_ver[dist_y_ver>=len_y]
|
|
cx_main_ver=cx_main_ver[dist_y_ver>=len_y]
|
|
y_min_main_ver=y_min_main_ver[dist_y_ver>=len_y]
|
|
y_max_main_ver=y_max_main_ver[dist_y_ver>=len_y]
|
|
dist_x_ver=dist_x_ver[dist_y_ver>=len_y]
|
|
dist_y_ver=dist_y_ver[dist_y_ver>=len_y]
|
|
|
|
img_p_in_ver=np.zeros(seperators_closeup_n[:,:,2].shape)
|
|
for jv in range(len(args_ver)):
|
|
img_p_in_ver=cv2.fillPoly(img_p_in_ver, pts =[contours_lines[args_ver[jv]]], color=(1,1,1))
|
|
|
|
img_in_hor=np.zeros(seperators_closeup_n[:,:,2].shape)
|
|
for jv in range(len(args_hor)):
|
|
img_p_in_hor=cv2.fillPoly(img_in_hor, pts =[contours_lines[args_hor[jv]]], color=(1,1,1))
|
|
|
|
all_args_uniq=self.contours_in_same_horizon(cy_main_hor)
|
|
#print(all_args_uniq,'all_args_uniq')
|
|
if len(all_args_uniq)>0:
|
|
if type(all_args_uniq[0]) is list:
|
|
contours_new=[]
|
|
for dd in range(len(all_args_uniq)):
|
|
merged_all=None
|
|
some_args=args_hor[all_args_uniq[dd]]
|
|
some_cy=cy_main_hor[all_args_uniq[dd]]
|
|
some_x_min=x_min_main_hor[all_args_uniq[dd]]
|
|
some_x_max=x_max_main_hor[all_args_uniq[dd]]
|
|
|
|
img_in=np.zeros(seperators_closeup_n[:,:,2].shape)
|
|
for jv in range(len(some_args)):
|
|
|
|
img_p_in=cv2.fillPoly(img_p_in_hor, pts =[contours_lines[some_args[jv]]], color=(1,1,1))
|
|
img_p_in[int(np.mean(some_cy))-5:int(np.mean(some_cy))+5, int(np.min(some_x_min)):int(np.max(some_x_max)) ]=1
|
|
|
|
else:
|
|
img_p_in=seperators_closeup
|
|
else:
|
|
img_p_in=seperators_closeup
|
|
|
|
sep_ver_hor=img_p_in+img_p_in_ver
|
|
sep_ver_hor_cross=(sep_ver_hor==2)*1
|
|
|
|
sep_ver_hor_cross=np.repeat(sep_ver_hor_cross[:, :, np.newaxis], 3, axis=2)
|
|
sep_ver_hor_cross=sep_ver_hor_cross.astype(np.uint8)
|
|
imgray = cv2.cvtColor(sep_ver_hor_cross, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_cross,_=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cx_cross,cy_cross ,_ , _, _ ,_,_=self.find_new_features_of_contoures(contours_cross)
|
|
|
|
for ii in range(len(cx_cross)):
|
|
sep_ver_hor[int(cy_cross[ii])-15:int(cy_cross[ii])+15,int(cx_cross[ii])+5:int(cx_cross[ii])+40]=0
|
|
sep_ver_hor[int(cy_cross[ii])-15:int(cy_cross[ii])+15,int(cx_cross[ii])-40:int(cx_cross[ii])-4]=0
|
|
|
|
img_p_in[:,:]=sep_ver_hor[:,:]
|
|
|
|
if len(img_p_in.shape)==2:
|
|
seperators_closeup_n=np.zeros((img_p_in.shape[0],img_p_in.shape[1],3))
|
|
seperators_closeup_n[:,:,0]=img_p_in
|
|
seperators_closeup_n[:,:,1]=img_p_in
|
|
seperators_closeup_n[:,:,2]=img_p_in
|
|
else:
|
|
seperators_closeup_n=img_p_in[:,:,:]
|
|
#seperators_closeup=seperators_closeup.astype(np.uint8)
|
|
seperators_closeup_n=seperators_closeup_n.astype(np.uint8)
|
|
imgray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_lines,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=self.find_features_of_lines(contours_lines)
|
|
|
|
dist_y=np.abs(y_max_main-y_min_main)
|
|
|
|
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
|
args=np.array( range(len(slope_lines) ))
|
|
len_x=seperators_closeup.shape[1]*.04
|
|
len_y=seperators_closeup.shape[0]*.08
|
|
|
|
args_hor=args[slope_lines==0]
|
|
dist_x_hor=dist_x[slope_lines==0]
|
|
dist_y_hor=dist_y[slope_lines==0]
|
|
x_min_main_hor=x_min_main[slope_lines==0]
|
|
x_max_main_hor=x_max_main[slope_lines==0]
|
|
cy_main_hor=cy_main[slope_lines==0]
|
|
y_min_main_hor=y_min_main[slope_lines==0]
|
|
y_max_main_hor=y_max_main[slope_lines==0]
|
|
|
|
args_hor=args_hor[dist_x_hor>=len_x]
|
|
x_max_main_hor=x_max_main_hor[dist_x_hor>=len_x]
|
|
x_min_main_hor=x_min_main_hor[dist_x_hor>=len_x]
|
|
cy_main_hor=cy_main_hor[dist_x_hor>=len_x]
|
|
y_min_main_hor=y_min_main_hor[dist_x_hor>=len_x]
|
|
y_max_main_hor=y_max_main_hor[dist_x_hor>=len_x]
|
|
slope_lines_org_hor=slope_lines_org_hor[dist_x_hor>=len_x]
|
|
dist_y_hor=dist_y_hor[dist_x_hor>=len_x]
|
|
dist_x_hor=dist_x_hor[dist_x_hor>=len_x]
|
|
|
|
|
|
|
|
args_ver=args[slope_lines==1]
|
|
dist_y_ver=dist_y[slope_lines==1]
|
|
dist_x_ver=dist_x[slope_lines==1]
|
|
x_min_main_ver=x_min_main[slope_lines==1]
|
|
x_max_main_ver=x_max_main[slope_lines==1]
|
|
y_min_main_ver=y_min_main[slope_lines==1]
|
|
y_max_main_ver=y_max_main[slope_lines==1]
|
|
cx_main_ver=cx_main[slope_lines==1]
|
|
|
|
args_ver=args_ver[dist_y_ver>=len_y]
|
|
x_max_main_ver=x_max_main_ver[dist_y_ver>=len_y]
|
|
x_min_main_ver=x_min_main_ver[dist_y_ver>=len_y]
|
|
cx_main_ver=cx_main_ver[dist_y_ver>=len_y]
|
|
y_min_main_ver=y_min_main_ver[dist_y_ver>=len_y]
|
|
y_max_main_ver=y_max_main_ver[dist_y_ver>=len_y]
|
|
dist_x_ver=dist_x_ver[dist_y_ver>=len_y]
|
|
dist_y_ver=dist_y_ver[dist_y_ver>=len_y]
|
|
|
|
matrix_of_lines_ch=np.zeros((len(cy_main_hor)+len(cx_main_ver),10))
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),0]=args_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,0]=args_ver
|
|
|
|
|
|
matrix_of_lines_ch[len(cy_main_hor):,1]=cx_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),2]=x_min_main_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,2]=x_min_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),3]=x_max_main_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,3]=x_max_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),4]=dist_x_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,4]=dist_x_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),5]=cy_main_hor
|
|
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),6]=y_min_main_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,6]=y_min_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),7]=y_max_main_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,7]=y_max_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),8]=dist_y_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,8]=dist_y_ver
|
|
|
|
|
|
matrix_of_lines_ch[len(cy_main_hor):,9]=1
|
|
|
|
return matrix_of_lines_ch,seperators_closeup_n
|
|
|
|
|
|
def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(self, img_p_in_ver,img_in_hor):
|
|
|
|
|
|
#plt.imshow(img_in_hor)
|
|
#plt.show()
|
|
|
|
#img_p_in_ver = cv2.erode(img_p_in_ver, self.kernel, iterations=2)
|
|
img_p_in_ver=img_p_in_ver.astype(np.uint8)
|
|
img_p_in_ver=np.repeat(img_p_in_ver[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(img_p_in_ver, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_lines_ver,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
slope_lines_ver,dist_x_ver, x_min_main_ver ,x_max_main_ver ,cy_main_ver,slope_lines_org_ver,y_min_main_ver, y_max_main_ver, cx_main_ver=self.find_features_of_lines(contours_lines_ver)
|
|
|
|
for i in range(len(x_min_main_ver)):
|
|
img_p_in_ver[int(y_min_main_ver[i]):int(y_min_main_ver[i])+30,int(cx_main_ver[i])-25:int(cx_main_ver[i])+25,0]=0
|
|
img_p_in_ver[int(y_max_main_ver[i])-30:int(y_max_main_ver[i]),int(cx_main_ver[i])-25:int(cx_main_ver[i])+25,0]=0
|
|
|
|
|
|
#plt.imshow(img_p_in_ver[:,:,0])
|
|
#plt.show()
|
|
img_in_hor=img_in_hor.astype(np.uint8)
|
|
img_in_hor=np.repeat(img_in_hor[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(img_in_hor, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_lines_hor,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
slope_lines_hor,dist_x_hor, x_min_main_hor ,x_max_main_hor ,cy_main_hor,slope_lines_org_hor,y_min_main_hor, y_max_main_hor, cx_main_hor=self.find_features_of_lines(contours_lines_hor)
|
|
|
|
args_hor=np.array( range(len(slope_lines_hor) ))
|
|
all_args_uniq=self.contours_in_same_horizon(cy_main_hor)
|
|
#print(all_args_uniq,'all_args_uniq')
|
|
if len(all_args_uniq)>0:
|
|
if type(all_args_uniq[0]) is list:
|
|
special_seperators=[]
|
|
contours_new=[]
|
|
for dd in range(len(all_args_uniq)):
|
|
merged_all=None
|
|
some_args=args_hor[all_args_uniq[dd]]
|
|
some_cy=cy_main_hor[all_args_uniq[dd]]
|
|
some_x_min=x_min_main_hor[all_args_uniq[dd]]
|
|
some_x_max=x_max_main_hor[all_args_uniq[dd]]
|
|
|
|
#img_in=np.zeros(seperators_closeup_n[:,:,2].shape)
|
|
for jv in range(len(some_args)):
|
|
|
|
img_p_in=cv2.fillPoly(img_in_hor, pts =[contours_lines_hor[some_args[jv]]], color=(1,1,1))
|
|
img_p_in[int(np.mean(some_cy))-5:int(np.mean(some_cy))+5, int(np.min(some_x_min)):int(np.max(some_x_max)) ]=1
|
|
|
|
sum_dis=dist_x_hor[some_args].sum()
|
|
diff_max_min_uniques=np.max(x_max_main_hor[some_args])-np.min(x_min_main_hor[some_args])
|
|
|
|
|
|
#print( sum_dis/float(diff_max_min_uniques) ,diff_max_min_uniques/float(img_p_in_ver.shape[1]),dist_x_hor[some_args].sum(),diff_max_min_uniques,np.mean( dist_x_hor[some_args]),np.std( dist_x_hor[some_args]) )
|
|
|
|
if diff_max_min_uniques>sum_dis and ( (sum_dis/float(diff_max_min_uniques) ) >0.85 ) and ( (diff_max_min_uniques/float(img_p_in_ver.shape[1]))>0.85 ) and np.std( dist_x_hor[some_args] )<(0.55*np.mean( dist_x_hor[some_args] )):
|
|
#print(dist_x_hor[some_args],dist_x_hor[some_args].sum(),np.min(x_min_main_hor[some_args]) ,np.max(x_max_main_hor[some_args]),'jalibdi')
|
|
#print(np.mean( dist_x_hor[some_args] ),np.std( dist_x_hor[some_args] ),np.var( dist_x_hor[some_args] ),'jalibdiha')
|
|
special_seperators.append(np.mean(cy_main_hor[some_args]))
|
|
|
|
else:
|
|
img_p_in=img_in_hor
|
|
special_seperators=[]
|
|
else:
|
|
img_p_in=img_in_hor
|
|
special_seperators=[]
|
|
|
|
|
|
img_p_in_ver[:,:,0][img_p_in_ver[:,:,0]==255]=1
|
|
#print(img_p_in_ver.shape,np.unique(img_p_in_ver[:,:,0]))
|
|
|
|
#plt.imshow(img_p_in[:,:,0])
|
|
#plt.show()
|
|
|
|
#plt.imshow(img_p_in_ver[:,:,0])
|
|
#plt.show()
|
|
sep_ver_hor=img_p_in+img_p_in_ver
|
|
#print(sep_ver_hor.shape,np.unique(sep_ver_hor[:,:,0]),'sep_ver_horsep_ver_horsep_ver_hor')
|
|
#plt.imshow(sep_ver_hor[:,:,0])
|
|
#plt.show()
|
|
|
|
sep_ver_hor_cross=(sep_ver_hor[:,:,0]==2)*1
|
|
|
|
sep_ver_hor_cross=np.repeat(sep_ver_hor_cross[:, :, np.newaxis], 3, axis=2)
|
|
sep_ver_hor_cross=sep_ver_hor_cross.astype(np.uint8)
|
|
imgray = cv2.cvtColor(sep_ver_hor_cross, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_cross,_=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cx_cross,cy_cross ,_ , _, _ ,_,_=self.find_new_features_of_contoures(contours_cross)
|
|
|
|
for ii in range(len(cx_cross)):
|
|
img_p_in[int(cy_cross[ii])-30:int(cy_cross[ii])+30,int(cx_cross[ii])+5:int(cx_cross[ii])+40,0]=0
|
|
img_p_in[int(cy_cross[ii])-30:int(cy_cross[ii])+30,int(cx_cross[ii])-40:int(cx_cross[ii])-4,0]=0
|
|
|
|
#plt.imshow(img_p_in[:,:,0])
|
|
#plt.show()
|
|
|
|
return img_p_in[:,:,0],special_seperators
|
|
|
|
def return_boxes_of_images_by_order_of_reading(self,spliter_y_new,regions_without_seperators,matrix_of_lines_ch,seperators_closeup_n):
|
|
boxes=[]
|
|
|
|
|
|
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
|
# holes in the text and also finding spliter which covers more than one columns.
|
|
for i in range(len(spliter_y_new)-1):
|
|
#print(spliter_y_new[i],spliter_y_new[i+1])
|
|
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> spliter_y_new[i] ) & (matrix_of_lines_ch[:,7]< spliter_y_new[i+1] ) ]
|
|
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
|
|
|
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
|
|
|
# check to see is there any vertical seperator to find holes.
|
|
if len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
|
|
|
#org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
|
#org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
|
##plt.figure(figsize=(20,20))
|
|
##plt.plot(org_img_dichte)
|
|
##plt.show()
|
|
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
|
|
|
num_col, peaks_neg_fin=self.find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
|
|
|
#num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
|
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
|
|
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
|
|
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
|
|
arg_org_hor_some=matrix_new[:,0][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
|
|
peaks_neg_tot=self.return_points_with_boundies(peaks_neg_fin,0, seperators_closeup_n[:,:,0].shape[1])
|
|
|
|
start_index_of_hor,newest_peaks,arg_min_hor_sort,lines_length_dels,lines_indexes_deleted=self.return_hor_spliter_by_index(peaks_neg_tot,x_min_hor_some,x_max_hor_some)
|
|
|
|
arg_org_hor_some_sort=arg_org_hor_some[arg_min_hor_sort]
|
|
|
|
|
|
|
|
start_index_of_hor_with_subset=[start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]#start_index_of_hor[lines_length_dels>0]
|
|
arg_min_hor_sort_with_subset=[arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
lines_indexes_deleted_with_subset=[lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
lines_length_dels_with_subset=[lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
|
|
arg_org_hor_some_sort_subset=[arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
|
|
#arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0]
|
|
#lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0]
|
|
#lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vahid_subset=np.zeros((len(start_index_of_hor_with_subset),len(start_index_of_hor_with_subset)))-1
|
|
for kkk1 in range(len(start_index_of_hor_with_subset)):
|
|
|
|
|
|
index_del_sub=np.unique(lines_indexes_deleted_with_subset[kkk1])
|
|
|
|
for kkk2 in range(len(start_index_of_hor_with_subset)):
|
|
|
|
if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]):
|
|
vahid_subset[kkk1,kkk2]=kkk1
|
|
else:
|
|
pass
|
|
#print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0]))
|
|
|
|
#print(vahid_subset,'zartt222')
|
|
|
|
|
|
# check the len of matrix if it has no length means that there is no spliter at all
|
|
|
|
if len(vahid_subset>0):
|
|
#print('hihoo')
|
|
|
|
|
|
# find parenets args
|
|
line_int=np.zeros(vahid_subset.shape[0])
|
|
|
|
childs_id=[]
|
|
arg_child=[]
|
|
for li in range(vahid_subset.shape[0]):
|
|
#print(vahid_subset[:,li])
|
|
if np.all(vahid_subset[:,li]==-1):
|
|
line_int[li]=-1
|
|
else:
|
|
line_int[li]=1
|
|
|
|
|
|
#childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1]
|
|
#helpi=[]
|
|
#for nad in range(len(childs_args_in)):
|
|
# helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]])
|
|
|
|
|
|
arg_child.append(arg_min_hor_sort_with_subset[li] )
|
|
|
|
|
|
|
|
|
|
|
|
#line_int=vahid_subset[0,:]
|
|
|
|
#print(arg_child,line_int[0],'zartt33333')
|
|
arg_parent=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
start_index_of_hor_parent=[start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
#arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
#arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
|
|
|
|
#arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
|
start_index_of_hor_child=[start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
|
|
|
|
|
|
|
|
|
cy_hor_some_sort=cy_hor_some[arg_parent]
|
|
|
|
|
|
|
|
|
|
|
|
#print(start_index_of_hor, lines_length_dels ,lines_indexes_deleted,'zartt')
|
|
|
|
#args_indexes=np.array(range(len(start_index_of_hor) ))
|
|
|
|
newest_y_spliter_tot=[]
|
|
|
|
for tj in range(len(newest_peaks)-1):
|
|
newest_y_spliter=[]
|
|
newest_y_spliter.append(spliter_y_new[i])
|
|
if tj in np.unique(start_index_of_hor_parent):
|
|
##print(cy_hor_some_sort)
|
|
cy_help=np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent)==tj]
|
|
cy_help_sort=np.sort(cy_help)
|
|
|
|
#print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
|
for mj in range(len(cy_help_sort)):
|
|
newest_y_spliter.append(cy_help_sort[mj])
|
|
newest_y_spliter.append(spliter_y_new[i+1])
|
|
|
|
newest_y_spliter_tot.append(newest_y_spliter)
|
|
|
|
|
|
|
|
|
|
else:
|
|
line_int=[]
|
|
newest_y_spliter_tot=[]
|
|
|
|
for tj in range(len(newest_peaks)-1):
|
|
newest_y_spliter=[]
|
|
newest_y_spliter.append(spliter_y_new[i])
|
|
|
|
newest_y_spliter.append(spliter_y_new[i+1])
|
|
|
|
newest_y_spliter_tot.append(newest_y_spliter)
|
|
|
|
|
|
|
|
# if line_int is all -1 means that big spliters have no child and we can easily go through
|
|
if np.all(np.array(line_int)==-1):
|
|
for j in range(len(newest_peaks)-1):
|
|
newest_y_spliter=newest_y_spliter_tot[j]
|
|
|
|
|
|
for n in range(len(newest_y_spliter)-1):
|
|
#print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa')
|
|
##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]])
|
|
##plt.show()
|
|
|
|
#print(matrix_new[:,0][ (matrix_new[:,9]==1 )])
|
|
for jvt in matrix_new[:,0][ (matrix_new[:,9]==1 ) & (matrix_new[:,6]> newest_y_spliter[n] ) & (matrix_new[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_new[:,1]) < newest_peaks[j+1] ) & (( matrix_new[:,1])> newest_peaks[j] ) ] :
|
|
pass
|
|
|
|
###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
|
#print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.)
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
else:
|
|
for j in range(len(newest_peaks)-1):
|
|
newest_y_spliter=newest_y_spliter_tot[j]
|
|
|
|
if j in start_index_of_hor_parent:
|
|
|
|
x_min_ch=x_min_hor_some[arg_child]
|
|
x_max_ch=x_max_hor_some[arg_child]
|
|
cy_hor_some_sort_child=cy_hor_some[arg_child]
|
|
cy_hor_some_sort_child=np.sort(cy_hor_some_sort_child)
|
|
|
|
#print(cy_hor_some_sort_child,'ychilds')
|
|
|
|
for n in range(len(newest_y_spliter)-1):
|
|
|
|
cy_child_in=cy_hor_some_sort_child[( cy_hor_some_sort_child>newest_y_spliter[n] ) & ( cy_hor_some_sort_child<newest_y_spliter[n+1] ) ]
|
|
|
|
if len(cy_child_in)>0:
|
|
num_col_ch, peaks_neg_ch=self.find_num_col( regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.0)
|
|
#print(peaks_neg_ch,'mizzzz')
|
|
#peaks_neg_ch=[]
|
|
#for djh in range(len(peaks_neg_ch)):
|
|
# peaks_neg_ch.append( peaks_neg_ch[djh]+newest_peaks[j] )
|
|
|
|
peaks_neg_ch_tot=self.return_points_with_boundies(peaks_neg_ch,newest_peaks[j], newest_peaks[j+1])
|
|
|
|
ss_in_ch,nst_p_ch,arg_n_ch,lines_l_del_ch,lines_in_del_ch=self.return_hor_spliter_by_index(peaks_neg_ch_tot,x_min_ch,x_max_ch)
|
|
|
|
|
|
|
|
|
|
|
|
newest_y_spliter_ch_tot=[]
|
|
|
|
for tjj in range(len(nst_p_ch)-1):
|
|
newest_y_spliter_new=[]
|
|
newest_y_spliter_new.append(newest_y_spliter[n])
|
|
if tjj in np.unique(ss_in_ch):
|
|
|
|
|
|
#print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
|
for mjj in range(len(cy_child_in)):
|
|
newest_y_spliter_new.append(cy_child_in[mjj])
|
|
newest_y_spliter_new.append(newest_y_spliter[n+1])
|
|
|
|
newest_y_spliter_ch_tot.append(newest_y_spliter_new)
|
|
|
|
|
|
|
|
|
|
|
|
for jn in range(len(nst_p_ch)-1):
|
|
newest_y_spliter_h=newest_y_spliter_ch_tot[jn]
|
|
|
|
for nd in range(len(newest_y_spliter_h)-1):
|
|
|
|
matrix_new_new2=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter_h[nd] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter_h[nd+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < nst_p_ch[jn+1] ) & (( matrix_of_lines_ch[:,1]-500)>nst_p_ch[jn] ) ]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if len( matrix_new_new2[:,9][matrix_new_new2[:,9]==1] )>0 and np.max(matrix_new_new2[:,8][matrix_new_new2[:,9]==1])>=0.2*(np.abs(newest_y_spliter_h[nd+1]-newest_y_spliter_h[nd] )):
|
|
num_col_sub_ch, peaks_neg_fin_sub_ch=self.find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]):int(newest_y_spliter_h[nd+1]),nst_p_ch[jn]:nst_p_ch[jn+1]],multiplier=5.0)
|
|
|
|
else:
|
|
peaks_neg_fin_sub_ch=[]
|
|
|
|
peaks_sub_ch=[]
|
|
peaks_sub_ch.append(nst_p_ch[jn])
|
|
|
|
for kjj in range(len(peaks_neg_fin_sub_ch)):
|
|
peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj]+nst_p_ch[jn])
|
|
|
|
peaks_sub_ch.append(nst_p_ch[jn+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for khh in range(len(peaks_sub_ch)-1):
|
|
boxes.append([ peaks_sub_ch[khh], peaks_sub_ch[khh+1] ,newest_y_spliter_h[nd],newest_y_spliter_h[nd+1]])
|
|
|
|
|
|
|
|
else:
|
|
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.0)
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
for n in range(len(newest_y_spliter)-1):
|
|
|
|
|
|
#plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
|
#print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.0)
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
boxes.append([ 0, seperators_closeup_n[:,:,0].shape[1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
|
|
|
|
|
return boxes
|
|
|
|
|
|
|
|
def return_boxes_of_images_by_order_of_reading_new(self,spliter_y_new,regions_without_seperators,matrix_of_lines_ch):
|
|
boxes=[]
|
|
|
|
|
|
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
|
# holes in the text and also finding spliter which covers more than one columns.
|
|
for i in range(len(spliter_y_new)-1):
|
|
#print(spliter_y_new[i],spliter_y_new[i+1])
|
|
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> spliter_y_new[i] ) & (matrix_of_lines_ch[:,7]< spliter_y_new[i+1] ) ]
|
|
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
|
|
|
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
|
|
|
# check to see is there any vertical seperator to find holes.
|
|
if 1>0:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
|
|
|
#org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
|
#org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
|
##plt.figure(figsize=(20,20))
|
|
##plt.plot(org_img_dichte)
|
|
##plt.show()
|
|
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
|
|
|
#print(int(spliter_y_new[i]),int(spliter_y_new[i+1]),'firssst')
|
|
|
|
#plt.imshow(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:])
|
|
#plt.show()
|
|
try:
|
|
num_col, peaks_neg_fin=self.find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.)
|
|
except:
|
|
peaks_neg_fin=[]
|
|
|
|
#print(peaks_neg_fin,'peaks_neg_fin')
|
|
#num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
|
x_min_hor_some=matrix_new[:,2][ (matrix_new[:,9]==0) ]
|
|
x_max_hor_some=matrix_new[:,3][ (matrix_new[:,9]==0) ]
|
|
cy_hor_some=matrix_new[:,5][ (matrix_new[:,9]==0) ]
|
|
arg_org_hor_some=matrix_new[:,0][ (matrix_new[:,9]==0) ]
|
|
|
|
|
|
peaks_neg_tot=self.return_points_with_boundies(peaks_neg_fin,0, regions_without_seperators[:,:].shape[1])
|
|
|
|
start_index_of_hor,newest_peaks,arg_min_hor_sort,lines_length_dels,lines_indexes_deleted=self.return_hor_spliter_by_index_for_without_verticals(peaks_neg_tot,x_min_hor_some,x_max_hor_some)
|
|
|
|
arg_org_hor_some_sort=arg_org_hor_some[arg_min_hor_sort]
|
|
|
|
|
|
start_index_of_hor_with_subset=[start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]#start_index_of_hor[lines_length_dels>0]
|
|
arg_min_hor_sort_with_subset=[arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
lines_indexes_deleted_with_subset=[lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
lines_length_dels_with_subset=[lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
|
|
arg_org_hor_some_sort_subset=[arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij]>0 ]
|
|
|
|
#arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0]
|
|
#lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0]
|
|
#lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vahid_subset=np.zeros((len(start_index_of_hor_with_subset),len(start_index_of_hor_with_subset)))-1
|
|
for kkk1 in range(len(start_index_of_hor_with_subset)):
|
|
|
|
|
|
index_del_sub=np.unique(lines_indexes_deleted_with_subset[kkk1])
|
|
|
|
for kkk2 in range(len(start_index_of_hor_with_subset)):
|
|
|
|
if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]):
|
|
vahid_subset[kkk1,kkk2]=kkk1
|
|
else:
|
|
pass
|
|
#print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0]))
|
|
|
|
|
|
|
|
# check the len of matrix if it has no length means that there is no spliter at all
|
|
|
|
if len(vahid_subset>0):
|
|
#print('hihoo')
|
|
|
|
|
|
# find parenets args
|
|
line_int=np.zeros(vahid_subset.shape[0])
|
|
|
|
childs_id=[]
|
|
arg_child=[]
|
|
for li in range(vahid_subset.shape[0]):
|
|
#print(vahid_subset[:,li])
|
|
if np.all(vahid_subset[:,li]==-1):
|
|
line_int[li]=-1
|
|
else:
|
|
line_int[li]=1
|
|
|
|
|
|
#childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1]
|
|
#helpi=[]
|
|
#for nad in range(len(childs_args_in)):
|
|
# helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]])
|
|
|
|
|
|
arg_child.append(arg_min_hor_sort_with_subset[li] )
|
|
|
|
|
|
|
|
|
|
|
|
#line_int=vahid_subset[0,:]
|
|
|
|
|
|
arg_parent=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
start_index_of_hor_parent=[start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
#arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
#arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
|
|
|
|
|
|
#arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
|
start_index_of_hor_child=[start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
|
|
|
|
|
|
|
|
|
|
cy_hor_some_sort=cy_hor_some[arg_parent]
|
|
|
|
|
|
|
|
|
|
|
|
#print(start_index_of_hor, lines_length_dels ,lines_indexes_deleted,'zartt')
|
|
|
|
#args_indexes=np.array(range(len(start_index_of_hor) ))
|
|
|
|
newest_y_spliter_tot=[]
|
|
|
|
for tj in range(len(newest_peaks)-1):
|
|
newest_y_spliter=[]
|
|
newest_y_spliter.append(spliter_y_new[i])
|
|
if tj in np.unique(start_index_of_hor_parent):
|
|
#print(cy_hor_some_sort)
|
|
cy_help=np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent)==tj]
|
|
cy_help_sort=np.sort(cy_help)
|
|
|
|
#print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
|
for mj in range(len(cy_help_sort)):
|
|
newest_y_spliter.append(cy_help_sort[mj])
|
|
newest_y_spliter.append(spliter_y_new[i+1])
|
|
|
|
newest_y_spliter_tot.append(newest_y_spliter)
|
|
|
|
|
|
|
|
|
|
else:
|
|
line_int=[]
|
|
newest_y_spliter_tot=[]
|
|
|
|
for tj in range(len(newest_peaks)-1):
|
|
newest_y_spliter=[]
|
|
newest_y_spliter.append(spliter_y_new[i])
|
|
|
|
newest_y_spliter.append(spliter_y_new[i+1])
|
|
|
|
newest_y_spliter_tot.append(newest_y_spliter)
|
|
|
|
|
|
|
|
# if line_int is all -1 means that big spliters have no child and we can easily go through
|
|
if np.all(np.array(line_int)==-1):
|
|
for j in range(len(newest_peaks)-1):
|
|
newest_y_spliter=newest_y_spliter_tot[j]
|
|
|
|
|
|
for n in range(len(newest_y_spliter)-1):
|
|
#print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa')
|
|
##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]])
|
|
##plt.show()
|
|
|
|
#print(matrix_new[:,0][ (matrix_new[:,9]==1 )])
|
|
for jvt in matrix_new[:,0][ (matrix_new[:,9]==1 ) & (matrix_new[:,6]> newest_y_spliter[n] ) & (matrix_new[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_new[:,1]) < newest_peaks[j+1] ) & (( matrix_new[:,1])> newest_peaks[j] ) ] :
|
|
pass
|
|
|
|
###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
|
#print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
#print( int(newest_y_spliter[n]),int(newest_y_spliter[n+1]),newest_peaks[j],newest_peaks[j+1] )
|
|
try:
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=7.)
|
|
except:
|
|
peaks_neg_fin_sub=[]
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
else:
|
|
for j in range(len(newest_peaks)-1):
|
|
|
|
|
|
newest_y_spliter=newest_y_spliter_tot[j]
|
|
|
|
if j in start_index_of_hor_parent:
|
|
|
|
x_min_ch=x_min_hor_some[arg_child]
|
|
x_max_ch=x_max_hor_some[arg_child]
|
|
cy_hor_some_sort_child=cy_hor_some[arg_child]
|
|
cy_hor_some_sort_child=np.sort(cy_hor_some_sort_child)
|
|
|
|
|
|
|
|
for n in range(len(newest_y_spliter)-1):
|
|
|
|
cy_child_in=cy_hor_some_sort_child[( cy_hor_some_sort_child>newest_y_spliter[n] ) & ( cy_hor_some_sort_child<newest_y_spliter[n+1] ) ]
|
|
|
|
if len(cy_child_in)>0:
|
|
try:
|
|
num_col_ch, peaks_neg_ch=self.find_num_col( regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=7.0)
|
|
except:
|
|
peaks_neg_ch=[]
|
|
#print(peaks_neg_ch,'mizzzz')
|
|
#peaks_neg_ch=[]
|
|
#for djh in range(len(peaks_neg_ch)):
|
|
# peaks_neg_ch.append( peaks_neg_ch[djh]+newest_peaks[j] )
|
|
|
|
peaks_neg_ch_tot=self.return_points_with_boundies(peaks_neg_ch,newest_peaks[j], newest_peaks[j+1])
|
|
|
|
|
|
ss_in_ch,nst_p_ch,arg_n_ch,lines_l_del_ch,lines_in_del_ch=self.return_hor_spliter_by_index_for_without_verticals(peaks_neg_ch_tot,x_min_ch,x_max_ch)
|
|
|
|
|
|
|
|
|
|
|
|
newest_y_spliter_ch_tot=[]
|
|
|
|
for tjj in range(len(nst_p_ch)-1):
|
|
newest_y_spliter_new=[]
|
|
newest_y_spliter_new.append(newest_y_spliter[n])
|
|
if tjj in np.unique(ss_in_ch):
|
|
|
|
|
|
#print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
|
|
for mjj in range(len(cy_child_in)):
|
|
newest_y_spliter_new.append(cy_child_in[mjj])
|
|
newest_y_spliter_new.append(newest_y_spliter[n+1])
|
|
|
|
newest_y_spliter_ch_tot.append(newest_y_spliter_new)
|
|
|
|
|
|
|
|
|
|
|
|
for jn in range(len(nst_p_ch)-1):
|
|
newest_y_spliter_h=newest_y_spliter_ch_tot[jn]
|
|
|
|
for nd in range(len(newest_y_spliter_h)-1):
|
|
|
|
matrix_new_new2=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter_h[nd] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter_h[nd+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < nst_p_ch[jn+1] ) & (( matrix_of_lines_ch[:,1]-500)>nst_p_ch[jn] ) ]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new2[:,9][matrix_new_new2[:,9]==1] )>0 and np.max(matrix_new_new2[:,8][matrix_new_new2[:,9]==1])>=0.2*(np.abs(newest_y_spliter_h[nd+1]-newest_y_spliter_h[nd] )):
|
|
try:
|
|
num_col_sub_ch, peaks_neg_fin_sub_ch=self.find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]):int(newest_y_spliter_h[nd+1]),nst_p_ch[jn]:nst_p_ch[jn+1]],multiplier=7.0)
|
|
except:
|
|
peaks_neg_fin_sub_ch=[]
|
|
|
|
else:
|
|
peaks_neg_fin_sub_ch=[]
|
|
|
|
peaks_sub_ch=[]
|
|
peaks_sub_ch.append(nst_p_ch[jn])
|
|
|
|
for kjj in range(len(peaks_neg_fin_sub_ch)):
|
|
peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj]+nst_p_ch[jn])
|
|
|
|
peaks_sub_ch.append(nst_p_ch[jn+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for khh in range(len(peaks_sub_ch)-1):
|
|
boxes.append([ peaks_sub_ch[khh], peaks_sub_ch[khh+1] ,newest_y_spliter_h[nd],newest_y_spliter_h[nd+1]])
|
|
|
|
|
|
|
|
else:
|
|
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
try:
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=7.0)
|
|
except:
|
|
peaks_neg_fin_sub=[]
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
for n in range(len(newest_y_spliter)-1):
|
|
|
|
|
|
#plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
|
|
#print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
|
|
matrix_new_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,9]==1 ) & (matrix_of_lines_ch[:,6]> newest_y_spliter[n] ) & (matrix_of_lines_ch[:,7]< newest_y_spliter[n+1] ) & ( ( matrix_of_lines_ch[:,1]+500) < newest_peaks[j+1] ) & (( matrix_of_lines_ch[:,1]-500)> newest_peaks[j] )]
|
|
#print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
|
|
if 1>0:#len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
|
|
try:
|
|
num_col_sub, peaks_neg_fin_sub=self.find_num_col(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]],multiplier=5.0)
|
|
except:
|
|
peaks_neg_fin_sub=[]
|
|
else:
|
|
peaks_neg_fin_sub=[]
|
|
|
|
peaks_sub=[]
|
|
peaks_sub.append(newest_peaks[j])
|
|
|
|
for kj in range(len(peaks_neg_fin_sub)):
|
|
peaks_sub.append(peaks_neg_fin_sub[kj]+newest_peaks[j])
|
|
|
|
peaks_sub.append(newest_peaks[j+1])
|
|
|
|
#peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
|
|
|
|
for kh in range(len(peaks_sub)-1):
|
|
boxes.append([ peaks_sub[kh], peaks_sub[kh+1] ,newest_y_spliter[n],newest_y_spliter[n+1]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
boxes.append([ 0, regions_without_seperators[:,:].shape[1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
|
|
|
|
|
return boxes
|
|
|
|
def return_boxes_of_images_by_order_of_reading_2cols(self,spliter_y_new,regions_without_seperators,matrix_of_lines_ch,seperators_closeup_n):
|
|
boxes=[]
|
|
|
|
|
|
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
|
|
# holes in the text and also finding spliter which covers more than one columns.
|
|
for i in range(len(spliter_y_new)-1):
|
|
#print(spliter_y_new[i],spliter_y_new[i+1])
|
|
matrix_new=matrix_of_lines_ch[:,:][ (matrix_of_lines_ch[:,6]> spliter_y_new[i] ) & (matrix_of_lines_ch[:,7]< spliter_y_new[i+1] ) ]
|
|
#print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
|
|
|
|
#print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
|
|
|
|
# check to see is there any vertical seperator to find holes.
|
|
if 1>0:#len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
|
|
#print(int(spliter_y_new[i]),int(spliter_y_new[i+1]),'burayaaaa galimiirrrrrrrrrrrrrrrrrrrrrrrrrrr')
|
|
#org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
|
|
#org_img_dichte=org_img_dichte-np.min(org_img_dichte)
|
|
##plt.figure(figsize=(20,20))
|
|
##plt.plot(org_img_dichte)
|
|
##plt.show()
|
|
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
|
|
|
|
try:
|
|
num_col, peaks_neg_fin=self.find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
|
|
|
|
|
|
except:
|
|
peaks_neg_fin=[]
|
|
num_col=0
|
|
|
|
peaks_neg_tot=self.return_points_with_boundies(peaks_neg_fin,0, seperators_closeup_n[:,:,0].shape[1])
|
|
|
|
for kh in range(len(peaks_neg_tot)-1):
|
|
boxes.append([ peaks_neg_tot[kh], peaks_neg_tot[kh+1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
|
|
|
else:
|
|
boxes.append([ 0, seperators_closeup_n[:,:,0].shape[1] ,spliter_y_new[i],spliter_y_new[i+1]])
|
|
|
|
|
|
|
|
return boxes
|
|
def return_hor_spliter_by_index(self,peaks_neg_fin_t,x_min_hor_some,x_max_hor_some):
|
|
|
|
arg_min_hor_sort=np.argsort(x_min_hor_some)
|
|
x_min_hor_some_sort=np.sort(x_min_hor_some)
|
|
x_max_hor_some_sort=x_max_hor_some[arg_min_hor_sort]
|
|
|
|
arg_minmax=np.array(range(len(peaks_neg_fin_t)))
|
|
indexer_lines=[]
|
|
indexes_to_delete=[]
|
|
indexer_lines_deletions_len=[]
|
|
indexr_uniq_ind=[]
|
|
for i in range(len(x_min_hor_some_sort)):
|
|
min_h=peaks_neg_fin_t-x_min_hor_some_sort[i]
|
|
max_h=peaks_neg_fin_t-x_max_hor_some_sort[i]
|
|
|
|
min_h[0]=min_h[0]#+20
|
|
max_h[len(max_h)-1]=max_h[len(max_h)-1]##-20
|
|
|
|
min_h_neg=arg_minmax[(min_h<0) & (np.abs(min_h)<360) ]
|
|
max_h_neg=arg_minmax[(max_h>=0) & (np.abs(max_h)<360) ]
|
|
|
|
if len(min_h_neg)>0 and len(max_h_neg)>0:
|
|
deletions=list(range(min_h_neg[0]+1,max_h_neg[0]))
|
|
unique_delets_int=[]
|
|
#print(deletions,len(deletions),'delii')
|
|
if len(deletions)>0:
|
|
#print(deletions,len(deletions),'delii2')
|
|
|
|
for j in range(len(deletions)):
|
|
indexes_to_delete.append(deletions[j])
|
|
#print(deletions,indexes_to_delete,'badiii')
|
|
unique_delets=np.unique(indexes_to_delete)
|
|
#print(min_h_neg[0],unique_delets)
|
|
unique_delets_int=unique_delets[unique_delets<min_h_neg[0]]
|
|
|
|
indexer_lines_deletions_len.append(len(deletions))
|
|
indexr_uniq_ind.append([deletions])
|
|
|
|
else:
|
|
indexer_lines_deletions_len.append(0)
|
|
indexr_uniq_ind.append(-999)
|
|
|
|
index_line_true=min_h_neg[0]-len(unique_delets_int)
|
|
#print(index_line_true)
|
|
if index_line_true>0 and min_h_neg[0]>=2:
|
|
index_line_true=index_line_true
|
|
else:
|
|
index_line_true=min_h_neg[0]
|
|
|
|
indexer_lines.append(index_line_true)
|
|
|
|
if len(unique_delets_int)>0:
|
|
for dd in range(len(unique_delets_int)):
|
|
indexes_to_delete.append(unique_delets_int[dd])
|
|
else:
|
|
indexer_lines.append(-999)
|
|
indexer_lines_deletions_len.append(-999)
|
|
indexr_uniq_ind.append(-999)
|
|
|
|
peaks_true=[]
|
|
for m in range(len(peaks_neg_fin_t)):
|
|
if m in indexes_to_delete:
|
|
pass
|
|
else:
|
|
peaks_true.append(peaks_neg_fin_t[m])
|
|
return indexer_lines,peaks_true,arg_min_hor_sort,indexer_lines_deletions_len,indexr_uniq_ind
|
|
def return_region_segmentation_after_implementing_not_head_maintext_parallel(self,image_regions_eraly_p,boxes):
|
|
image_revised=np.zeros((image_regions_eraly_p.shape[0] , image_regions_eraly_p.shape[1]))
|
|
for i in range(len(boxes)):
|
|
|
|
image_box=image_regions_eraly_p[int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][0]):int(boxes[i][1])]
|
|
image_box=np.array(image_box)
|
|
#plt.imshow(image_box)
|
|
#plt.show()
|
|
|
|
#print(int(boxes[i][2]),int(boxes[i][3]),int(boxes[i][0]),int(boxes[i][1]),'addaa')
|
|
image_box=self.implent_law_head_main_not_parallel(image_box)
|
|
image_box=self.implent_law_head_main_not_parallel(image_box)
|
|
image_box=self.implent_law_head_main_not_parallel(image_box)
|
|
|
|
image_revised[int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][0]):int(boxes[i][1])]=image_box[:,:]
|
|
return image_revised
|
|
|
|
def tear_main_texts_on_the_boundaries_of_boxes(self,img_revised_tab,boxes):
|
|
for i in range(len(boxes)):
|
|
img_revised_tab[ int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][1]-10):int(boxes[i][1]), 0][img_revised_tab[ int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][1]-10):int(boxes[i][1]), 0]==1]=0
|
|
img_revised_tab[ int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][1]-10):int(boxes[i][1]), 1][img_revised_tab[ int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][1]-10):int(boxes[i][1]), 1]==1]=0
|
|
img_revised_tab[ int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][1]-10):int(boxes[i][1]), 2][img_revised_tab[ int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][1]-10):int(boxes[i][1]), 2]==1]=0
|
|
return img_revised_tab
|
|
|
|
|
|
def implent_law_head_main_not_parallel(self,text_regions):
|
|
#print(text_regions.shape)
|
|
text_indexes=[1 , 2 ]# 1: main text , 2: header , 3: comments
|
|
|
|
|
|
for t_i in text_indexes:
|
|
textline_mask=(text_regions[:,:]==t_i)
|
|
textline_mask=textline_mask*255.0
|
|
|
|
textline_mask=textline_mask.astype(np.uint8)
|
|
textline_mask=np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2)
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
#print(type(textline_mask),np.unique(textline_mask),textline_mask.shape)
|
|
imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
if t_i==1:
|
|
contours_main,hirarchy=cv2.findContours(thresh.copy(), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
#print(type(contours_main))
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
#print(contours_main[0],np.shape(contours_main[0]),contours_main[0][:,0,0])
|
|
elif t_i==2:
|
|
contours_header,hirarchy=cv2.findContours(thresh.copy(), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
#print(type(contours_header))
|
|
areas_header=np.array([cv2.contourArea(contours_header[j]) for j in range(len(contours_header))])
|
|
M_header=[cv2.moments(contours_header[j]) for j in range(len(contours_header))]
|
|
cx_header=[(M_header[j]['m10']/(M_header[j]['m00']+1e-32)) for j in range(len(M_header))]
|
|
cy_header=[(M_header[j]['m01']/(M_header[j]['m00']+1e-32)) for j in range(len(M_header))]
|
|
|
|
x_min_header=np.array([np.min(contours_header[j][:,0,0]) for j in range(len(contours_header))])
|
|
x_max_header=np.array([np.max(contours_header[j][:,0,0]) for j in range(len(contours_header))])
|
|
|
|
y_min_header=np.array([np.min(contours_header[j][:,0,1]) for j in range(len(contours_header))])
|
|
y_max_header=np.array([np.max(contours_header[j][:,0,1]) for j in range(len(contours_header))])
|
|
|
|
args=np.array(range(1,len(cy_header)+1))
|
|
args_main=np.array(range(1,len(cy_main)+1))
|
|
for jj in range(len(contours_main)):
|
|
headers_in_main=[(cy_header>y_min_main[jj]) & ((cy_header<y_max_main[jj]))]
|
|
mains_in_main=[(cy_main>y_min_main[jj]) & ((cy_main<y_max_main[jj]))]
|
|
args_log=args*headers_in_main
|
|
res=args_log[args_log>0]
|
|
res_true=res-1
|
|
|
|
args_log_main=args_main*mains_in_main
|
|
res_main=args_log_main[args_log_main>0]
|
|
res_true_main=res_main-1
|
|
|
|
if len(res_true)>0:
|
|
sum_header=np.sum(areas_header[res_true])
|
|
sum_main=np.sum(areas_main[res_true_main])
|
|
if sum_main>sum_header:
|
|
cnt_int=[contours_header[j] for j in res_true]
|
|
text_regions=cv2.fillPoly(text_regions, pts =cnt_int, color=(1,1,1))
|
|
else:
|
|
cnt_int=[contours_main[j] for j in res_true_main]
|
|
text_regions=cv2.fillPoly(text_regions, pts =cnt_int, color=(2,2,2))
|
|
|
|
for jj in range(len(contours_header)):
|
|
main_in_header=[(cy_main>y_min_header[jj]) & ((cy_main<y_max_header[jj]))]
|
|
header_in_header=[(cy_header>y_min_header[jj]) & ((cy_header<y_max_header[jj]))]
|
|
args_log=args_main*main_in_header
|
|
res=args_log[args_log>0]
|
|
res_true=res-1
|
|
|
|
args_log_header=args*header_in_header
|
|
res_header=args_log_header[args_log_header>0]
|
|
res_true_header=res_header-1
|
|
|
|
if len(res_true)>0:
|
|
|
|
sum_header=np.sum(areas_header[res_true_header])
|
|
sum_main=np.sum(areas_main[res_true])
|
|
|
|
if sum_main>sum_header:
|
|
|
|
cnt_int=[contours_header[j] for j in res_true_header]
|
|
text_regions=cv2.fillPoly(text_regions, pts =cnt_int, color=(1,1,1))
|
|
else:
|
|
cnt_int=[contours_main[j] for j in res_true]
|
|
text_regions=cv2.fillPoly(text_regions, pts =cnt_int, color=(2,2,2))
|
|
|
|
|
|
|
|
|
|
return text_regions
|
|
|
|
def delete_seperator_around(self,spliter_y,peaks_neg,image_by_region):
|
|
# format of subboxes box=[x1, x2 , y1, y2]
|
|
|
|
if len(image_by_region.shape)==3:
|
|
for i in range(len(spliter_y)-1):
|
|
for j in range(1,len(peaks_neg[i])-1):
|
|
image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0]==6 ]=0
|
|
image_by_region[spliter_y[i]:spliter_y[i+1],peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),1]==6 ]=0
|
|
image_by_region[spliter_y[i]:spliter_y[i+1],peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),2]==6 ]=0
|
|
|
|
image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0]==7 ]=0
|
|
image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),1]==7 ]=0
|
|
image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),0][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j]),2]==7 ]=0
|
|
else:
|
|
for i in range(len(spliter_y)-1):
|
|
for j in range(1,len(peaks_neg[i])-1):
|
|
image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j])][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j])]==6 ]=0
|
|
|
|
image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j])][image_by_region[int(spliter_y[i]):int(spliter_y[i+1]),peaks_neg[i][j]-int(1./20.*peaks_neg[i][j]):peaks_neg[i][j]+int(1./20.*peaks_neg[i][j])]==7 ]=0
|
|
return image_by_region
|
|
|
|
def find_features_of_contoures(self,contours_main):
|
|
|
|
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
|
|
|
|
return y_min_main ,y_max_main
|
|
|
|
|
|
def add_tables_heuristic_to_layout(self,image_regions_eraly_p,boxes,slope_mean_hor,spliter_y,peaks_neg_tot,image_revised):
|
|
|
|
image_revised_1=self.delete_seperator_around(spliter_y,peaks_neg_tot,image_revised)
|
|
img_comm_e=np.zeros(image_revised_1.shape)
|
|
img_comm=np.repeat(img_comm_e[:, :, np.newaxis], 3, axis=2)
|
|
|
|
for indiv in np.unique(image_revised_1):
|
|
|
|
#print(indiv,'indd')
|
|
image_col=(image_revised_1==indiv)*255
|
|
img_comm_in=np.repeat(image_col[:, :, np.newaxis], 3, axis=2)
|
|
img_comm_in=img_comm_in.astype(np.uint8)
|
|
|
|
imgray = cv2.cvtColor(img_comm_in, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours,hirarchy=cv2.findContours(thresh.copy(), cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
main_contours=self.filter_contours_area_of_image_tables(thresh,contours,hirarchy,max_area=1,min_area=0.0001)
|
|
|
|
|
|
img_comm=cv2.fillPoly(img_comm, pts =main_contours, color=(indiv,indiv,indiv))
|
|
###img_comm_in=cv2.fillPoly(img_comm, pts =interior_contours, color=(0,0,0))
|
|
|
|
|
|
#img_comm=np.repeat(img_comm[:, :, np.newaxis], 3, axis=2)
|
|
img_comm=img_comm.astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
if not self.isNaN(slope_mean_hor):
|
|
image_revised_last=np.zeros((image_regions_eraly_p.shape[0] , image_regions_eraly_p.shape[1],3))
|
|
for i in range(len(boxes)):
|
|
|
|
|
|
image_box=img_comm[int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][0]):int(boxes[i][1]),:]
|
|
|
|
image_box_tabels_1=(image_box[:,:,0]==7)*1
|
|
|
|
|
|
|
|
|
|
|
|
contours_tab,_=self.return_contours_of_image(image_box_tabels_1)
|
|
|
|
contours_tab=self.filter_contours_area_of_image_tables(image_box_tabels_1,contours_tab,_,1,0.001)
|
|
|
|
image_box_tabels_1=(image_box[:,:,0]==6)*1
|
|
|
|
|
|
image_box_tabels_and_m_text=( (image_box[:,:,0]==7) | (image_box[:,:,0]==1) )*1
|
|
image_box_tabels_and_m_text=image_box_tabels_and_m_text.astype(np.uint8)
|
|
|
|
|
|
image_box_tabels_1=image_box_tabels_1.astype(np.uint8)
|
|
image_box_tabels_1 = cv2.dilate(image_box_tabels_1,self.kernel,iterations = 5)
|
|
|
|
|
|
|
|
|
|
contours_table_m_text,_=self.return_contours_of_image(image_box_tabels_and_m_text)
|
|
|
|
|
|
image_box_tabels=np.repeat(image_box_tabels_1[:, :, np.newaxis], 3, axis=2)
|
|
|
|
image_box_tabels=image_box_tabels.astype(np.uint8)
|
|
imgray = cv2.cvtColor(image_box_tabels, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours_line,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
y_min_main_line ,y_max_main_line=self.find_features_of_contoures(contours_line)
|
|
#_,_,y_min_main_line ,y_max_main_line,x_min_main_line,x_max_main_line=find_new_features_of_contoures(contours_line)
|
|
y_min_main_tab ,y_max_main_tab=self.find_features_of_contoures(contours_tab)
|
|
|
|
cx_tab_m_text,cy_tab_m_text ,x_min_tab_m_text , x_max_tab_m_text, y_min_tab_m_text ,y_max_tab_m_text=self.find_new_features_of_contoures(contours_table_m_text)
|
|
cx_tabl,cy_tabl ,x_min_tabl , x_max_tabl, y_min_tabl ,y_max_tabl,_=self.find_new_features_of_contoures(contours_tab)
|
|
|
|
|
|
if len(y_min_main_tab )>0:
|
|
y_down_tabs=[]
|
|
y_up_tabs=[]
|
|
|
|
for i_t in range(len(y_min_main_tab )):
|
|
y_down_tab=[]
|
|
y_up_tab=[]
|
|
for i_l in range(len(y_min_main_line)):
|
|
if y_min_main_tab[i_t]>y_min_main_line[i_l] and y_max_main_tab[i_t]>y_min_main_line[i_l] and y_min_main_tab[i_t]>y_max_main_line[i_l] and y_max_main_tab[i_t]>y_min_main_line[i_l]:
|
|
pass
|
|
elif y_min_main_tab[i_t]<y_max_main_line[i_l] and y_max_main_tab[i_t]<y_max_main_line[i_l] and y_max_main_tab[i_t]<y_min_main_line[i_l] and y_min_main_tab[i_t]<y_min_main_line[i_l]:
|
|
pass
|
|
elif np.abs(y_max_main_line[i_l]-y_min_main_line[i_l])<100:
|
|
pass
|
|
|
|
else:
|
|
y_up_tab.append(np.min([y_min_main_line[i_l], y_min_main_tab[i_t] ]) )
|
|
y_down_tab.append( np.max([ y_max_main_line[i_l],y_max_main_tab[i_t] ]) )
|
|
|
|
if len(y_up_tab)==0:
|
|
for v_n in range(len(cx_tab_m_text)):
|
|
if cx_tabl[i_t]<= x_max_tab_m_text[v_n] and cx_tabl[i_t]>= x_min_tab_m_text[v_n] and cy_tabl[i_t]<= y_max_tab_m_text[v_n] and cy_tabl[i_t]>= y_min_tab_m_text[v_n] and cx_tabl[i_t]!=cx_tab_m_text[v_n] and cy_tabl[i_t]!=cy_tab_m_text[v_n]:
|
|
y_up_tabs.append(y_min_tab_m_text[v_n])
|
|
y_down_tabs.append(y_max_tab_m_text[v_n])
|
|
#y_up_tabs.append(y_min_main_tab[i_t])
|
|
#y_down_tabs.append(y_max_main_tab[i_t])
|
|
else:
|
|
y_up_tabs.append(np.min(y_up_tab))
|
|
y_down_tabs.append(np.max(y_down_tab))
|
|
|
|
|
|
else:
|
|
y_down_tabs=[]
|
|
y_up_tabs=[]
|
|
pass
|
|
|
|
for ii in range(len(y_up_tabs)):
|
|
image_box[y_up_tabs[ii]:y_down_tabs[ii],:,0]=7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_revised_last[int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][0]):int(boxes[i][1]),:]=image_box[:,:,:]
|
|
|
|
|
|
else:
|
|
for i in range(len(boxes)):
|
|
|
|
image_box=img_comm[int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][0]):int(boxes[i][1]),:]
|
|
image_revised_last[int(boxes[i][2]):int(boxes[i][3]),int(boxes[i][0]):int(boxes[i][1]),:]=image_box[:,:,:]
|
|
|
|
##plt.figure(figsize=(20,20))
|
|
##plt.imshow(image_box[:,:,0])
|
|
##plt.show()
|
|
return image_revised_last
|
|
def find_features_of_contours(self,contours_main):
|
|
|
|
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
|
|
|
|
|
|
return y_min_main ,y_max_main,areas_main
|
|
def remove_headers_and_mains_intersection(self,seperators_closeup_n,img_revised_tab,boxes):
|
|
for ind in range(len(boxes)):
|
|
asp=np.zeros((img_revised_tab[:,:,0].shape[0],seperators_closeup_n[:,:,0].shape[1]))
|
|
asp[ int(boxes[ind][2]):int(boxes[ind][3]),int(boxes[ind][0]):int(boxes[ind][1])] = img_revised_tab[ int(boxes[ind][2]):int(boxes[ind][3]),int(boxes[ind][0]):int(boxes[ind][1]),0]
|
|
|
|
head_patch_con=( asp[:,:]==2)*1
|
|
main_patch_con=( asp[:,:]==1)*1
|
|
#print(head_patch_con)
|
|
head_patch_con=head_patch_con.astype(np.uint8)
|
|
main_patch_con=main_patch_con.astype(np.uint8)
|
|
|
|
head_patch_con=np.repeat(head_patch_con[:, :, np.newaxis], 3, axis=2)
|
|
main_patch_con=np.repeat(main_patch_con[:, :, np.newaxis], 3, axis=2)
|
|
|
|
imgray = cv2.cvtColor(head_patch_con, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours_head_patch_con,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
contours_head_patch_con=self.return_parent_contours(contours_head_patch_con,hiearchy)
|
|
|
|
imgray = cv2.cvtColor(main_patch_con, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours_main_patch_con,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
contours_main_patch_con=self.return_parent_contours(contours_main_patch_con,hiearchy)
|
|
|
|
|
|
y_patch_head_min, y_patch_head_max,_= self.find_features_of_contours(contours_head_patch_con)
|
|
y_patch_main_min, y_patch_main_max,_= self.find_features_of_contours(contours_main_patch_con)
|
|
|
|
|
|
for i in range(len(y_patch_head_min)):
|
|
for j in range(len(y_patch_main_min)):
|
|
if y_patch_head_max[i]>y_patch_main_min[j] and y_patch_head_min[i]<y_patch_main_min[j]:
|
|
y_down=y_patch_head_max[i]
|
|
y_up=y_patch_main_min[j]
|
|
|
|
patch_intersection=np.zeros(asp.shape)
|
|
patch_intersection[y_up:y_down,:]=asp[y_up:y_down,:]
|
|
|
|
|
|
head_patch_con=( patch_intersection[:,:]==2)*1
|
|
main_patch_con=( patch_intersection[:,:]==1)*1
|
|
head_patch_con=head_patch_con.astype(np.uint8)
|
|
main_patch_con=main_patch_con.astype(np.uint8)
|
|
|
|
head_patch_con=np.repeat(head_patch_con[:, :, np.newaxis], 3, axis=2)
|
|
main_patch_con=np.repeat(main_patch_con[:, :, np.newaxis], 3, axis=2)
|
|
|
|
imgray = cv2.cvtColor(head_patch_con, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours_head_patch_con,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
contours_head_patch_con=self.return_parent_contours(contours_head_patch_con,hiearchy)
|
|
|
|
imgray = cv2.cvtColor(main_patch_con, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours_main_patch_con,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
contours_main_patch_con=self.return_parent_contours(contours_main_patch_con,hiearchy)
|
|
|
|
_,_,areas_head= self.find_features_of_contours(contours_head_patch_con)
|
|
_,_,areas_main= self.find_features_of_contours(contours_main_patch_con)
|
|
|
|
if np.sum(areas_head)>np.sum(areas_main):
|
|
img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0][img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0]==1 ]=2
|
|
else:
|
|
img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0][img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0]==2 ]=1
|
|
|
|
|
|
|
|
elif y_patch_head_min[i]<y_patch_main_max[j] and y_patch_head_max[i]>y_patch_main_max[j]:
|
|
y_down=y_patch_main_max[j]
|
|
y_up=y_patch_head_min[i]
|
|
|
|
patch_intersection=np.zeros(asp.shape)
|
|
patch_intersection[y_up:y_down,:]=asp[y_up:y_down,:]
|
|
|
|
|
|
head_patch_con=( patch_intersection[:,:]==2)*1
|
|
main_patch_con=( patch_intersection[:,:]==1)*1
|
|
head_patch_con=head_patch_con.astype(np.uint8)
|
|
main_patch_con=main_patch_con.astype(np.uint8)
|
|
|
|
head_patch_con=np.repeat(head_patch_con[:, :, np.newaxis], 3, axis=2)
|
|
main_patch_con=np.repeat(main_patch_con[:, :, np.newaxis], 3, axis=2)
|
|
|
|
imgray = cv2.cvtColor(head_patch_con, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours_head_patch_con,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
contours_head_patch_con=self.return_parent_contours(contours_head_patch_con,hiearchy)
|
|
|
|
imgray = cv2.cvtColor(main_patch_con, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
|
|
contours_main_patch_con,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
contours_main_patch_con=self.return_parent_contours(contours_main_patch_con,hiearchy)
|
|
|
|
_,_,areas_head= self.find_features_of_contours(contours_head_patch_con)
|
|
_,_,areas_main= self.find_features_of_contours(contours_main_patch_con)
|
|
|
|
if np.sum(areas_head)>np.sum(areas_main):
|
|
img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0][img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0]==1 ]=2
|
|
else:
|
|
img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0][img_revised_tab[y_up:y_down,int(boxes[ind][0]):int(boxes[ind][1]),0]==2 ]=1
|
|
|
|
|
|
|
|
#print(np.unique(patch_intersection) )
|
|
##plt.figure(figsize=(20,20))
|
|
##plt.imshow(patch_intersection)
|
|
##plt.show()
|
|
else:
|
|
pass
|
|
|
|
return img_revised_tab
|
|
|
|
def order_of_regions(self,textline_mask,contours_main,contours_header, y_ref):
|
|
|
|
##plt.imshow(textline_mask)
|
|
##plt.show()
|
|
"""
|
|
print(len(contours_main),'contours_main')
|
|
mada_n=textline_mask.sum(axis=1)
|
|
y=mada_n[:]
|
|
|
|
y_help=np.zeros(len(y)+40)
|
|
y_help[20:len(y)+20]=y
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
|
|
##plt.imshow(textline_mask[:,:])
|
|
##plt.show()
|
|
|
|
|
|
sigma_gaus=8
|
|
|
|
z= gaussian_filter1d(y_help, sigma_gaus)
|
|
zneg_rev=-y_help+np.max(y_help)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
zneg= gaussian_filter1d(zneg, sigma_gaus)
|
|
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
peaks_neg=peaks_neg-20-20
|
|
peaks=peaks-20
|
|
"""
|
|
|
|
textline_sum_along_width=textline_mask.sum(axis=1)
|
|
|
|
y=textline_sum_along_width[:]
|
|
y_padded=np.zeros(len(y)+40)
|
|
y_padded[20:len(y)+20]=y
|
|
x=np.array( range(len(y)) )
|
|
|
|
|
|
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
|
|
|
|
|
|
sigma_gaus=8
|
|
|
|
z= gaussian_filter1d(y_padded, sigma_gaus)
|
|
zneg_rev=-y_padded+np.max(y_padded)
|
|
|
|
zneg=np.zeros(len(zneg_rev)+40)
|
|
zneg[20:len(zneg_rev)+20]=zneg_rev
|
|
zneg= gaussian_filter1d(zneg, sigma_gaus)
|
|
|
|
|
|
peaks, _ = find_peaks(z, height=0)
|
|
peaks_neg, _ = find_peaks(zneg, height=0)
|
|
|
|
peaks_neg=peaks_neg-20-20
|
|
peaks=peaks-20
|
|
|
|
|
|
##plt.plot(z)
|
|
##plt.show()
|
|
|
|
if contours_main!=None:
|
|
areas_main=np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
|
|
M_main=[cv2.moments(contours_main[j]) for j in range(len(contours_main))]
|
|
cx_main=[(M_main[j]['m10']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
cy_main=[(M_main[j]['m01']/(M_main[j]['m00']+1e-32)) for j in range(len(M_main))]
|
|
x_min_main=np.array([np.min(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
x_max_main=np.array([np.max(contours_main[j][:,0,0]) for j in range(len(contours_main))])
|
|
|
|
y_min_main=np.array([np.min(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
y_max_main=np.array([np.max(contours_main[j][:,0,1]) for j in range(len(contours_main))])
|
|
|
|
if len(contours_header)!=None:
|
|
areas_header=np.array([cv2.contourArea(contours_header[j]) for j in range(len(contours_header))])
|
|
M_header=[cv2.moments(contours_header[j]) for j in range(len(contours_header))]
|
|
cx_header=[(M_header[j]['m10']/(M_header[j]['m00']+1e-32)) for j in range(len(M_header))]
|
|
cy_header=[(M_header[j]['m01']/(M_header[j]['m00']+1e-32)) for j in range(len(M_header))]
|
|
|
|
x_min_header=np.array([np.min(contours_header[j][:,0,0]) for j in range(len(contours_header))])
|
|
x_max_header=np.array([np.max(contours_header[j][:,0,0]) for j in range(len(contours_header))])
|
|
|
|
y_min_header=np.array([np.min(contours_header[j][:,0,1]) for j in range(len(contours_header))])
|
|
y_max_header=np.array([np.max(contours_header[j][:,0,1]) for j in range(len(contours_header))])
|
|
#print(cy_main,'mainy')
|
|
|
|
peaks_neg_new=[]
|
|
|
|
peaks_neg_new.append(0+y_ref)
|
|
for iii in range(len(peaks_neg)):
|
|
peaks_neg_new.append(peaks_neg[iii]+y_ref)
|
|
|
|
peaks_neg_new.append(textline_mask.shape[0]+y_ref)
|
|
|
|
|
|
if len(cy_main)>0 and np.max(cy_main)>np.max(peaks_neg_new):
|
|
cy_main=np.array(cy_main)*(np.max(peaks_neg_new)/np.max(cy_main) )-10
|
|
|
|
|
|
|
|
|
|
if contours_main!=None:
|
|
indexer_main=np.array(range(len(contours_main)))
|
|
|
|
|
|
if contours_main!=None:
|
|
len_main=len(contours_main)
|
|
else:
|
|
len_main=0
|
|
|
|
|
|
matrix_of_orders=np.zeros((len(contours_main)+len(contours_header),5))
|
|
|
|
matrix_of_orders[:,0]=np.array( range( len(contours_main)+len(contours_header) ) )
|
|
|
|
matrix_of_orders[:len(contours_main),1]=1
|
|
matrix_of_orders[len(contours_main):,1]=2
|
|
|
|
matrix_of_orders[:len(contours_main),2]=cx_main
|
|
matrix_of_orders[len(contours_main):,2]=cx_header
|
|
|
|
matrix_of_orders[:len(contours_main),3]=cy_main
|
|
matrix_of_orders[len(contours_main):,3]=cy_header
|
|
|
|
|
|
matrix_of_orders[:len(contours_main),4]=np.array( range( len(contours_main) ) )
|
|
matrix_of_orders[len(contours_main):,4]=np.array( range( len(contours_header) ) )
|
|
|
|
|
|
|
|
|
|
#print(peaks_neg_new,'peaks_neg_new')
|
|
|
|
#print(matrix_of_orders,'matrix_of_orders')
|
|
#print(peaks_neg_new,np.max(peaks_neg_new))
|
|
final_indexers_sorted=[]
|
|
final_types=[]
|
|
final_index_type=[]
|
|
for i in range(len(peaks_neg_new)-1):
|
|
top=peaks_neg_new[i]
|
|
down=peaks_neg_new[i+1]
|
|
|
|
#print(top,down,'topdown')
|
|
|
|
indexes_in=matrix_of_orders[:,0][(matrix_of_orders[:,3]>=top) & ((matrix_of_orders[:,3]<down))]
|
|
cxs_in=matrix_of_orders[:,2][(matrix_of_orders[:,3]>=top) & ((matrix_of_orders[:,3]<down))]
|
|
cys_in=matrix_of_orders[:,3][(matrix_of_orders[:,3]>=top) & ((matrix_of_orders[:,3]<down))]
|
|
types_of_text=matrix_of_orders[:,1][(matrix_of_orders[:,3]>=top) & ((matrix_of_orders[:,3]<down))]
|
|
index_types_of_text=matrix_of_orders[:,4][(matrix_of_orders[:,3]>=top) & ((matrix_of_orders[:,3]<down))]
|
|
|
|
#print(top,down)
|
|
#print(cys_in,'cyyyins')
|
|
#print(indexes_in,'indexes')
|
|
sorted_inside=np.argsort(cxs_in)
|
|
|
|
ind_in_int=indexes_in[sorted_inside]
|
|
ind_in_type=types_of_text[sorted_inside]
|
|
ind_ind_type=index_types_of_text[sorted_inside]
|
|
|
|
for j in range(len(ind_in_int)):
|
|
final_indexers_sorted.append(int(ind_in_int[j]) )
|
|
final_types.append(int(ind_in_type[j]))
|
|
final_index_type.append(int(ind_ind_type[j]))
|
|
|
|
##matrix_of_orders[:len_main,4]=final_indexers_sorted[:]
|
|
|
|
#print(peaks_neg_new,'peaks')
|
|
#print(final_indexers_sorted,'indexsorted')
|
|
#print(final_types,'types')
|
|
#print(final_index_type,'final_index_type')
|
|
|
|
return final_indexers_sorted, matrix_of_orders,final_types,final_index_type
|
|
|
|
|
|
|
|
|
|
def order_and_id_of_texts(self,found_polygons_text_region ,found_polygons_text_region_h,matrix_of_orders ,indexes_sorted,index_of_types, kind_of_texts, ref_point ):
|
|
indexes_sorted=np.array(indexes_sorted)
|
|
index_of_types=np.array(index_of_types)
|
|
kind_of_texts=np.array(kind_of_texts)
|
|
|
|
id_of_texts=[]
|
|
order_of_texts=[]
|
|
|
|
index_of_types_1=index_of_types[kind_of_texts==1]
|
|
indexes_sorted_1=indexes_sorted[kind_of_texts==1]
|
|
|
|
|
|
|
|
index_of_types_2=index_of_types[kind_of_texts==2]
|
|
indexes_sorted_2=indexes_sorted[kind_of_texts==2]
|
|
|
|
##print(index_of_types,'index_of_types')
|
|
##print(kind_of_texts,'kind_of_texts')
|
|
##print(len(found_polygons_text_region),'found_polygons_text_region')
|
|
##print(index_of_types_1,'index_of_types_1')
|
|
##print(indexes_sorted_1,'indexes_sorted_1')
|
|
index_b=0+ref_point
|
|
for mm in range(len(found_polygons_text_region)):
|
|
|
|
id_of_texts.append('r'+str(index_b) )
|
|
interest=indexes_sorted_1[indexes_sorted_1==index_of_types_1[mm] ]
|
|
|
|
if len(interest)>0:
|
|
order_of_texts.append(interest[0])
|
|
index_b+=1
|
|
else:
|
|
pass
|
|
|
|
for mm in range(len(found_polygons_text_region_h)):
|
|
id_of_texts.append('r'+str(index_b) )
|
|
interest=indexes_sorted_2[index_of_types_2[mm]]
|
|
order_of_texts.append(interest)
|
|
index_b+=1
|
|
|
|
return order_of_texts, id_of_texts
|
|
|
|
|
|
def get_text_region_boxes_by_given_contours(self,contours):
|
|
|
|
|
|
kernel = np.ones((5,5),np.uint8)
|
|
boxes=[]
|
|
contours_new=[]
|
|
for jj in range(len(contours)):
|
|
x,y,w,h = cv2.boundingRect(contours[jj])
|
|
|
|
boxes.append([x,y,w,h])
|
|
contours_new.append(contours[jj])
|
|
|
|
del contours
|
|
return boxes,contours_new
|
|
|
|
|
|
def return_teilwiese_deskewed_lines(self,text_regions_p,textline_rotated):
|
|
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
textline_rotated = cv2.erode(textline_rotated, kernel, iterations=1)
|
|
|
|
textline_rotated_new=np.zeros(textline_rotated.shape)
|
|
rgb_m=1
|
|
rgb_h=2
|
|
|
|
cnt_m,boxes_m=self.return_contours_of_interested_region_and_bounding_box(text_regions_p,rgb_m)
|
|
cnt_h,boxes_h=self.return_contours_of_interested_region_and_bounding_box(text_regions_p,rgb_h)
|
|
|
|
areas_cnt_m=np.array([cv2.contourArea(cnt_m[j]) for j in range(len(cnt_m))])
|
|
|
|
argmax=np.argmax(areas_cnt_m)
|
|
|
|
#plt.imshow(textline_rotated[ boxes_m[argmax][1]:boxes_m[argmax][1]+boxes_m[argmax][3] ,boxes_m[argmax][0]:boxes_m[argmax][0]+boxes_m[argmax][2]])
|
|
#plt.show()
|
|
|
|
|
|
|
|
for argmax in range(len(boxes_m)):
|
|
|
|
textline_text_region=textline_rotated[ boxes_m[argmax][1]:boxes_m[argmax][1]+boxes_m[argmax][3] ,boxes_m[argmax][0]:boxes_m[argmax][0]+boxes_m[argmax][2] ]
|
|
|
|
textline_text_region_revised=self.seperate_lines_new(textline_text_region,0)
|
|
#except:
|
|
# textline_text_region_revised=textline_rotated[ boxes_m[argmax][1]:boxes_m[argmax][1]+boxes_m[argmax][3] ,boxes_m[argmax][0]:boxes_m[argmax][0]+boxes_m[argmax][2] ]
|
|
textline_rotated_new[boxes_m[argmax][1]:boxes_m[argmax][1]+boxes_m[argmax][3] ,boxes_m[argmax][0]:boxes_m[argmax][0]+boxes_m[argmax][2]]=textline_text_region_revised[:,:]
|
|
|
|
#textline_rotated_new[textline_rotated_new>0]=1
|
|
#textline_rotated_new[textline_rotated_new<0]=0
|
|
#plt.imshow(textline_rotated_new)
|
|
#plt.show()
|
|
def return_contours_of_interested_region_and_bounding_box(self,region_pre_p,pixel):
|
|
|
|
# pixels of images are identified by 5
|
|
cnts_images=(region_pre_p[:,:,0]==pixel)*1
|
|
cnts_images=cnts_images.astype(np.uint8)
|
|
cnts_images=np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_imgs,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
contours_imgs=self.return_parent_contours(contours_imgs,hiearchy)
|
|
contours_imgs=self.filter_contours_area_of_image_tables(thresh,contours_imgs,hiearchy,max_area=1,min_area=0.0003)
|
|
|
|
boxes = []
|
|
|
|
for jj in range(len(contours_imgs)):
|
|
x, y, w, h = cv2.boundingRect(contours_imgs[jj])
|
|
boxes.append([int(x), int(y), int(w), int(h)])
|
|
return contours_imgs,boxes
|
|
def find_number_of_columns_in_document(self,region_pre_p,num_col_classifier,pixel_lines,contours_h=None):
|
|
|
|
seperators_closeup=( (region_pre_p[:,:,:]==pixel_lines))*1
|
|
|
|
seperators_closeup[0:110,:,:]=0
|
|
seperators_closeup[seperators_closeup.shape[0]-150:,:,:]=0
|
|
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
seperators_closeup=seperators_closeup.astype(np.uint8)
|
|
seperators_closeup = cv2.dilate(seperators_closeup,kernel,iterations = 1)
|
|
seperators_closeup = cv2.erode(seperators_closeup,kernel,iterations = 1)
|
|
|
|
##plt.imshow(seperators_closeup[:,:,0])
|
|
##plt.show()
|
|
seperators_closeup_new=np.zeros((seperators_closeup.shape[0] ,seperators_closeup.shape[1] ))
|
|
|
|
|
|
|
|
##_,seperators_closeup_n=self.combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(region_pre_p[:,:,0])
|
|
seperators_closeup_n=np.copy(seperators_closeup)
|
|
|
|
seperators_closeup_n=seperators_closeup_n.astype(np.uint8)
|
|
##plt.imshow(seperators_closeup_n[:,:,0])
|
|
##plt.show()
|
|
|
|
seperators_closeup_n_binary=np.zeros(( seperators_closeup_n.shape[0],seperators_closeup_n.shape[1]) )
|
|
seperators_closeup_n_binary[:,:]=seperators_closeup_n[:,:,0]
|
|
|
|
seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]!=0]=1
|
|
#seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==0]=255
|
|
#seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==-255]=0
|
|
|
|
|
|
#seperators_closeup_n_binary=(seperators_closeup_n_binary[:,:]==2)*1
|
|
|
|
#gray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY)
|
|
|
|
#print(np.unique(seperators_closeup_n_binary))
|
|
|
|
##plt.imshow(seperators_closeup_n_binary)
|
|
##plt.show()
|
|
|
|
|
|
#print( np.unique(gray),np.unique(seperators_closeup_n[:,:,1]) )
|
|
|
|
gray = cv2.bitwise_not(seperators_closeup_n_binary)
|
|
gray=gray.astype(np.uint8)
|
|
|
|
|
|
##plt.imshow(gray)
|
|
##plt.show()
|
|
bw = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, \
|
|
cv2.THRESH_BINARY, 15, -2)
|
|
##plt.imshow(bw[:,:])
|
|
##plt.show()
|
|
|
|
horizontal = np.copy(bw)
|
|
vertical = np.copy(bw)
|
|
|
|
cols = horizontal.shape[1]
|
|
horizontal_size = cols // 30
|
|
# Create structure element for extracting horizontal lines through morphology operations
|
|
horizontalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontal_size, 1))
|
|
# Apply morphology operations
|
|
horizontal = cv2.erode(horizontal, horizontalStructure)
|
|
horizontal = cv2.dilate(horizontal, horizontalStructure)
|
|
|
|
kernel = np.ones((5,5),np.uint8)
|
|
|
|
|
|
horizontal = cv2.dilate(horizontal,kernel,iterations = 2)
|
|
horizontal = cv2.erode(horizontal,kernel,iterations = 2)
|
|
#plt.imshow(horizontal)
|
|
#plt.show()
|
|
|
|
rows = vertical.shape[0]
|
|
verticalsize = rows // 30
|
|
# Create structure element for extracting vertical lines through morphology operations
|
|
verticalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, verticalsize))
|
|
# Apply morphology operations
|
|
vertical = cv2.erode(vertical, verticalStructure)
|
|
vertical = cv2.dilate(vertical, verticalStructure)
|
|
|
|
vertical = cv2.dilate(vertical,kernel,iterations = 1)
|
|
# Show extracted vertical lines
|
|
|
|
horizontal,special_seperators=self.combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(vertical,horizontal)
|
|
|
|
|
|
##plt.imshow(vertical)
|
|
##plt.show()
|
|
#print(vertical.shape,np.unique(vertical),'verticalvertical')
|
|
seperators_closeup_new[:,:][vertical[:,:]!=0]=1
|
|
seperators_closeup_new[:,:][horizontal[:,:]!=0]=1
|
|
|
|
##plt.imshow(seperators_closeup_new)
|
|
##plt.show()
|
|
##seperators_closeup_n
|
|
vertical=np.repeat(vertical[:, :, np.newaxis], 3, axis=2)
|
|
vertical=vertical.astype(np.uint8)
|
|
|
|
##plt.plot(vertical[:,:,0].sum(axis=0))
|
|
##plt.show()
|
|
|
|
#plt.plot(vertical[:,:,0].sum(axis=1))
|
|
#plt.show()
|
|
|
|
imgray = cv2.cvtColor(vertical, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_line_vers,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=self.find_features_of_lines(contours_line_vers)
|
|
#print(slope_lines,'vertical')
|
|
args=np.array( range(len(slope_lines) ))
|
|
args_ver=args[slope_lines==1]
|
|
dist_x_ver=dist_x[slope_lines==1]
|
|
y_min_main_ver=y_min_main[slope_lines==1]
|
|
y_max_main_ver=y_max_main[slope_lines==1]
|
|
x_min_main_ver=x_min_main[slope_lines==1]
|
|
x_max_main_ver=x_max_main[slope_lines==1]
|
|
cx_main_ver=cx_main[slope_lines==1]
|
|
dist_y_ver=y_max_main_ver-y_min_main_ver
|
|
len_y=seperators_closeup.shape[0]/3.0
|
|
|
|
|
|
#plt.imshow(horizontal)
|
|
#plt.show()
|
|
|
|
horizontal=np.repeat(horizontal[:, :, np.newaxis], 3, axis=2)
|
|
horizontal=horizontal.astype(np.uint8)
|
|
imgray = cv2.cvtColor(horizontal, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_line_hors,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=self.find_features_of_lines(contours_line_hors)
|
|
|
|
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
|
args=np.array( range(len(slope_lines) ))
|
|
len_x=seperators_closeup.shape[1]/5.0
|
|
|
|
dist_y=np.abs(y_max_main-y_min_main)
|
|
|
|
args_hor=args[slope_lines==0]
|
|
dist_x_hor=dist_x[slope_lines==0]
|
|
y_min_main_hor=y_min_main[slope_lines==0]
|
|
y_max_main_hor=y_max_main[slope_lines==0]
|
|
x_min_main_hor=x_min_main[slope_lines==0]
|
|
x_max_main_hor=x_max_main[slope_lines==0]
|
|
dist_y_hor=dist_y[slope_lines==0]
|
|
cy_main_hor=cy_main[slope_lines==0]
|
|
|
|
args_hor=args_hor[dist_x_hor>=len_x/2.0]
|
|
x_max_main_hor=x_max_main_hor[dist_x_hor>=len_x/2.0]
|
|
x_min_main_hor=x_min_main_hor[dist_x_hor>=len_x/2.0]
|
|
cy_main_hor=cy_main_hor[dist_x_hor>=len_x/2.0]
|
|
y_min_main_hor=y_min_main_hor[dist_x_hor>=len_x/2.0]
|
|
y_max_main_hor=y_max_main_hor[dist_x_hor>=len_x/2.0]
|
|
dist_y_hor=dist_y_hor[dist_x_hor>=len_x/2.0]
|
|
|
|
slope_lines_org_hor=slope_lines_org_hor[dist_x_hor>=len_x/2.0]
|
|
dist_x_hor=dist_x_hor[dist_x_hor>=len_x/2.0]
|
|
|
|
|
|
matrix_of_lines_ch=np.zeros((len(cy_main_hor)+len(cx_main_ver),10))
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),0]=args_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,0]=args_ver
|
|
|
|
|
|
matrix_of_lines_ch[len(cy_main_hor):,1]=cx_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),2]=x_min_main_hor+50#x_min_main_hor+150
|
|
matrix_of_lines_ch[len(cy_main_hor):,2]=x_min_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),3]=x_max_main_hor-50#x_max_main_hor-150
|
|
matrix_of_lines_ch[len(cy_main_hor):,3]=x_max_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),4]=dist_x_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,4]=dist_x_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),5]=cy_main_hor
|
|
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),6]=y_min_main_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,6]=y_min_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),7]=y_max_main_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,7]=y_max_main_ver
|
|
|
|
matrix_of_lines_ch[:len(cy_main_hor),8]=dist_y_hor
|
|
matrix_of_lines_ch[len(cy_main_hor):,8]=dist_y_ver
|
|
|
|
|
|
matrix_of_lines_ch[len(cy_main_hor):,9]=1
|
|
|
|
|
|
|
|
if contours_h is not None:
|
|
slope_lines_head,dist_x_head, x_min_main_head ,x_max_main_head ,cy_main_head,slope_lines_org_head,y_min_main_head, y_max_main_head, cx_main_head=self.find_features_of_lines(contours_h)
|
|
matrix_l_n=np.zeros((matrix_of_lines_ch.shape[0]+len(cy_main_head),matrix_of_lines_ch.shape[1]))
|
|
matrix_l_n[:matrix_of_lines_ch.shape[0],:]=np.copy(matrix_of_lines_ch[:,:])
|
|
args_head=np.array(range(len(cy_main_head)))+len(cy_main_hor)
|
|
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,0]=args_head
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,2]=x_min_main_head+30
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,3]=x_max_main_head-30
|
|
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,4]=dist_x_head
|
|
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,5]=y_min_main_head-3-8
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,6]=y_min_main_head-5-8
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,7]=y_min_main_head+1-8
|
|
matrix_l_n[matrix_of_lines_ch.shape[0]:,8]=4
|
|
|
|
matrix_of_lines_ch=np.copy(matrix_l_n)
|
|
|
|
#print(matrix_of_lines_ch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
seperators_closeup=seperators_closeup.astype(np.uint8)
|
|
imgray = cv2.cvtColor(seperators_closeup, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_lines,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=self.find_features_of_lines(contours_lines)
|
|
|
|
slope_lines_org_hor=slope_lines_org[slope_lines==0]
|
|
args=np.array( range(len(slope_lines) ))
|
|
len_x=seperators_closeup.shape[1]/4.0
|
|
|
|
args_hor=args[slope_lines==0]
|
|
dist_x_hor=dist_x[slope_lines==0]
|
|
x_min_main_hor=x_min_main[slope_lines==0]
|
|
x_max_main_hor=x_max_main[slope_lines==0]
|
|
cy_main_hor=cy_main[slope_lines==0]
|
|
|
|
args_hor=args_hor[dist_x_hor>=len_x/2.0]
|
|
x_max_main_hor=x_max_main_hor[dist_x_hor>=len_x/2.0]
|
|
x_min_main_hor=x_min_main_hor[dist_x_hor>=len_x/2.0]
|
|
cy_main_hor=cy_main_hor[dist_x_hor>=len_x/2.0]
|
|
slope_lines_org_hor=slope_lines_org_hor[dist_x_hor>=len_x/2.0]
|
|
|
|
|
|
slope_lines_org_hor=slope_lines_org_hor[np.abs(slope_lines_org_hor)<1.2]
|
|
slope_mean_hor=np.mean(slope_lines_org_hor)
|
|
|
|
|
|
|
|
args_ver=args[slope_lines==1]
|
|
y_min_main_ver=y_min_main[slope_lines==1]
|
|
y_max_main_ver=y_max_main[slope_lines==1]
|
|
x_min_main_ver=x_min_main[slope_lines==1]
|
|
x_max_main_ver=x_max_main[slope_lines==1]
|
|
cx_main_ver=cx_main[slope_lines==1]
|
|
dist_y_ver=y_max_main_ver-y_min_main_ver
|
|
len_y=seperators_closeup.shape[0]/3.0
|
|
|
|
|
|
|
|
print(matrix_of_lines_ch[:,8][matrix_of_lines_ch[:,9]==0],'khatlarrrr')
|
|
args_main_spliters=matrix_of_lines_ch[:,0][ (matrix_of_lines_ch[:,9]==0) & ((matrix_of_lines_ch[:,8]<=290)) & ((matrix_of_lines_ch[:,2]<=.16*region_pre_p.shape[1])) & ((matrix_of_lines_ch[:,3]>=.84*region_pre_p.shape[1]))]
|
|
|
|
cy_main_spliters=matrix_of_lines_ch[:,5][ (matrix_of_lines_ch[:,9]==0) & ((matrix_of_lines_ch[:,8]<=290)) & ((matrix_of_lines_ch[:,2]<=.16*region_pre_p.shape[1])) & ((matrix_of_lines_ch[:,3]>=.84*region_pre_p.shape[1]))]
|
|
"""
|
|
|
|
cy_main_spliters=cy_main_hor[ (x_min_main_hor<=.16*region_pre_p.shape[1]) & (x_max_main_hor>=.84*region_pre_p.shape[1] )]
|
|
|
|
cy_main_spliters=np.array( list(cy_main_spliters)+list(special_seperators))
|
|
|
|
if contours_h is not None:
|
|
try:
|
|
cy_main_spliters_head=cy_main_head[ (x_min_main_head<=.16*region_pre_p.shape[1]) & (x_max_main_head>=.84*region_pre_p.shape[1] )]
|
|
cy_main_spliters=np.array( list(cy_main_spliters)+list(cy_main_spliters_head))
|
|
except:
|
|
pass
|
|
args_cy_spliter=np.argsort(cy_main_spliters)
|
|
|
|
cy_main_spliters_sort=cy_main_spliters[args_cy_spliter]
|
|
|
|
spliter_y_new=[]
|
|
spliter_y_new.append(0)
|
|
for i in range(len(cy_main_spliters_sort)):
|
|
spliter_y_new.append( cy_main_spliters_sort[i] )
|
|
|
|
spliter_y_new.append(region_pre_p.shape[0])
|
|
|
|
spliter_y_new_diff=np.diff(spliter_y_new)/float(region_pre_p.shape[0])*100
|
|
|
|
args_big_parts=np.array(range(len(spliter_y_new_diff))) [ spliter_y_new_diff>22 ]
|
|
|
|
|
|
|
|
regions_without_seperators=self.return_regions_without_seperators(region_pre_p)
|
|
|
|
##print(args_big_parts,'args_big_parts')
|
|
#image_page_otsu=self.otsu_copy(image_page_deskewd)
|
|
#print(np.unique(image_page_otsu[:,:,0]))
|
|
#image_page_background_zero=self.image_change_background_pixels_to_zero(image_page_otsu)
|
|
|
|
|
|
length_y_threshold=regions_without_seperators.shape[0]/4.0
|
|
|
|
num_col_fin=0
|
|
peaks_neg_fin_fin=[]
|
|
|
|
for iteils in args_big_parts:
|
|
|
|
|
|
regions_without_seperators_teil=regions_without_seperators[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:,0]
|
|
#image_page_background_zero_teil=image_page_background_zero[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:]
|
|
|
|
#print(regions_without_seperators_teil.shape)
|
|
##plt.imshow(regions_without_seperators_teil)
|
|
##plt.show()
|
|
|
|
#num_col, peaks_neg_fin=self.find_num_col(regions_without_seperators_teil,multiplier=6.0)
|
|
|
|
#regions_without_seperators_teil=cv2.erode(regions_without_seperators_teil,kernel,iterations = 3)
|
|
#
|
|
num_col, peaks_neg_fin=self.find_num_col(regions_without_seperators_teil,multiplier=7.0)
|
|
|
|
if num_col>num_col_fin:
|
|
num_col_fin=num_col
|
|
peaks_neg_fin_fin=peaks_neg_fin
|
|
"""
|
|
#print(length_y_vertical_lines,length_y_threshold,'x_center_of_ver_linesx_center_of_ver_linesx_center_of_ver_lines')
|
|
if len(cx_main_ver)>0 and len( dist_y_ver[dist_y_ver>=length_y_threshold] ) >=1:
|
|
num_col, peaks_neg_fin=self.find_num_col(regions_without_seperators_teil,multiplier=6.0)
|
|
else:
|
|
#plt.imshow(image_page_background_zero_teil)
|
|
#plt.show()
|
|
#num_col, peaks_neg_fin=self.find_num_col_only_image(image_page_background_zero,multiplier=2.4)#2.3)
|
|
num_col, peaks_neg_fin=self.find_num_col_only_image(image_page_background_zero_teil,multiplier=3.4)#2.3)
|
|
|
|
print(num_col,'birda')
|
|
if num_col>0:
|
|
pass
|
|
elif num_col==0:
|
|
print(num_col,'birda2222')
|
|
num_col_regions, peaks_neg_fin_regions=self.find_num_col(regions_without_seperators_teil,multiplier=10.0)
|
|
if num_col_regions==0:
|
|
pass
|
|
else:
|
|
|
|
num_col=num_col_regions
|
|
peaks_neg_fin=peaks_neg_fin_regions[:]
|
|
"""
|
|
|
|
#print(num_col+1,'num colmsssssssss')
|
|
|
|
if len(args_big_parts)==1 and (len(peaks_neg_fin_fin)+1)<num_col_classifier:
|
|
peaks_neg_fin=self.find_num_col_by_vertical_lines(vertical)
|
|
peaks_neg_fin=peaks_neg_fin[peaks_neg_fin>=500]
|
|
peaks_neg_fin=peaks_neg_fin[peaks_neg_fin<=(vertical.shape[1]-500)]
|
|
peaks_neg_fin_fin=peaks_neg_fin[:]
|
|
|
|
#print(peaks_neg_fin_fin,'peaks_neg_fin_fintaza')
|
|
|
|
|
|
return num_col_fin, peaks_neg_fin_fin,matrix_of_lines_ch,spliter_y_new,seperators_closeup_n
|
|
|
|
|
|
|
|
def return_contours_of_interested_region_by_size(self,region_pre_p,pixel,min_area,max_area):
|
|
|
|
# pixels of images are identified by 5
|
|
if len(region_pre_p.shape)==3:
|
|
cnts_images=(region_pre_p[:,:,0]==pixel)*1
|
|
else:
|
|
cnts_images=(region_pre_p[:,:]==pixel)*1
|
|
cnts_images=cnts_images.astype(np.uint8)
|
|
cnts_images=np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
|
|
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
contours_imgs,hiearchy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
contours_imgs=self.return_parent_contours(contours_imgs,hiearchy)
|
|
contours_imgs=self.filter_contours_area_of_image_tables(thresh,contours_imgs,hiearchy,max_area=max_area,min_area=min_area)
|
|
|
|
img_ret=np.zeros((region_pre_p.shape[0],region_pre_p.shape[1],3))
|
|
img_ret=cv2.fillPoly(img_ret,pts=contours_imgs, color=(1,1,1))
|
|
return img_ret[:,:,0]
|
|
|
|
|
|
def get_regions_from_xy_neu(self,img):
|
|
img_org=np.copy(img)
|
|
|
|
img_height_h=img_org.shape[0]
|
|
img_width_h=img_org.shape[1]
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p)
|
|
|
|
gaussian_filter=False
|
|
patches=True
|
|
binary=True
|
|
|
|
|
|
|
|
|
|
ratio_x=1
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_org=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_org=self.resize_image(prediction_regions_org, img_height_h, img_width_h )
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
#plt.show()
|
|
#sys.exit()
|
|
prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
|
|
|
|
|
|
gaussian_filter=False
|
|
patches=False
|
|
binary=False
|
|
|
|
|
|
|
|
|
|
ratio_x=1
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_orgt=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_orgt=self.resize_image(prediction_regions_orgt, img_height_h, img_width_h )
|
|
|
|
#plt.imshow(prediction_regions_orgt[:,:,0])
|
|
#plt.show()
|
|
#sys.exit()
|
|
prediction_regions_orgt=prediction_regions_orgt[:,:,0]
|
|
|
|
|
|
mask_texts_longshot=(prediction_regions_orgt[:,:]==1)*1
|
|
|
|
mask_texts_longshot=np.uint8(mask_texts_longshot)
|
|
#mask_texts_longshot = cv2.dilate(mask_texts_longshot[:,:], self.kernel, iterations=2)
|
|
|
|
pixel_img=1
|
|
polygons_of_only_texts_longshot=self.return_contours_of_interested_region(mask_texts_longshot,pixel_img)
|
|
|
|
longshot_true=np.zeros(mask_texts_longshot.shape)
|
|
#text_regions_p_true[:,:]=text_regions_p_1[:,:]
|
|
|
|
longshot_true=cv2.fillPoly(longshot_true,pts=polygons_of_only_texts_longshot, color=(1,1,1))
|
|
|
|
#plt.imshow(longshot_true)
|
|
#plt.show()
|
|
|
|
gaussian_filter=False
|
|
patches=False
|
|
binary=False
|
|
|
|
|
|
|
|
|
|
ratio_x=1
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
one_third_upper_ny=int(img.shape[0]/3.0)
|
|
|
|
img=img[0:one_third_upper_ny,:,:]
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_longshot_one_third=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_longshot_one_third=self.resize_image(prediction_regions_longshot_one_third, one_third_upper_ny, img_width_h )
|
|
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
img=img[one_third_upper_ny:int(2*one_third_upper_ny),:,:]
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_longshot_one_third_middle=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_longshot_one_third_middle=self.resize_image(prediction_regions_longshot_one_third_middle, one_third_upper_ny, img_width_h )
|
|
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
img=img[int(2*one_third_upper_ny):,:,:]
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_longshot_one_third_down=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_longshot_one_third_down=self.resize_image(prediction_regions_longshot_one_third_down, img_height_h-int(2*one_third_upper_ny), img_width_h )
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
#plt.show()
|
|
#sys.exit()
|
|
prediction_regions_longshot=np.zeros((img_height_h,img_width_h))
|
|
|
|
#prediction_regions_longshot=prediction_regions_longshot[:,:,0]
|
|
|
|
#prediction_regions_longshot[0:one_third_upper_ny,:]=prediction_regions_longshot_one_third[:,:,0]
|
|
#prediction_regions_longshot[one_third_upper_ny:int(2*one_third_upper_ny):,:]=prediction_regions_longshot_one_third_middle[:,:,0]
|
|
#prediction_regions_longshot[int(2*one_third_upper_ny):,:]=prediction_regions_longshot_one_third_down[:,:,0]
|
|
|
|
prediction_regions_longshot=longshot_true[:,:]
|
|
#plt.imshow(prediction_regions_longshot)
|
|
#plt.show()
|
|
|
|
gaussian_filter=False
|
|
patches=True
|
|
binary=False
|
|
|
|
|
|
|
|
|
|
ratio_x=1#1.1
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
#img= self.resize_image(img_org, int(img_org.shape[0]*0.8), int(img_org.shape[1]*1.6))
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
|
|
prediction_regions=self.do_prediction(patches,img,model_region)
|
|
text_region1=self.resize_image(prediction_regions, img_height_h, img_width_h )
|
|
|
|
#plt.imshow(text_region1[:,:,0])
|
|
#plt.show()
|
|
ratio_x=1
|
|
ratio_y=1.2#1.3
|
|
binary=False
|
|
median_blur=False
|
|
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
|
|
prediction_regions=self.do_prediction(patches,img,model_region)
|
|
text_region2=self.resize_image(prediction_regions, img_height_h, img_width_h )
|
|
|
|
|
|
#plt.imshow(text_region2[:,:,0])
|
|
#plt.show()
|
|
session_region.close()
|
|
del model_region
|
|
del session_region
|
|
gc.collect()
|
|
|
|
#text_region1=text_region1[:,:,0]
|
|
#text_region2=text_region2[:,:,0]
|
|
|
|
#text_region1[(text_region1[:,:]==2) & (text_region2[:,:]==1)]=1
|
|
|
|
|
|
mask_zeros_from_1=(text_region2[:,:,0]==0)*1
|
|
#mask_text_from_1=(text_region1[:,:,0]==1)*1
|
|
|
|
|
|
|
|
mask_img_text_region1=(text_region1[:,:,0]==2)*1
|
|
text_region2_1st_channel=text_region1[:,:,0]
|
|
|
|
text_region2_1st_channel[mask_zeros_from_1==1]=0
|
|
|
|
##text_region2_1st_channel[mask_img_text_region1[:,:]==1]=2
|
|
#text_region2_1st_channel[(mask_text_from_1==1) & (text_region2_1st_channel==2)]=1
|
|
|
|
mask_lines1=(text_region1[:,:,0]==3)*1
|
|
mask_lines2=(text_region2[:,:,0]==3)*1
|
|
|
|
mask_lines2[mask_lines1[:,:]==1]=1
|
|
|
|
#plt.imshow(text_region2_1st_channel)
|
|
#plt.show()
|
|
|
|
text_region2_1st_channel = cv2.erode(text_region2_1st_channel[:,:], self.kernel, iterations=4)
|
|
|
|
#plt.imshow(text_region2_1st_channel)
|
|
#plt.show()
|
|
|
|
text_region2_1st_channel = cv2.dilate(text_region2_1st_channel[:,:], self.kernel, iterations=4)
|
|
|
|
|
|
text_region2_1st_channel[mask_lines2[:,:]==1]=3
|
|
|
|
#text_region2_1st_channel[ (prediction_regions_org[:,:]==1) & (text_region2_1st_channel[:,:]==2)]=1
|
|
|
|
|
|
# only in the case of model 3
|
|
|
|
text_region2_1st_channel[(prediction_regions_longshot[:,:]==1) & (text_region2_1st_channel[:,:]==2)]=1
|
|
|
|
text_region2_1st_channel[ (prediction_regions_org[:,:]==2) & (text_region2_1st_channel[:,:]==0)]=2
|
|
|
|
#text_region2_1st_channel[prediction_regions_org[:,:]==0]=0
|
|
|
|
#plt.imshow(text_region2_1st_channel)
|
|
#plt.show()
|
|
|
|
#text_region2_1st_channel[:,:400]=0
|
|
|
|
mask_texts_only=(text_region2_1st_channel[:,:]==1)*1
|
|
|
|
mask_images_only=(text_region2_1st_channel[:,:]==2)*1
|
|
|
|
mask_lines_only=(text_region2_1st_channel[:,:]==3)*1
|
|
|
|
pixel_img=1
|
|
polygons_of_only_texts=self.return_contours_of_interested_region(mask_texts_only,pixel_img)
|
|
|
|
polygons_of_only_images=self.return_contours_of_interested_region(mask_images_only,pixel_img)
|
|
|
|
polygons_of_only_lines=self.return_contours_of_interested_region(mask_lines_only,pixel_img)
|
|
|
|
|
|
text_regions_p_true=np.zeros(text_region2_1st_channel.shape)
|
|
#text_regions_p_true[:,:]=text_regions_p_1[:,:]
|
|
|
|
text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_lines, color=(3,3,3))
|
|
|
|
text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_images, color=(2,2,2))
|
|
|
|
text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_texts, color=(1,1,1))
|
|
|
|
##print(np.unique(text_regions_p_true))
|
|
|
|
|
|
#text_regions_p_true_3d=np.repeat(text_regions_p_1[:, :, np.newaxis], 3, axis=2)
|
|
#text_regions_p_true_3d=text_regions_p_true_3d.astype(np.uint8)
|
|
|
|
|
|
return text_regions_p_true#text_region2_1st_channel
|
|
|
|
def get_regions_from_xy(self,img):
|
|
img_org=np.copy(img)
|
|
|
|
img_height_h=img_org.shape[0]
|
|
img_width_h=img_org.shape[1]
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p)
|
|
|
|
gaussian_filter=False
|
|
patches=True
|
|
binary=True
|
|
|
|
|
|
|
|
|
|
ratio_x=1
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_org=self.do_prediction(patches,img,model_region)
|
|
|
|
###plt.imshow(prediction_regions_org[:,:,0])
|
|
###plt.show()
|
|
##sys.exit()
|
|
prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
|
|
|
|
gaussian_filter=False
|
|
patches=True
|
|
binary=False
|
|
|
|
|
|
|
|
|
|
ratio_x=1.1
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
#img= self.resize_image(img_org, int(img_org.shape[0]*0.8), int(img_org.shape[1]*1.6))
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
|
|
prediction_regions=self.do_prediction(patches,img,model_region)
|
|
text_region1=self.resize_image(prediction_regions, img_height_h, img_width_h )
|
|
|
|
|
|
ratio_x=1
|
|
ratio_y=1.1
|
|
binary=False
|
|
median_blur=False
|
|
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
|
|
prediction_regions=self.do_prediction(patches,img,model_region)
|
|
text_region2=self.resize_image(prediction_regions, img_height_h, img_width_h )
|
|
|
|
session_region.close()
|
|
del model_region
|
|
del session_region
|
|
gc.collect()
|
|
|
|
|
|
mask_zeros_from_1=(text_region1[:,:,0]==0)*1
|
|
#mask_text_from_1=(text_region1[:,:,0]==1)*1
|
|
|
|
|
|
|
|
mask_img_text_region1=(text_region1[:,:,0]==2)*1
|
|
text_region2_1st_channel=text_region2[:,:,0]
|
|
|
|
text_region2_1st_channel[mask_zeros_from_1==1]=0
|
|
|
|
text_region2_1st_channel[mask_img_text_region1[:,:]==1]=2
|
|
#text_region2_1st_channel[(mask_text_from_1==1) & (text_region2_1st_channel==2)]=1
|
|
|
|
mask_lines1=(text_region1[:,:,0]==3)*1
|
|
mask_lines2=(text_region2[:,:,0]==3)*1
|
|
|
|
mask_lines2[mask_lines1[:,:]==1]=1
|
|
|
|
##plt.imshow(text_region2_1st_channel)
|
|
##plt.show()
|
|
|
|
text_region2_1st_channel = cv2.erode(text_region2_1st_channel[:,:], self.kernel, iterations=5)
|
|
|
|
##plt.imshow(text_region2_1st_channel)
|
|
##plt.show()
|
|
|
|
text_region2_1st_channel = cv2.dilate(text_region2_1st_channel[:,:], self.kernel, iterations=5)
|
|
|
|
|
|
text_region2_1st_channel[mask_lines2[:,:]==1]=3
|
|
|
|
text_region2_1st_channel[ (prediction_regions_org[:,:]==1) & (text_region2_1st_channel[:,:]==2)]=1
|
|
text_region2_1st_channel[prediction_regions_org[:,:]==3]=3
|
|
|
|
##plt.imshow(text_region2_1st_channel)
|
|
##plt.show()
|
|
return text_region2_1st_channel
|
|
|
|
|
|
def rotation_image_new(self,img,thetha):
|
|
rotated=imutils.rotate(img,thetha)
|
|
return self.rotate_max_area_new(img, rotated,thetha)
|
|
|
|
def rotate_max_area_new(self,image,rotated,angle):
|
|
wr, hr =self.rotatedRectWithMaxArea(image.shape[1], image.shape[0],math.radians(angle))
|
|
h, w, _ = rotated.shape
|
|
y1 = h//2 - int(hr/2)
|
|
y2 = y1 + int(hr)
|
|
x1 = w//2 - int(wr/2)
|
|
x2 = x1 + int(wr)
|
|
return rotated[y1:y2, x1:x2]
|
|
|
|
|
|
def rotation_not_90_func(self,img,textline,text_regions_p_1,thetha):
|
|
rotated=imutils.rotate(img,thetha)
|
|
rotated_textline=imutils.rotate(textline,thetha)
|
|
rotated_layout=imutils.rotate(text_regions_p_1,thetha)
|
|
return self.rotate_max_area(img, rotated,rotated_textline,rotated_layout,thetha)
|
|
|
|
def rotate_max_area(self,image,rotated,rotated_textline,rotated_layout,angle):
|
|
wr, hr =self.rotatedRectWithMaxArea(image.shape[1], image.shape[0],math.radians(angle))
|
|
h, w, _ = rotated.shape
|
|
y1 = h//2 - int(hr/2)
|
|
y2 = y1 + int(hr)
|
|
x1 = w//2 - int(wr/2)
|
|
x2 = x1 + int(wr)
|
|
return rotated[y1:y2, x1:x2],rotated_textline[y1:y2, x1:x2],rotated_layout[y1:y2, x1:x2]
|
|
|
|
|
|
def rotation_not_90_func_full_layout(self,img,textline,text_regions_p_1,text_regions_p_fully,thetha):
|
|
rotated=imutils.rotate(img,thetha)
|
|
rotated_textline=imutils.rotate(textline,thetha)
|
|
rotated_layout=imutils.rotate(text_regions_p_1,thetha)
|
|
rotated_layout_full=imutils.rotate(text_regions_p_fully,thetha)
|
|
return self.rotate_max_area_full_layout(img, rotated,rotated_textline,rotated_layout,rotated_layout_full,thetha)
|
|
|
|
def rotate_max_area_full_layout(self,image,rotated,rotated_textline,rotated_layout,rotated_layout_full,angle):
|
|
wr, hr =self.rotatedRectWithMaxArea(image.shape[1], image.shape[0],math.radians(angle))
|
|
h, w, _ = rotated.shape
|
|
y1 = h//2 - int(hr/2)
|
|
y2 = y1 + int(hr)
|
|
x1 = w//2 - int(wr/2)
|
|
x2 = x1 + int(wr)
|
|
return rotated[y1:y2, x1:x2],rotated_textline[y1:y2, x1:x2],rotated_layout[y1:y2, x1:x2],rotated_layout_full[y1:y2, x1:x2]
|
|
|
|
def get_regions_from_xy_2models_ens(self,img):
|
|
img_org=np.copy(img)
|
|
|
|
img_height_h=img_org.shape[0]
|
|
img_width_h=img_org.shape[1]
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens)
|
|
|
|
|
|
gaussian_filter=False
|
|
patches=False
|
|
binary=False
|
|
|
|
ratio_x=1
|
|
ratio_y=1
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
prediction_regions_long=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_long=self.resize_image(prediction_regions_long, img_height_h, img_width_h )
|
|
|
|
|
|
gaussian_filter=False
|
|
patches=True
|
|
binary=False
|
|
|
|
|
|
|
|
|
|
ratio_x=1
|
|
ratio_y=1.2
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_org_y=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_org_y=self.resize_image(prediction_regions_org_y, img_height_h, img_width_h )
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
#plt.show()
|
|
#sys.exit()
|
|
prediction_regions_org_y=prediction_regions_org_y[:,:,0]
|
|
|
|
|
|
mask_zeros_y=(prediction_regions_org_y[:,:]==0)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ratio_x=1.2
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_org=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_org=self.resize_image(prediction_regions_org, img_height_h, img_width_h )
|
|
|
|
#plt.imshow(prediction_regions_org[:,:,0])
|
|
#plt.show()
|
|
#sys.exit()
|
|
prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
prediction_regions_org[(prediction_regions_org[:,:]==1) & (mask_zeros_y[:,:]==1)]=0
|
|
|
|
|
|
prediction_regions_org[( prediction_regions_long[:,:,0]==1 ) & (prediction_regions_org[:,:]==2) ]=1
|
|
|
|
session_region.close()
|
|
del model_region
|
|
del session_region
|
|
gc.collect()
|
|
|
|
|
|
|
|
|
|
return prediction_regions_org
|
|
|
|
def get_regions_from_xy_2models(self,img,is_image_enhanced):
|
|
img_org=np.copy(img)
|
|
|
|
img_height_h=img_org.shape[0]
|
|
img_width_h=img_org.shape[1]
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p_ens)
|
|
|
|
gaussian_filter=False
|
|
patches=True
|
|
binary=False
|
|
|
|
|
|
|
|
|
|
|
|
ratio_y=1.3
|
|
ratio_x=1
|
|
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_org_y=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_org_y=self.resize_image(prediction_regions_org_y, img_height_h, img_width_h )
|
|
|
|
#plt.imshow(prediction_regions_org_y[:,:,0])
|
|
#plt.show()
|
|
#sys.exit()
|
|
prediction_regions_org_y=prediction_regions_org_y[:,:,0]
|
|
|
|
|
|
mask_zeros_y=(prediction_regions_org_y[:,:]==0)*1
|
|
|
|
|
|
|
|
|
|
|
|
if is_image_enhanced:
|
|
ratio_x=1.2
|
|
else:
|
|
ratio_x=1
|
|
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_org=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_org=self.resize_image(prediction_regions_org, img_height_h, img_width_h )
|
|
|
|
##plt.imshow(prediction_regions_org[:,:,0])
|
|
##plt.show()
|
|
##sys.exit()
|
|
prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
prediction_regions_org[(prediction_regions_org[:,:]==1) & (mask_zeros_y[:,:]==1)]=0
|
|
session_region.close()
|
|
del model_region
|
|
del session_region
|
|
gc.collect()
|
|
###K.clear_session()
|
|
|
|
model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2)
|
|
|
|
gaussian_filter=False
|
|
patches=True
|
|
binary=False
|
|
|
|
|
|
|
|
|
|
ratio_x=1
|
|
ratio_y=1
|
|
median_blur=False
|
|
|
|
img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
if binary:
|
|
img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
img = img.astype(np.uint16)
|
|
|
|
if median_blur:
|
|
img=cv2.medianBlur(img,5)
|
|
if gaussian_filter:
|
|
img= cv2.GaussianBlur(img,(5,5),0)
|
|
img = img.astype(np.uint16)
|
|
prediction_regions_org2=self.do_prediction(patches,img,model_region)
|
|
|
|
prediction_regions_org2=self.resize_image(prediction_regions_org2, img_height_h, img_width_h )
|
|
|
|
#plt.imshow(prediction_regions_org2[:,:,0])
|
|
#plt.show()
|
|
#sys.exit()
|
|
##prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
session_region.close()
|
|
del model_region
|
|
del session_region
|
|
gc.collect()
|
|
###K.clear_session()
|
|
|
|
mask_zeros2=(prediction_regions_org2[:,:,0]==0)*1
|
|
mask_lines2=(prediction_regions_org2[:,:,0]==3)*1
|
|
|
|
text_sume_early=( (prediction_regions_org[:,:]==1)*1 ).sum()
|
|
|
|
|
|
prediction_regions_org_copy=np.copy(prediction_regions_org)
|
|
|
|
|
|
prediction_regions_org_copy[(prediction_regions_org_copy[:,:]==1) & (mask_zeros2[:,:]==1)]=0
|
|
|
|
text_sume_second=( (prediction_regions_org_copy[:,:]==1)*1 ).sum()
|
|
|
|
rate_two_models=text_sume_second/float(text_sume_early)*100
|
|
|
|
print(rate_two_models,'ratio_of_two_models')
|
|
if is_image_enhanced and rate_two_models<95.50:#98.45:
|
|
pass
|
|
else:
|
|
prediction_regions_org=np.copy(prediction_regions_org_copy)
|
|
|
|
##prediction_regions_org[mask_lines2[:,:]==1]=3
|
|
prediction_regions_org[(mask_lines2[:,:]==1) & (prediction_regions_org[:,:]==0)]=3
|
|
|
|
|
|
del mask_lines2
|
|
del mask_zeros2
|
|
del prediction_regions_org2
|
|
|
|
#if is_image_enhanced:
|
|
#pass
|
|
#else:
|
|
#model_region, session_region = self.start_new_session_and_model(self.model_region_dir_p2)
|
|
|
|
#gaussian_filter=False
|
|
#patches=True
|
|
#binary=False
|
|
|
|
|
|
|
|
|
|
#ratio_x=1
|
|
#ratio_y=1
|
|
#median_blur=False
|
|
|
|
#img= self.resize_image(img_org, int(img_org.shape[0]*ratio_y), int(img_org.shape[1]*ratio_x))
|
|
|
|
#if binary:
|
|
#img = self.otsu_copy_binary(img)#self.otsu_copy(img)
|
|
#img = img.astype(np.uint16)
|
|
|
|
#if median_blur:
|
|
#img=cv2.medianBlur(img,5)
|
|
#if gaussian_filter:
|
|
#img= cv2.GaussianBlur(img,(5,5),0)
|
|
#img = img.astype(np.uint16)
|
|
#prediction_regions_org2=self.do_prediction(patches,img,model_region)
|
|
|
|
#prediction_regions_org2=self.resize_image(prediction_regions_org2, img_height_h, img_width_h )
|
|
|
|
##plt.imshow(prediction_regions_org2[:,:,0])
|
|
##plt.show()
|
|
##sys.exit()
|
|
###prediction_regions_org=prediction_regions_org[:,:,0]
|
|
|
|
#session_region.close()
|
|
#del model_region
|
|
#del session_region
|
|
#gc.collect()
|
|
####K.clear_session()
|
|
|
|
#mask_zeros2=(prediction_regions_org2[:,:,0]==0)*1
|
|
#mask_lines2=(prediction_regions_org2[:,:,0]==3)*1
|
|
|
|
#text_sume_early=( (prediction_regions_org[:,:]==1)*1 ).sum()
|
|
|
|
|
|
#prediction_regions_org[(prediction_regions_org[:,:]==1) & (mask_zeros2[:,:]==1)]=0
|
|
|
|
###prediction_regions_org[mask_lines2[:,:]==1]=3
|
|
#prediction_regions_org[(mask_lines2[:,:]==1) & (prediction_regions_org[:,:]==0)]=3
|
|
|
|
#text_sume_second=( (prediction_regions_org[:,:]==1)*1 ).sum()
|
|
|
|
#print(text_sume_second/float(text_sume_early)*100,'twomodelsratio')
|
|
|
|
#del mask_lines2
|
|
#del mask_zeros2
|
|
#del prediction_regions_org2
|
|
|
|
mask_lines_only=(prediction_regions_org[:,:]==3)*1
|
|
|
|
prediction_regions_org = cv2.erode(prediction_regions_org[:,:], self.kernel, iterations=2)
|
|
|
|
#plt.imshow(text_region2_1st_channel)
|
|
#plt.show()
|
|
|
|
prediction_regions_org = cv2.dilate(prediction_regions_org[:,:], self.kernel, iterations=2)
|
|
|
|
mask_texts_only=(prediction_regions_org[:,:]==1)*1
|
|
|
|
mask_images_only=(prediction_regions_org[:,:]==2)*1
|
|
|
|
|
|
|
|
pixel_img=1
|
|
min_area_text=0.00001
|
|
polygons_of_only_texts=self.return_contours_of_interested_region(mask_texts_only,pixel_img,min_area_text)
|
|
|
|
polygons_of_only_images=self.return_contours_of_interested_region(mask_images_only,pixel_img)
|
|
|
|
polygons_of_only_lines=self.return_contours_of_interested_region(mask_lines_only,pixel_img,min_area_text)
|
|
|
|
|
|
text_regions_p_true=np.zeros(prediction_regions_org.shape)
|
|
#text_regions_p_true[:,:]=text_regions_p_1[:,:]
|
|
|
|
text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_lines, color=(3,3,3))
|
|
|
|
##text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_images, color=(2,2,2))
|
|
text_regions_p_true[:,:][mask_images_only[:,:]==1]=2
|
|
|
|
text_regions_p_true=cv2.fillPoly(text_regions_p_true,pts=polygons_of_only_texts, color=(1,1,1))
|
|
|
|
##print(np.unique(text_regions_p_true))
|
|
|
|
|
|
#text_regions_p_true_3d=np.repeat(text_regions_p_1[:, :, np.newaxis], 3, axis=2)
|
|
#text_regions_p_true_3d=text_regions_p_true_3d.astype(np.uint8)
|
|
|
|
del polygons_of_only_texts
|
|
del polygons_of_only_images
|
|
del polygons_of_only_lines
|
|
del mask_images_only
|
|
del prediction_regions_org
|
|
del img
|
|
del mask_zeros_y
|
|
|
|
del prediction_regions_org_y
|
|
del img_org
|
|
gc.collect()
|
|
|
|
return text_regions_p_true
|
|
|
|
|
|
def get_textregion_contours_in_org_image(self,cnts,img,slope_first):
|
|
|
|
cnts_org=[]
|
|
#print(cnts,'cnts')
|
|
for i in range(len(cnts)):
|
|
img_copy=np.zeros(img.shape)
|
|
img_copy=cv2.fillPoly(img_copy,pts=[cnts[i]], color=(1,1,1))
|
|
|
|
#plt.imshow(img_copy)
|
|
#plt.show()
|
|
|
|
#print(img.shape,'img')
|
|
img_copy=self.rotation_image_new(img_copy,-slope_first)
|
|
##print(img_copy.shape,'img_copy')
|
|
#plt.imshow(img_copy)
|
|
#plt.show()
|
|
|
|
img_copy=img_copy.astype(np.uint8)
|
|
imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
cont_int,_=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
cont_int[0][:,0,0]=cont_int[0][:,0,0]+np.abs(img_copy.shape[1]-img.shape[1])
|
|
cont_int[0][:,0,1]=cont_int[0][:,0,1]+np.abs(img_copy.shape[0]-img.shape[0])
|
|
#print(np.shape(cont_int[0]))
|
|
cnts_org.append(cont_int[0])
|
|
|
|
|
|
|
|
#print(cnts_org,'cnts_org')
|
|
|
|
#sys.exit()
|
|
self.y_shift=np.abs(img_copy.shape[0]-img.shape[0])
|
|
self.x_shift=np.abs(img_copy.shape[1]-img.shape[1])
|
|
return cnts_org
|
|
def write_images_into_directory(self,img_contoures,dir_of_cropped_imgs,image_page):
|
|
index=0
|
|
for cont_ind in img_contoures:
|
|
#cont_ind[:,0,0]=cont_ind[:,0,0]/self.scale_x
|
|
#cont_ind[:,0,1]=cont_ind[:,0,1]/self.scale_y
|
|
|
|
x, y, w, h = cv2.boundingRect(cont_ind)
|
|
box = [x, y, w, h]
|
|
croped_page, page_coord = self.crop_image_inside_box(box, image_page)
|
|
|
|
croped_page = self.resize_image(croped_page, int(croped_page.shape[0]/self.scale_y), int(croped_page.shape[1]/self.scale_x))
|
|
|
|
path=os.path.join(dir_of_cropped_imgs, self.f_name+'_'+str(index)+'.jpg')
|
|
cv2.imwrite(path,croped_page)
|
|
index+=1
|
|
|
|
def get_marginals(self,text_with_lines,text_regions,num_col,slope_deskew):
|
|
mask_marginals=np.zeros((text_with_lines.shape[0],text_with_lines.shape[1]))
|
|
mask_marginals=mask_marginals.astype(np.uint8)
|
|
|
|
|
|
text_with_lines=text_with_lines.astype(np.uint8)
|
|
##text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=3)
|
|
|
|
text_with_lines_eroded=cv2.erode(text_with_lines,self.kernel,iterations=5)
|
|
|
|
if text_with_lines.shape[0]<=1500:
|
|
pass
|
|
elif text_with_lines.shape[0]>1500 and text_with_lines.shape[0]<=1800:
|
|
text_with_lines=self.resize_image(text_with_lines,int(text_with_lines.shape[0]*1.5),text_with_lines.shape[1])
|
|
text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=5)
|
|
text_with_lines=self.resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
|
|
else:
|
|
text_with_lines=self.resize_image(text_with_lines,int(text_with_lines.shape[0]*1.8),text_with_lines.shape[1])
|
|
text_with_lines=cv2.erode(text_with_lines,self.kernel,iterations=7)
|
|
text_with_lines=self.resize_image(text_with_lines,text_with_lines_eroded.shape[0],text_with_lines_eroded.shape[1])
|
|
|
|
|
|
text_with_lines_y=text_with_lines.sum(axis=0)
|
|
text_with_lines_y_eroded=text_with_lines_eroded.sum(axis=0)
|
|
|
|
thickness_along_y_percent=text_with_lines_y_eroded.max()/(float(text_with_lines.shape[0]))*100
|
|
|
|
#print(thickness_along_y_percent,'thickness_along_y_percent')
|
|
|
|
if thickness_along_y_percent<30:
|
|
min_textline_thickness=8
|
|
elif thickness_along_y_percent>=30 and thickness_along_y_percent<50:
|
|
min_textline_thickness=20
|
|
else:
|
|
min_textline_thickness=40
|
|
|
|
|
|
|
|
if thickness_along_y_percent>=14:
|
|
|
|
text_with_lines_y_rev=-1*text_with_lines_y[:]
|
|
#print(text_with_lines_y)
|
|
#print(text_with_lines_y_rev)
|
|
|
|
|
|
|
|
|
|
#plt.plot(text_with_lines_y)
|
|
#plt.show()
|
|
|
|
|
|
text_with_lines_y_rev=text_with_lines_y_rev-np.min(text_with_lines_y_rev)
|
|
|
|
#plt.plot(text_with_lines_y_rev)
|
|
#plt.show()
|
|
sigma_gaus=1
|
|
region_sum_0= gaussian_filter1d(text_with_lines_y, sigma_gaus)
|
|
|
|
region_sum_0_rev=gaussian_filter1d(text_with_lines_y_rev, sigma_gaus)
|
|
|
|
#plt.plot(region_sum_0_rev)
|
|
#plt.show()
|
|
region_sum_0_updown=region_sum_0[len(region_sum_0)::-1]
|
|
|
|
first_nonzero=(next((i for i, x in enumerate(region_sum_0) if x), None))
|
|
last_nonzero=(next((i for i, x in enumerate(region_sum_0_updown) if x), None))
|
|
|
|
|
|
last_nonzero=len(region_sum_0)-last_nonzero
|
|
|
|
##img_sum_0_smooth_rev=-region_sum_0
|
|
|
|
|
|
mid_point=(last_nonzero+first_nonzero)/2.
|
|
|
|
|
|
one_third_right=(last_nonzero-mid_point)/3.0
|
|
one_third_left=(mid_point-first_nonzero)/3.0
|
|
|
|
#img_sum_0_smooth_rev=img_sum_0_smooth_rev-np.min(img_sum_0_smooth_rev)
|
|
|
|
|
|
|
|
|
|
peaks, _ = find_peaks(text_with_lines_y_rev, height=0)
|
|
|
|
|
|
peaks=np.array(peaks)
|
|
|
|
|
|
#print(region_sum_0[peaks])
|
|
##plt.plot(region_sum_0)
|
|
##plt.plot(peaks,region_sum_0[peaks],'*')
|
|
##plt.show()
|
|
#print(first_nonzero,last_nonzero,peaks)
|
|
peaks=peaks[(peaks>first_nonzero) & ((peaks<last_nonzero))]
|
|
|
|
#print(first_nonzero,last_nonzero,peaks)
|
|
|
|
|
|
#print(region_sum_0[peaks]<10)
|
|
####peaks=peaks[region_sum_0[peaks]<25 ]
|
|
|
|
#print(region_sum_0[peaks])
|
|
peaks=peaks[region_sum_0[peaks]<min_textline_thickness ]
|
|
#print(peaks)
|
|
#print(first_nonzero,last_nonzero,one_third_right,one_third_left)
|
|
|
|
if num_col==1:
|
|
peaks_right=peaks[peaks>mid_point]
|
|
peaks_left=peaks[peaks<mid_point]
|
|
if num_col==2:
|
|
peaks_right=peaks[peaks>(mid_point+one_third_right)]
|
|
peaks_left=peaks[peaks<(mid_point-one_third_left)]
|
|
|
|
|
|
try:
|
|
point_right=np.min(peaks_right)
|
|
except:
|
|
point_right=last_nonzero
|
|
|
|
|
|
try:
|
|
point_left=np.max(peaks_left)
|
|
except:
|
|
point_left=first_nonzero
|
|
|
|
|
|
|
|
|
|
#print(point_left,point_right)
|
|
#print(text_regions.shape)
|
|
if point_right>=mask_marginals.shape[1]:
|
|
point_right=mask_marginals.shape[1]-1
|
|
|
|
try:
|
|
mask_marginals[:,point_left:point_right]=1
|
|
except:
|
|
mask_marginals[:,:]=1
|
|
|
|
#print(mask_marginals.shape,point_left,point_right,'nadosh')
|
|
mask_marginals_rotated=self.rotate_image(mask_marginals,-slope_deskew)
|
|
|
|
#print(mask_marginals_rotated.shape,'nadosh')
|
|
mask_marginals_rotated_sum=mask_marginals_rotated.sum(axis=0)
|
|
|
|
mask_marginals_rotated_sum[mask_marginals_rotated_sum!=0]=1
|
|
index_x=np.array(range(len(mask_marginals_rotated_sum)))+1
|
|
|
|
index_x_interest=index_x[mask_marginals_rotated_sum==1]
|
|
|
|
min_point_of_left_marginal=np.min(index_x_interest)-16
|
|
max_point_of_right_marginal=np.max(index_x_interest)+16
|
|
|
|
if min_point_of_left_marginal<0:
|
|
min_point_of_left_marginal=0
|
|
if max_point_of_right_marginal>=text_regions.shape[1]:
|
|
max_point_of_right_marginal=text_regions.shape[1]-1
|
|
|
|
|
|
#print(np.min(index_x_interest) ,np.max(index_x_interest),'minmaxnew')
|
|
#print(mask_marginals_rotated.shape,text_regions.shape,'mask_marginals_rotated')
|
|
#plt.imshow(mask_marginals)
|
|
#plt.show()
|
|
|
|
#plt.imshow(mask_marginals_rotated)
|
|
#plt.show()
|
|
|
|
text_regions[(mask_marginals_rotated[:,:]!=1) & (text_regions[:,:]==1)]=4
|
|
|
|
|
|
pixel_img=4
|
|
min_area_text=0.00001
|
|
polygons_of_marginals=self.return_contours_of_interested_region(text_regions,pixel_img,min_area_text)
|
|
|
|
cx_text_only,cy_text_only ,x_min_text_only,x_max_text_only, y_min_text_only ,y_max_text_only,y_cor_x_min_main=self.find_new_features_of_contoures(polygons_of_marginals)
|
|
|
|
text_regions[(text_regions[:,:]==4)]=1
|
|
|
|
marginlas_should_be_main_text=[]
|
|
|
|
x_min_marginals_left=[]
|
|
x_min_marginals_right=[]
|
|
|
|
for i in range(len(cx_text_only)):
|
|
|
|
x_width_mar=abs(x_min_text_only[i]-x_max_text_only[i])
|
|
y_height_mar=abs(y_min_text_only[i]-y_max_text_only[i])
|
|
#print(x_width_mar,y_height_mar,'y_height_mar')
|
|
if x_width_mar>16 and y_height_mar/x_width_mar<10:
|
|
marginlas_should_be_main_text.append(polygons_of_marginals[i])
|
|
if x_min_text_only[i]<(mid_point-one_third_left):
|
|
x_min_marginals_left_new=x_min_text_only[i]
|
|
if len(x_min_marginals_left)==0:
|
|
x_min_marginals_left.append(x_min_marginals_left_new)
|
|
else:
|
|
x_min_marginals_left[0]=min(x_min_marginals_left[0],x_min_marginals_left_new)
|
|
else:
|
|
x_min_marginals_right_new=x_min_text_only[i]
|
|
if len(x_min_marginals_right)==0:
|
|
x_min_marginals_right.append(x_min_marginals_right_new)
|
|
else:
|
|
x_min_marginals_right[0]=min(x_min_marginals_right[0],x_min_marginals_right_new)
|
|
|
|
if len(x_min_marginals_left)==0:
|
|
x_min_marginals_left=[0]
|
|
if len(x_min_marginals_right)==0:
|
|
x_min_marginals_right=[text_regions.shape[1]-1]
|
|
|
|
|
|
|
|
|
|
#print(x_min_marginals_left[0],x_min_marginals_right[0],'margo')
|
|
|
|
#print(marginlas_should_be_main_text,'marginlas_should_be_main_text')
|
|
text_regions=cv2.fillPoly(text_regions, pts =marginlas_should_be_main_text, color=(4,4))
|
|
|
|
#print(np.unique(text_regions))
|
|
|
|
#text_regions[:,:int(x_min_marginals_left[0])][text_regions[:,:int(x_min_marginals_left[0])]==1]=0
|
|
#text_regions[:,int(x_min_marginals_right[0]):][text_regions[:,int(x_min_marginals_right[0]):]==1]=0
|
|
|
|
text_regions[:,:int(min_point_of_left_marginal)][text_regions[:,:int(min_point_of_left_marginal)]==1]=0
|
|
text_regions[:,int(max_point_of_right_marginal):][text_regions[:,int(max_point_of_right_marginal):]==1]=0
|
|
|
|
###text_regions[:,0:point_left][text_regions[:,0:point_left]==1]=4
|
|
|
|
###text_regions[:,point_right:][ text_regions[:,point_right:]==1]=4
|
|
#plt.plot(region_sum_0)
|
|
#plt.plot(peaks,region_sum_0[peaks],'*')
|
|
#plt.show()
|
|
|
|
|
|
#plt.imshow(text_regions)
|
|
#plt.show()
|
|
|
|
#sys.exit()
|
|
else:
|
|
pass
|
|
return text_regions
|
|
|
|
def do_work_of_textline_seperation(self,queue_of_all_params,polygons_per_process, index_polygons_per_process,con_par_org,textline_mask_tot,mask_texts_only,num_col,scale_par,boxes_text):
|
|
|
|
|
|
textregions_cnt_tot_per_process=[]
|
|
textlines_cnt_tot_per_process=[]
|
|
index_polygons_per_process_per_process=[]
|
|
polygons_per_par_process_per_process=[]
|
|
textline_cnt_seperated=np.zeros(textline_mask_tot.shape)
|
|
for iiii in range(len(polygons_per_process)):
|
|
#crop_img,crop_coor=self.crop_image_inside_box(boxes_text[mv],image_page_rotated)
|
|
#arg_max=np.argmax(areas_cnt_only_text)
|
|
textregions_cnt_tot_per_process.append(polygons_per_process[iiii]/scale_par)
|
|
textline_region_in_image=np.zeros(textline_mask_tot.shape)
|
|
cnt_o_t_max=polygons_per_process[iiii]
|
|
|
|
x, y, w, h = cv2.boundingRect(cnt_o_t_max)
|
|
|
|
|
|
mask_biggest=np.zeros(mask_texts_only.shape)
|
|
mask_biggest=cv2.fillPoly(mask_biggest, pts =[cnt_o_t_max], color=(1,1,1))
|
|
|
|
mask_region_in_patch_region=mask_biggest[y:y+h,x:x+w]
|
|
|
|
|
|
textline_biggest_region=mask_biggest*textline_mask_tot
|
|
|
|
|
|
textline_rotated_seperated=self.seperate_lines_new2(textline_biggest_region[y:y+h,x:x+w],0,num_col)
|
|
|
|
|
|
#new line added
|
|
##print(np.shape(textline_rotated_seperated),np.shape(mask_biggest))
|
|
textline_rotated_seperated[mask_region_in_patch_region[:,:]!=1]=0
|
|
#till here
|
|
|
|
textline_cnt_seperated[y:y+h,x:x+w]=textline_rotated_seperated
|
|
textline_region_in_image[y:y+h,x:x+w]=textline_rotated_seperated
|
|
|
|
#plt.imshow(textline_region_in_image)
|
|
#plt.show()
|
|
|
|
#plt.imshow(textline_cnt_seperated)
|
|
#plt.show()
|
|
|
|
|
|
|
|
|
|
pixel_img=1
|
|
cnt_textlines_in_image=self.return_contours_of_interested_textline(textline_region_in_image,pixel_img)
|
|
|
|
|
|
|
|
textlines_cnt_per_region=[]
|
|
for jjjj in range(len(cnt_textlines_in_image)):
|
|
mask_biggest2=np.zeros(mask_texts_only.shape)
|
|
mask_biggest2=cv2.fillPoly(mask_biggest2, pts =[cnt_textlines_in_image[jjjj]], color=(1,1,1))
|
|
if num_col+1==1:
|
|
mask_biggest2=cv2.dilate(mask_biggest2, self.kernel, iterations=5)
|
|
else:
|
|
|
|
mask_biggest2=cv2.dilate(mask_biggest2, self.kernel, iterations=4)
|
|
|
|
pixel_img=1
|
|
cnt_textlines_in_image_ind=self.return_contours_of_interested_textline(mask_biggest2,pixel_img)
|
|
|
|
try:
|
|
textlines_cnt_per_region.append(cnt_textlines_in_image_ind[0]/scale_par)
|
|
except:
|
|
pass
|
|
#print(len(cnt_textlines_in_image_ind))
|
|
|
|
|
|
|
|
#plt.imshow(mask_biggest2)
|
|
#plt.show()
|
|
textlines_cnt_tot_per_process.append(textlines_cnt_per_region)
|
|
index_polygons_per_process_per_process.append(index_polygons_per_process[iiii])
|
|
polygons_per_par_process_per_process.append(con_par_org[iiii])
|
|
|
|
|
|
|
|
queue_of_all_params.put([index_polygons_per_process_per_process,polygons_per_par_process_per_process,textregions_cnt_tot_per_process, textlines_cnt_tot_per_process ])
|
|
|
|
def small_textlines_to_parent_adherence2(self,textlines_con,textline_iamge,num_col):
|
|
#print(textlines_con)
|
|
#textlines_con=textlines_con.astype(np.uint32)
|
|
|
|
textlines_con_changed=[]
|
|
for m1 in range(len(textlines_con)):
|
|
|
|
#textlines_tot=textlines_con[m1]
|
|
#textlines_tot=textlines_tot.astype()
|
|
textlines_tot=[]
|
|
textlines_tot_org_form=[]
|
|
#print(textlines_tot)
|
|
|
|
for nn in range(len(textlines_con[m1])):
|
|
textlines_tot.append(np.array( textlines_con[m1][nn],dtype=np.int32) )
|
|
textlines_tot_org_form.append(textlines_con[m1][nn])
|
|
|
|
##img_text_all=np.zeros((textline_iamge.shape[0],textline_iamge.shape[1]))
|
|
##img_text_all=cv2.fillPoly(img_text_all, pts =textlines_tot , color=(1,1,1))
|
|
|
|
##plt.imshow(img_text_all)
|
|
##plt.show()
|
|
areas_cnt_text=np.array([cv2.contourArea(textlines_tot[j]) for j in range(len(textlines_tot))])
|
|
areas_cnt_text=areas_cnt_text/float(textline_iamge.shape[0]*textline_iamge.shape[1])
|
|
indexes_textlines=np.array(range(len(textlines_tot)))
|
|
|
|
#print(areas_cnt_text,np.min(areas_cnt_text),np.max(areas_cnt_text))
|
|
if num_col==0:
|
|
min_area=0.0004
|
|
elif num_col==1:
|
|
min_area=0.0003
|
|
else:
|
|
min_area=0.0001
|
|
indexes_textlines_small=indexes_textlines[areas_cnt_text<min_area]
|
|
|
|
#print(indexes_textlines)
|
|
|
|
textlines_small=[]
|
|
textlines_small_org_form=[]
|
|
for i in indexes_textlines_small:
|
|
textlines_small.append(textlines_tot[i])
|
|
textlines_small_org_form.append(textlines_tot_org_form[i])
|
|
|
|
textlines_big=[]
|
|
textlines_big_org_form=[]
|
|
for i in list(set(indexes_textlines)-set(indexes_textlines_small) ):
|
|
textlines_big.append(textlines_tot[i])
|
|
textlines_big_org_form.append(textlines_tot_org_form[i])
|
|
|
|
img_textline_s=np.zeros((textline_iamge.shape[0],textline_iamge.shape[1]))
|
|
img_textline_s=cv2.fillPoly(img_textline_s, pts =textlines_small , color=(1,1,1))
|
|
|
|
img_textline_b=np.zeros((textline_iamge.shape[0],textline_iamge.shape[1]))
|
|
img_textline_b=cv2.fillPoly(img_textline_b, pts =textlines_big , color=(1,1,1))
|
|
|
|
sum_small_big_all=img_textline_s+img_textline_b
|
|
sum_small_big_all2=(sum_small_big_all[:,:]==2)*1
|
|
|
|
sum_intersection_sb=sum_small_big_all2.sum(axis=1).sum()
|
|
|
|
if sum_intersection_sb>0:
|
|
|
|
dis_small_from_bigs_tot=[]
|
|
for z1 in range(len(textlines_small)):
|
|
#print(len(textlines_small),'small')
|
|
intersections=[]
|
|
for z2 in range(len(textlines_big)):
|
|
img_text=np.zeros((textline_iamge.shape[0],textline_iamge.shape[1]))
|
|
img_text=cv2.fillPoly(img_text, pts =[textlines_small[z1] ] , color=(1,1,1))
|
|
|
|
img_text2=np.zeros((textline_iamge.shape[0],textline_iamge.shape[1]))
|
|
img_text2=cv2.fillPoly(img_text2, pts =[textlines_big[z2] ] , color=(1,1,1))
|
|
|
|
sum_small_big=img_text2+img_text
|
|
sum_small_big_2=(sum_small_big[:,:]==2)*1
|
|
|
|
sum_intersection=sum_small_big_2.sum(axis=1).sum()
|
|
|
|
#print(sum_intersection)
|
|
|
|
intersections.append(sum_intersection)
|
|
|
|
if len(np.array(intersections)[np.array(intersections)>0] )==0:
|
|
intersections=[]
|
|
|
|
try:
|
|
dis_small_from_bigs_tot.append(np.argmax(intersections))
|
|
except:
|
|
dis_small_from_bigs_tot.append(-1)
|
|
|
|
|
|
smalls_list=np.array(dis_small_from_bigs_tot)[np.array(dis_small_from_bigs_tot)>=0]
|
|
|
|
#index_small_textlines_rest=list( set(indexes_textlines_small)-set(smalls_list) )
|
|
|
|
textlines_big_with_change=[]
|
|
textlines_big_with_change_con=[]
|
|
textlines_small_with_change=[]
|
|
|
|
|
|
for z in list(set(smalls_list)):
|
|
index_small_textlines=list(np.where(np.array(dis_small_from_bigs_tot)==z)[0])
|
|
#print(z,index_small_textlines)
|
|
|
|
img_text2=np.zeros((textline_iamge.shape[0],textline_iamge.shape[1],3))
|
|
img_text2=cv2.fillPoly(img_text2, pts =[textlines_big[z]] , color=(255,255,255))
|
|
|
|
textlines_big_with_change.append(z)
|
|
|
|
for k in index_small_textlines:
|
|
img_text2=cv2.fillPoly(img_text2, pts =[textlines_small[k]] , color=(255,255,255))
|
|
textlines_small_with_change.append(k)
|
|
|
|
|
|
img_text2=img_text2.astype(np.uint8)
|
|
imgray = cv2.cvtColor(img_text2, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
cont,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
#print(cont[0],type(cont))
|
|
|
|
textlines_big_with_change_con.append(cont)
|
|
textlines_big_org_form[z]=cont[0]
|
|
|
|
#plt.imshow(img_text2)
|
|
#plt.show()
|
|
|
|
#print(textlines_big_with_change,'textlines_big_with_change')
|
|
#print(textlines_small_with_change,'textlines_small_with_change')
|
|
#print(textlines_big)
|
|
textlines_con_changed.append(textlines_big_org_form)
|
|
|
|
else:
|
|
textlines_con_changed.append(textlines_big_org_form)
|
|
return textlines_con_changed
|
|
def check_any_text_region_in_model_one_is_main_or_header(self,regions_model_1,regions_model_full,contours_only_text_parent,all_box_coord,all_found_texline_polygons,slopes,contours_only_text_parent_d_ordered):
|
|
text_only=(regions_model_1[:,:]==1)*1
|
|
contours_only_text,hir_on_text=self.return_contours_of_image(text_only)
|
|
|
|
"""
|
|
contours_only_text_parent=self.return_parent_contours( contours_only_text,hir_on_text)
|
|
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))])
|
|
areas_cnt_text=areas_cnt_text/float(text_only.shape[0]*text_only.shape[1])
|
|
|
|
###areas_cnt_text_h=np.array([cv2.contourArea(contours_only_text_parent_h[j]) for j in range(len(contours_only_text_parent_h))])
|
|
###areas_cnt_text_h=areas_cnt_text_h/float(text_only_h.shape[0]*text_only_h.shape[1])
|
|
|
|
###contours_only_text_parent=[contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz]>0.0002]
|
|
contours_only_text_parent=[contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz]>0.00001]
|
|
"""
|
|
|
|
cx_main,cy_main ,x_min_main , x_max_main, y_min_main ,y_max_main,y_corr_x_min_from_argmin=self.find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
length_con=x_max_main-x_min_main
|
|
height_con=y_max_main-y_min_main
|
|
|
|
|
|
|
|
all_found_texline_polygons_main=[]
|
|
all_found_texline_polygons_head=[]
|
|
|
|
all_box_coord_main=[]
|
|
all_box_coord_head=[]
|
|
|
|
slopes_main=[]
|
|
slopes_head=[]
|
|
|
|
contours_only_text_parent_main=[]
|
|
contours_only_text_parent_head=[]
|
|
|
|
contours_only_text_parent_main_d=[]
|
|
contours_only_text_parent_head_d=[]
|
|
|
|
for ii in range(len(contours_only_text_parent)):
|
|
con=contours_only_text_parent[ii]
|
|
img=np.zeros((regions_model_1.shape[0],regions_model_1.shape[1],3))
|
|
img = cv2.fillPoly(img, pts=[con], color=(255, 255, 255))
|
|
|
|
|
|
|
|
all_pixels=((img[:,:,0]==255)*1).sum()
|
|
|
|
pixels_header=( ( (img[:,:,0]==255) & (regions_model_full[:,:,0]==2) )*1 ).sum()
|
|
pixels_main=all_pixels-pixels_header
|
|
|
|
|
|
if (pixels_header>=pixels_main) and ( (length_con[ii]/float(height_con[ii]) )>=1.3 ):
|
|
regions_model_1[:,:][(regions_model_1[:,:]==1) & (img[:,:,0]==255) ]=2
|
|
contours_only_text_parent_head.append(con)
|
|
if contours_only_text_parent_d_ordered is not None:
|
|
contours_only_text_parent_head_d.append(contours_only_text_parent_d_ordered[ii])
|
|
all_box_coord_head.append(all_box_coord[ii])
|
|
slopes_head.append(slopes[ii])
|
|
all_found_texline_polygons_head.append(all_found_texline_polygons[ii])
|
|
else:
|
|
regions_model_1[:,:][(regions_model_1[:,:]==1) & (img[:,:,0]==255) ]=1
|
|
contours_only_text_parent_main.append(con)
|
|
if contours_only_text_parent_d_ordered is not None:
|
|
contours_only_text_parent_main_d.append(contours_only_text_parent_d_ordered[ii])
|
|
all_box_coord_main.append(all_box_coord[ii])
|
|
slopes_main.append(slopes[ii])
|
|
all_found_texline_polygons_main.append(all_found_texline_polygons[ii])
|
|
|
|
#print(all_pixels,pixels_main,pixels_header)
|
|
|
|
|
|
|
|
#plt.imshow(img[:,:,0])
|
|
#plt.show()
|
|
return regions_model_1,contours_only_text_parent_main,contours_only_text_parent_head,all_box_coord_main,all_box_coord_head,all_found_texline_polygons_main,all_found_texline_polygons_head,slopes_main,slopes_head,contours_only_text_parent_main_d,contours_only_text_parent_head_d
|
|
|
|
def putt_bb_of_drop_capitals_of_model_in_patches_in_layout(self,layout_in_patch):
|
|
|
|
drop_only=(layout_in_patch[:,:,0]==4)*1
|
|
contours_drop,hir_on_drop=self.return_contours_of_image(drop_only)
|
|
contours_drop_parent=self.return_parent_contours( contours_drop,hir_on_drop)
|
|
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_drop_parent[j]) for j in range(len(contours_drop_parent))])
|
|
areas_cnt_text=areas_cnt_text/float(drop_only.shape[0]*drop_only.shape[1])
|
|
|
|
contours_drop_parent=[contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz]>0.00001]
|
|
|
|
areas_cnt_text=[areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz]>0.001]
|
|
|
|
|
|
contours_drop_parent_final=[]
|
|
|
|
for jj in range(len(contours_drop_parent)):
|
|
x, y, w, h = cv2.boundingRect(contours_drop_parent[jj])
|
|
layout_in_patch[y:y+h,x:x+w,0]=4
|
|
|
|
return layout_in_patch
|
|
|
|
def filter_small_drop_capitals_from_no_patch_layout(self,layout_no_patch,layout1):
|
|
|
|
drop_only=(layout_no_patch[:,:,0]==4)*1
|
|
contours_drop,hir_on_drop=self.return_contours_of_image(drop_only)
|
|
contours_drop_parent=self.return_parent_contours( contours_drop,hir_on_drop)
|
|
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_drop_parent[j]) for j in range(len(contours_drop_parent))])
|
|
areas_cnt_text=areas_cnt_text/float(drop_only.shape[0]*drop_only.shape[1])
|
|
|
|
contours_drop_parent=[contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz]>0.001]
|
|
|
|
areas_cnt_text=[areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz]>0.001]
|
|
|
|
|
|
contours_drop_parent_final=[]
|
|
|
|
for jj in range(len(contours_drop_parent)):
|
|
x, y, w, h = cv2.boundingRect(contours_drop_parent[jj])
|
|
#boxes.append([int(x), int(y), int(w), int(h)])
|
|
|
|
iou_of_box_and_contoure=float(drop_only.shape[0]*drop_only.shape[1])*areas_cnt_text[jj]/float(w*h)*100
|
|
height_to_weight_ratio=h/float(w)
|
|
weigh_to_height_ratio=w/float(h)
|
|
|
|
if iou_of_box_and_contoure>60 and weigh_to_height_ratio<1.2 and height_to_weight_ratio<2:
|
|
map_of_drop_contour_bb=np.zeros((layout1.shape[0],layout1.shape[1]))
|
|
map_of_drop_contour_bb[y:y+h,x:x+w]=layout1[y:y+h,x:x+w]
|
|
|
|
if ( ((map_of_drop_contour_bb==1)*1).sum()/float(((map_of_drop_contour_bb==5)*1).sum()) *100)>=15:
|
|
contours_drop_parent_final.append(contours_drop_parent[jj])
|
|
|
|
layout_no_patch[:,:,0][layout_no_patch[:,:,0]==4]=0
|
|
|
|
layout_no_patch=cv2.fillPoly(layout_no_patch, pts=contours_drop_parent_final, color=(4,4, 4))
|
|
|
|
return layout_no_patch
|
|
|
|
|
|
def put_drop_out_from_only_drop_model(self,layout_no_patch,layout1):
|
|
|
|
drop_only=(layout_no_patch[:,:,0]==4)*1
|
|
contours_drop,hir_on_drop=self.return_contours_of_image(drop_only)
|
|
contours_drop_parent=self.return_parent_contours( contours_drop,hir_on_drop)
|
|
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_drop_parent[j]) for j in range(len(contours_drop_parent))])
|
|
areas_cnt_text=areas_cnt_text/float(drop_only.shape[0]*drop_only.shape[1])
|
|
|
|
contours_drop_parent=[contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz]>0.00001]
|
|
|
|
areas_cnt_text=[areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz]>0.00001]
|
|
|
|
|
|
contours_drop_parent_final=[]
|
|
|
|
for jj in range(len(contours_drop_parent)):
|
|
x, y, w, h = cv2.boundingRect(contours_drop_parent[jj])
|
|
#boxes.append([int(x), int(y), int(w), int(h)])
|
|
|
|
map_of_drop_contour_bb=np.zeros((layout1.shape[0],layout1.shape[1]))
|
|
map_of_drop_contour_bb[y:y+h,x:x+w]=layout1[y:y+h,x:x+w]
|
|
|
|
if ( ((map_of_drop_contour_bb==1)*1).sum()/float(((map_of_drop_contour_bb==5)*1).sum()) *100)>=15:
|
|
contours_drop_parent_final.append(contours_drop_parent[jj])
|
|
|
|
layout_no_patch[:,:,0][layout_no_patch[:,:,0]==4]=0
|
|
|
|
layout_no_patch=cv2.fillPoly(layout_no_patch, pts=contours_drop_parent_final, color=(4,4, 4))
|
|
|
|
return layout_no_patch
|
|
|
|
def do_order_of_regions(self,contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot):
|
|
|
|
if self.full_layout=='true' or self.full_layout=='True' or self.full_layout=='TRUE':
|
|
cx_text_only,cy_text_only ,x_min_text_only, _, _ ,_,y_cor_x_min_main=self.find_new_features_of_contoures(contours_only_text_parent)
|
|
cx_text_only_h,cy_text_only_h ,x_min_text_only_h, _, _ ,_,y_cor_x_min_main_h=self.find_new_features_of_contoures(contours_only_text_parent_h)
|
|
|
|
|
|
try:
|
|
arg_text_con=[]
|
|
for ii in range(len(cx_text_only)):
|
|
for jj in range(len(boxes)):
|
|
if (x_min_text_only[ii]+80) >=boxes[jj][0] and (x_min_text_only[ii]+80) < boxes[jj][1] and y_cor_x_min_main[ii] >=boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]:
|
|
arg_text_con.append(jj)
|
|
break
|
|
arg_arg_text_con=np.argsort(arg_text_con)
|
|
args_contours=np.array(range( len(arg_text_con)) )
|
|
|
|
arg_text_con_h=[]
|
|
for ii in range(len(cx_text_only_h)):
|
|
for jj in range(len(boxes)):
|
|
if (x_min_text_only_h[ii]+80) >=boxes[jj][0] and (x_min_text_only_h[ii]+80) < boxes[jj][1] and y_cor_x_min_main_h[ii] >=boxes[jj][2] and y_cor_x_min_main_h[ii] < boxes[jj][3]:
|
|
arg_text_con_h.append(jj)
|
|
break
|
|
arg_arg_text_con=np.argsort(arg_text_con_h)
|
|
args_contours_h=np.array(range( len(arg_text_con_h)) )
|
|
|
|
|
|
order_by_con_head=np.zeros(len(arg_text_con_h))
|
|
order_by_con_main=np.zeros(len(arg_text_con))
|
|
|
|
|
|
ref_point=0
|
|
order_of_texts_tot=[]
|
|
id_of_texts_tot=[]
|
|
for iij in range(len(boxes)):
|
|
|
|
args_contours_box=args_contours[np.array(arg_text_con)==iij]
|
|
args_contours_box_h=args_contours_h[np.array(arg_text_con_h)==iij]
|
|
con_inter_box=[]
|
|
con_inter_box_h=[]
|
|
|
|
for i in range(len(args_contours_box)):
|
|
con_inter_box.append( contours_only_text_parent[args_contours_box[i] ] )
|
|
|
|
for i in range(len(args_contours_box_h)):
|
|
con_inter_box_h.append( contours_only_text_parent_h[args_contours_box_h[i] ] )
|
|
|
|
indexes_sorted, matrix_of_orders,kind_of_texts_sorted,index_by_kind_sorted=self.order_of_regions(textline_mask_tot[int(boxes[iij][2]):int(boxes[iij][3]), int(boxes[iij][0]):int(boxes[iij][1])],con_inter_box,con_inter_box_h,boxes[iij][2])
|
|
|
|
|
|
order_of_texts, id_of_texts=self.order_and_id_of_texts(con_inter_box ,con_inter_box_h,matrix_of_orders ,indexes_sorted ,index_by_kind_sorted, kind_of_texts_sorted, ref_point)
|
|
|
|
|
|
indexes_sorted_main=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_by_type_main=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_sorted_head=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
indexes_by_type_head=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
|
|
|
|
|
|
zahler=0
|
|
for mtv in args_contours_box:
|
|
arg_order_v=indexes_sorted_main[zahler]
|
|
tartib=np.where(indexes_sorted==arg_order_v )[0][0]
|
|
order_by_con_main[ args_contours_box[indexes_by_type_main[zahler] ]]=tartib+ref_point
|
|
zahler=zahler+1
|
|
|
|
zahler=0
|
|
for mtv in args_contours_box_h:
|
|
arg_order_v=indexes_sorted_head[zahler]
|
|
tartib=np.where(indexes_sorted==arg_order_v )[0][0]
|
|
#print(indexes_sorted,np.where(indexes_sorted==arg_order_v ),arg_order_v,tartib,'inshgalla')
|
|
order_by_con_head[ args_contours_box_h[indexes_by_type_head[zahler] ]]=tartib+ref_point
|
|
zahler=zahler+1
|
|
|
|
|
|
|
|
for jji in range(len(id_of_texts)):
|
|
order_of_texts_tot.append(order_of_texts[jji]+ref_point)
|
|
id_of_texts_tot.append(id_of_texts[jji])
|
|
ref_point=ref_point+len(id_of_texts)
|
|
|
|
|
|
order_of_texts_tot=[]
|
|
for tj1 in range(len(contours_only_text_parent)):
|
|
order_of_texts_tot.append(int(order_by_con_main[tj1] ))
|
|
|
|
for tj1 in range(len(contours_only_text_parent_h)):
|
|
order_of_texts_tot.append(int(order_by_con_head[tj1]) )
|
|
|
|
order_text_new=[]
|
|
for iii in range(len(order_of_texts_tot)):
|
|
tartib_new=np.where(np.array(order_of_texts_tot)==iii)[0][0]
|
|
order_text_new.append(tartib_new)
|
|
|
|
|
|
except:
|
|
arg_text_con=[]
|
|
for ii in range(len(cx_text_only)):
|
|
for jj in range(len(boxes)):
|
|
if cx_text_only[ii] >=boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >=boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]:#this is valid if the center of region identify in which box it is located
|
|
arg_text_con.append(jj)
|
|
break
|
|
arg_arg_text_con=np.argsort(arg_text_con)
|
|
args_contours=np.array(range( len(arg_text_con)) )
|
|
|
|
|
|
order_by_con_main=np.zeros(len(arg_text_con))
|
|
|
|
|
|
|
|
############################# head
|
|
|
|
arg_text_con_h=[]
|
|
for ii in range(len(cx_text_only_h)):
|
|
for jj in range(len(boxes)):
|
|
if cx_text_only_h[ii] >=boxes[jj][0] and cx_text_only_h[ii] < boxes[jj][1] and cy_text_only_h[ii] >=boxes[jj][2] and cy_text_only_h[ii] < boxes[jj][3]:#this is valid if the center of region identify in which box it is located
|
|
arg_text_con_h.append(jj)
|
|
break
|
|
arg_arg_text_con_h=np.argsort(arg_text_con_h)
|
|
args_contours_h=np.array(range( len(arg_text_con_h)) )
|
|
|
|
order_by_con_head=np.zeros(len(arg_text_con_h))
|
|
#####
|
|
|
|
ref_point=0
|
|
order_of_texts_tot=[]
|
|
id_of_texts_tot=[]
|
|
for iij in range(len(boxes)):
|
|
args_contours_box=args_contours[np.array(arg_text_con)==iij]
|
|
args_contours_box_h=args_contours_h[np.array(arg_text_con_h)==iij]
|
|
con_inter_box=[]
|
|
con_inter_box_h=[]
|
|
|
|
for i in range(len(args_contours_box)):
|
|
|
|
con_inter_box.append( contours_only_text_parent[args_contours_box[i] ] )
|
|
for i in range(len(args_contours_box_h)):
|
|
|
|
con_inter_box_h.append( contours_only_text_parent_h[args_contours_box_h[i] ] )
|
|
|
|
indexes_sorted, matrix_of_orders,kind_of_texts_sorted,index_by_kind_sorted=self.order_of_regions(textline_mask_tot[int(boxes[iij][2]):int(boxes[iij][3]), int(boxes[iij][0]):int(boxes[iij][1])],con_inter_box,con_inter_box_h,boxes[iij][2])
|
|
|
|
|
|
order_of_texts, id_of_texts=self.order_and_id_of_texts(con_inter_box ,con_inter_box_h,matrix_of_orders ,indexes_sorted ,index_by_kind_sorted, kind_of_texts_sorted, ref_point)
|
|
|
|
|
|
indexes_sorted_main=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_by_type_main=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_sorted_head=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
indexes_by_type_head=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
|
|
|
|
|
|
zahler=0
|
|
for mtv in args_contours_box:
|
|
arg_order_v=indexes_sorted_main[zahler]
|
|
tartib=np.where(indexes_sorted==arg_order_v )[0][0]
|
|
order_by_con_main[ args_contours_box[indexes_by_type_main[zahler] ]]=tartib+ref_point
|
|
zahler=zahler+1
|
|
|
|
|
|
zahler=0
|
|
for mtv in args_contours_box_h:
|
|
arg_order_v=indexes_sorted_head[zahler]
|
|
tartib=np.where(indexes_sorted==arg_order_v )[0][0]
|
|
#print(indexes_sorted,np.where(indexes_sorted==arg_order_v ),arg_order_v,tartib,'inshgalla')
|
|
order_by_con_head[ args_contours_box_h[indexes_by_type_head[zahler] ]]=tartib+ref_point
|
|
zahler=zahler+1
|
|
|
|
|
|
|
|
for jji in range(len(id_of_texts)):
|
|
order_of_texts_tot.append(order_of_texts[jji]+ref_point)
|
|
id_of_texts_tot.append(id_of_texts[jji])
|
|
ref_point=ref_point+len(id_of_texts)
|
|
|
|
|
|
|
|
|
|
order_of_texts_tot=[]
|
|
for tj1 in range(len(contours_only_text_parent)):
|
|
order_of_texts_tot.append(int(order_by_con_main[tj1] ))
|
|
|
|
for tj1 in range(len(contours_only_text_parent_h)):
|
|
order_of_texts_tot.append(int(order_by_con_head[tj1]) )
|
|
|
|
|
|
order_text_new=[]
|
|
for iii in range(len(order_of_texts_tot)):
|
|
tartib_new=np.where(np.array(order_of_texts_tot)==iii)[0][0]
|
|
order_text_new.append(tartib_new)
|
|
return order_text_new,id_of_texts_tot
|
|
|
|
else:
|
|
cx_text_only,cy_text_only ,x_min_text_only, _, _ ,_,y_cor_x_min_main=self.find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
|
|
try:
|
|
arg_text_con=[]
|
|
for ii in range(len(cx_text_only)):
|
|
for jj in range(len(boxes)):
|
|
if (x_min_text_only[ii]+80) >=boxes[jj][0] and (x_min_text_only[ii]+80) < boxes[jj][1] and y_cor_x_min_main[ii] >=boxes[jj][2] and y_cor_x_min_main[ii] < boxes[jj][3]:
|
|
arg_text_con.append(jj)
|
|
break
|
|
arg_arg_text_con=np.argsort(arg_text_con)
|
|
args_contours=np.array(range( len(arg_text_con)) )
|
|
|
|
|
|
|
|
order_by_con_main=np.zeros(len(arg_text_con))
|
|
|
|
|
|
ref_point=0
|
|
order_of_texts_tot=[]
|
|
id_of_texts_tot=[]
|
|
for iij in range(len(boxes)):
|
|
|
|
args_contours_box=args_contours[np.array(arg_text_con)==iij]
|
|
|
|
con_inter_box=[]
|
|
con_inter_box_h=[]
|
|
|
|
for i in range(len(args_contours_box)):
|
|
con_inter_box.append( contours_only_text_parent[args_contours_box[i] ] )
|
|
|
|
|
|
indexes_sorted, matrix_of_orders,kind_of_texts_sorted,index_by_kind_sorted=self.order_of_regions(textline_mask_tot[int(boxes[iij][2]):int(boxes[iij][3]), int(boxes[iij][0]):int(boxes[iij][1])],con_inter_box,con_inter_box_h,boxes[iij][2])
|
|
|
|
|
|
order_of_texts, id_of_texts=self.order_and_id_of_texts(con_inter_box ,con_inter_box_h,matrix_of_orders ,indexes_sorted ,index_by_kind_sorted, kind_of_texts_sorted, ref_point)
|
|
|
|
|
|
indexes_sorted_main=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_by_type_main=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_sorted_head=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
indexes_by_type_head=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
|
|
|
|
|
|
zahler=0
|
|
for mtv in args_contours_box:
|
|
arg_order_v=indexes_sorted_main[zahler]
|
|
tartib=np.where(indexes_sorted==arg_order_v )[0][0]
|
|
order_by_con_main[ args_contours_box[indexes_by_type_main[zahler] ]]=tartib+ref_point
|
|
zahler=zahler+1
|
|
|
|
|
|
|
|
|
|
for jji in range(len(id_of_texts)):
|
|
order_of_texts_tot.append(order_of_texts[jji]+ref_point)
|
|
id_of_texts_tot.append(id_of_texts[jji])
|
|
ref_point=ref_point+len(id_of_texts)
|
|
|
|
|
|
order_of_texts_tot=[]
|
|
for tj1 in range(len(contours_only_text_parent)):
|
|
order_of_texts_tot.append(int(order_by_con_main[tj1] ))
|
|
|
|
|
|
order_text_new=[]
|
|
for iii in range(len(order_of_texts_tot)):
|
|
tartib_new=np.where(np.array(order_of_texts_tot)==iii)[0][0]
|
|
order_text_new.append(tartib_new)
|
|
|
|
|
|
except:
|
|
arg_text_con=[]
|
|
for ii in range(len(cx_text_only)):
|
|
for jj in range(len(boxes)):
|
|
if cx_text_only[ii] >=boxes[jj][0] and cx_text_only[ii] < boxes[jj][1] and cy_text_only[ii] >=boxes[jj][2] and cy_text_only[ii] < boxes[jj][3]:#this is valid if the center of region identify in which box it is located
|
|
arg_text_con.append(jj)
|
|
break
|
|
arg_arg_text_con=np.argsort(arg_text_con)
|
|
args_contours=np.array(range( len(arg_text_con)) )
|
|
|
|
|
|
order_by_con_main=np.zeros(len(arg_text_con))
|
|
|
|
|
|
|
|
ref_point=0
|
|
order_of_texts_tot=[]
|
|
id_of_texts_tot=[]
|
|
for iij in range(len(boxes)):
|
|
args_contours_box=args_contours[np.array(arg_text_con)==iij]
|
|
con_inter_box=[]
|
|
con_inter_box_h=[]
|
|
|
|
for i in range(len(args_contours_box)):
|
|
|
|
con_inter_box.append( contours_only_text_parent[args_contours_box[i] ] )
|
|
|
|
|
|
indexes_sorted, matrix_of_orders,kind_of_texts_sorted,index_by_kind_sorted=self.order_of_regions(textline_mask_tot[int(boxes[iij][2]):int(boxes[iij][3]), int(boxes[iij][0]):int(boxes[iij][1])],con_inter_box,con_inter_box_h,boxes[iij][2])
|
|
|
|
|
|
order_of_texts, id_of_texts=self.order_and_id_of_texts(con_inter_box ,con_inter_box_h,matrix_of_orders ,indexes_sorted ,index_by_kind_sorted, kind_of_texts_sorted, ref_point)
|
|
|
|
|
|
indexes_sorted_main=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_by_type_main=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==1]
|
|
indexes_sorted_head=np.array(indexes_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
indexes_by_type_head=np.array(index_by_kind_sorted)[np.array(kind_of_texts_sorted)==2]
|
|
|
|
|
|
|
|
zahler=0
|
|
for mtv in args_contours_box:
|
|
arg_order_v=indexes_sorted_main[zahler]
|
|
tartib=np.where(indexes_sorted==arg_order_v )[0][0]
|
|
order_by_con_main[ args_contours_box[indexes_by_type_main[zahler] ]]=tartib+ref_point
|
|
zahler=zahler+1
|
|
|
|
|
|
|
|
|
|
for jji in range(len(id_of_texts)):
|
|
order_of_texts_tot.append(order_of_texts[jji]+ref_point)
|
|
id_of_texts_tot.append(id_of_texts[jji])
|
|
ref_point=ref_point+len(id_of_texts)
|
|
|
|
|
|
|
|
|
|
order_of_texts_tot=[]
|
|
for tj1 in range(len(contours_only_text_parent)):
|
|
order_of_texts_tot.append(int(order_by_con_main[tj1] ))
|
|
|
|
|
|
order_text_new=[]
|
|
for iii in range(len(order_of_texts_tot)):
|
|
tartib_new=np.where(np.array(order_of_texts_tot)==iii)[0][0]
|
|
order_text_new.append(tartib_new)
|
|
|
|
return order_text_new,id_of_texts_tot
|
|
def adhere_drop_capital_region_into_cprresponding_textline(self,text_regions_p,polygons_of_drop_capitals,contours_only_text_parent,contours_only_text_parent_h,all_box_coord,all_box_coord_h,all_found_texline_polygons,all_found_texline_polygons_h):
|
|
#print(np.shape(all_found_texline_polygons),np.shape(all_found_texline_polygons[3]),'all_found_texline_polygonsshape')
|
|
#print(all_found_texline_polygons[3])
|
|
cx_m,cy_m ,_, _, _ ,_,_=self.find_new_features_of_contoures(contours_only_text_parent)
|
|
cx_h,cy_h ,_, _, _ ,_,_=self.find_new_features_of_contoures(contours_only_text_parent_h)
|
|
cx_d,cy_d ,_ , _, y_min_d ,y_max_d,_=self.find_new_features_of_contoures(polygons_of_drop_capitals)
|
|
|
|
img_con_all=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
for j_cont in range(len(contours_only_text_parent)):
|
|
img_con_all[all_box_coord[j_cont][0]:all_box_coord[j_cont][1],all_box_coord[j_cont][2]:all_box_coord[j_cont][3],0]=(j_cont+1)*3
|
|
#img_con_all=cv2.fillPoly(img_con_all,pts=[contours_only_text_parent[j_cont]],color=((j_cont+1)*3,(j_cont+1)*3,(j_cont+1)*3))
|
|
|
|
#plt.imshow(img_con_all[:,:,0])
|
|
#plt.show()
|
|
#img_con_all=cv2.dilate(img_con_all, self.kernel, iterations=3)
|
|
|
|
#plt.imshow(img_con_all[:,:,0])
|
|
#plt.show()
|
|
#print(np.unique(img_con_all[:,:,0]))
|
|
for i_drop in range(len(polygons_of_drop_capitals)):
|
|
#print(i_drop,'i_drop')
|
|
img_con_all_copy=np.copy(img_con_all)
|
|
img_con=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
img_con=cv2.fillPoly(img_con,pts=[polygons_of_drop_capitals[i_drop] ],color=(1,1,1))
|
|
|
|
|
|
#plt.imshow(img_con[:,:,0])
|
|
#plt.show()
|
|
##img_con=cv2.dilate(img_con, self.kernel, iterations=30)
|
|
|
|
#plt.imshow(img_con[:,:,0])
|
|
#plt.show()
|
|
|
|
#print(np.unique(img_con[:,:,0]))
|
|
|
|
img_con_all_copy[:,:,0]=img_con_all_copy[:,:,0]+img_con[:,:,0]
|
|
|
|
img_con_all_copy[:,:,0][img_con_all_copy[:,:,0]==1]=0
|
|
|
|
kherej_ghesmat=np.unique(img_con_all_copy[:,:,0])/3
|
|
res_summed_pixels=np.unique(img_con_all_copy[:,:,0])%3
|
|
region_with_intersected_drop=kherej_ghesmat[res_summed_pixels==1]
|
|
#region_with_intersected_drop=region_with_intersected_drop/3
|
|
region_with_intersected_drop=region_with_intersected_drop.astype(np.uint8)
|
|
|
|
#print(len(region_with_intersected_drop),'region_with_intersected_drop1')
|
|
if len(region_with_intersected_drop)==0:
|
|
img_con_all_copy=np.copy(img_con_all)
|
|
img_con=cv2.dilate(img_con, self.kernel, iterations=4)
|
|
|
|
img_con_all_copy[:,:,0]=img_con_all_copy[:,:,0]+img_con[:,:,0]
|
|
|
|
img_con_all_copy[:,:,0][img_con_all_copy[:,:,0]==1]=0
|
|
|
|
kherej_ghesmat=np.unique(img_con_all_copy[:,:,0])/3
|
|
res_summed_pixels=np.unique(img_con_all_copy[:,:,0])%3
|
|
region_with_intersected_drop=kherej_ghesmat[res_summed_pixels==1]
|
|
#region_with_intersected_drop=region_with_intersected_drop/3
|
|
region_with_intersected_drop=region_with_intersected_drop.astype(np.uint8)
|
|
#print(np.unique(img_con_all_copy[:,:,0]))
|
|
if self.curved_line=='True' or self.curved_line=='true':
|
|
|
|
|
|
if len(region_with_intersected_drop)>1:
|
|
sum_pixels_of_intersection=[]
|
|
for i in range(len(region_with_intersected_drop)):
|
|
#print((region_with_intersected_drop[i]*3+1))
|
|
sum_pixels_of_intersection.append( ((img_con_all_copy[:,:,0]==(region_with_intersected_drop[i]*3+1))*1).sum() )
|
|
#print(sum_pixels_of_intersection)
|
|
region_final=region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)]-1
|
|
|
|
#print(region_final,'region_final')
|
|
#cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
try:
|
|
cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
#print(all_box_coord[j_cont])
|
|
#print(cx_t)
|
|
#print(cy_t)
|
|
#print(cx_d[i_drop])
|
|
#print(cy_d[i_drop])
|
|
y_lines=np.array(cy_t)#all_box_coord[int(region_final)][0]+np.array(cy_t)
|
|
|
|
|
|
#print(y_lines)
|
|
|
|
y_lines[y_lines<y_min_d[i_drop]]=0
|
|
#print(y_lines)
|
|
|
|
arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
|
|
#print(arg_min)
|
|
|
|
cnt_nearest=np.copy(all_found_texline_polygons[int(region_final)][arg_min])
|
|
cnt_nearest[:,0,0]=all_found_texline_polygons[int(region_final)][arg_min][:,0,0]#+all_box_coord[int(region_final)][2]
|
|
cnt_nearest[:,0,1]=all_found_texline_polygons[int(region_final)][arg_min][:,0,1]#+all_box_coord[int(region_final)][0]
|
|
|
|
img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
|
|
|
|
img_textlines=img_textlines.astype(np.uint8)
|
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
#print(len(contours_combined),'len textlines mixed')
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
|
|
|
contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
|
|
|
|
#print(np.shape(contours_biggest))
|
|
#print(contours_biggest[:])
|
|
#contours_biggest[:,0,0]=contours_biggest[:,0,0]#-all_box_coord[int(region_final)][2]
|
|
#contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
|
|
|
|
#contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
|
|
|
|
|
|
all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
|
|
|
|
except:
|
|
#print('gordun1')
|
|
pass
|
|
elif len(region_with_intersected_drop)==1:
|
|
region_final=region_with_intersected_drop[0]-1
|
|
|
|
#areas_main=np.array([cv2.contourArea(all_found_texline_polygons[int(region_final)][0][j] ) for j in range(len(all_found_texline_polygons[int(region_final)]))])
|
|
|
|
|
|
#cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
|
|
|
|
cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
#print(all_box_coord[j_cont])
|
|
#print(cx_t)
|
|
#print(cy_t)
|
|
#print(cx_d[i_drop])
|
|
#print(cy_d[i_drop])
|
|
y_lines=np.array(cy_t)#all_box_coord[int(region_final)][0]+np.array(cy_t)
|
|
|
|
y_lines[y_lines<y_min_d[i_drop]]=0
|
|
#print(y_lines)
|
|
|
|
arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
|
|
#print(arg_min)
|
|
|
|
cnt_nearest=np.copy(all_found_texline_polygons[int(region_final)][arg_min])
|
|
cnt_nearest[:,0,0]=all_found_texline_polygons[int(region_final)][arg_min][:,0,0]#+all_box_coord[int(region_final)][2]
|
|
cnt_nearest[:,0,1]=all_found_texline_polygons[int(region_final)][arg_min][:,0,1]#+all_box_coord[int(region_final)][0]
|
|
|
|
img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
|
|
|
|
img_textlines=img_textlines.astype(np.uint8)
|
|
|
|
#plt.imshow(img_textlines)
|
|
#plt.show()
|
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
#print(len(contours_combined),'len textlines mixed')
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
|
|
|
contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
|
|
|
|
#print(np.shape(contours_biggest))
|
|
#print(contours_biggest[:])
|
|
#contours_biggest[:,0,0]=contours_biggest[:,0,0]#-all_box_coord[int(region_final)][2]
|
|
#contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
|
|
#print(np.shape(contours_biggest),'contours_biggest')
|
|
#print(np.shape(all_found_texline_polygons[int(region_final)][arg_min]))
|
|
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
|
|
all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
|
|
#print(cx_t,'print')
|
|
try:
|
|
#print(all_found_texline_polygons[j_cont][0])
|
|
cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
#print(all_box_coord[j_cont])
|
|
#print(cx_t)
|
|
#print(cy_t)
|
|
#print(cx_d[i_drop])
|
|
#print(cy_d[i_drop])
|
|
y_lines=all_box_coord[int(region_final)][0]+np.array(cy_t)
|
|
|
|
y_lines[y_lines<y_min_d[i_drop]]=0
|
|
#print(y_lines)
|
|
|
|
arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
|
|
#print(arg_min)
|
|
|
|
cnt_nearest=np.copy(all_found_texline_polygons[int(region_final)][arg_min])
|
|
cnt_nearest[:,0,0]=all_found_texline_polygons[int(region_final)][arg_min][:,0,0]#+all_box_coord[int(region_final)][2]
|
|
cnt_nearest[:,0,1]=all_found_texline_polygons[int(region_final)][arg_min][:,0,1]#+all_box_coord[int(region_final)][0]
|
|
|
|
img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
|
|
|
|
img_textlines=img_textlines.astype(np.uint8)
|
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
#print(len(contours_combined),'len textlines mixed')
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
|
|
|
contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
|
|
|
|
#print(np.shape(contours_biggest))
|
|
#print(contours_biggest[:])
|
|
contours_biggest[:,0,0]=contours_biggest[:,0,0]#-all_box_coord[int(region_final)][2]
|
|
contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
|
|
|
|
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
|
|
all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
#all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
|
|
except:
|
|
pass
|
|
else:
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
##cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
###print(all_box_coord[j_cont])
|
|
###print(cx_t)
|
|
###print(cy_t)
|
|
###print(cx_d[i_drop])
|
|
###print(cy_d[i_drop])
|
|
##y_lines=all_box_coord[int(region_final)][0]+np.array(cy_t)
|
|
|
|
##y_lines[y_lines<y_min_d[i_drop]]=0
|
|
###print(y_lines)
|
|
|
|
##arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
|
|
###print(arg_min)
|
|
|
|
##cnt_nearest=np.copy(all_found_texline_polygons[int(region_final)][arg_min])
|
|
##cnt_nearest[:,0,0]=all_found_texline_polygons[int(region_final)][arg_min][:,0,0]#+all_box_coord[int(region_final)][2]
|
|
##cnt_nearest[:,0,1]=all_found_texline_polygons[int(region_final)][arg_min][:,0,1]#+all_box_coord[int(region_final)][0]
|
|
|
|
##img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
##img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
|
|
##img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
|
|
|
|
##img_textlines=img_textlines.astype(np.uint8)
|
|
|
|
##plt.imshow(img_textlines)
|
|
##plt.show()
|
|
##imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
|
##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
##contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
##print(len(contours_combined),'len textlines mixed')
|
|
##areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
|
|
|
##contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
|
|
|
|
###print(np.shape(contours_biggest))
|
|
###print(contours_biggest[:])
|
|
##contours_biggest[:,0,0]=contours_biggest[:,0,0]#-all_box_coord[int(region_final)][2]
|
|
##contours_biggest[:,0,1]=contours_biggest[:,0,1]#-all_box_coord[int(region_final)][0]
|
|
|
|
##contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
|
|
##all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
|
|
else:
|
|
if len(region_with_intersected_drop)>1:
|
|
sum_pixels_of_intersection=[]
|
|
for i in range(len(region_with_intersected_drop)):
|
|
#print((region_with_intersected_drop[i]*3+1))
|
|
sum_pixels_of_intersection.append( ((img_con_all_copy[:,:,0]==(region_with_intersected_drop[i]*3+1))*1).sum() )
|
|
#print(sum_pixels_of_intersection)
|
|
region_final=region_with_intersected_drop[np.argmax(sum_pixels_of_intersection)]-1
|
|
|
|
#print(region_final,'region_final')
|
|
#cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
try:
|
|
cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
#print(all_box_coord[j_cont])
|
|
#print(cx_t)
|
|
#print(cy_t)
|
|
#print(cx_d[i_drop])
|
|
#print(cy_d[i_drop])
|
|
y_lines=all_box_coord[int(region_final)][0]+np.array(cy_t)
|
|
|
|
|
|
#print(y_lines)
|
|
|
|
y_lines[y_lines<y_min_d[i_drop]]=0
|
|
#print(y_lines)
|
|
|
|
arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
|
|
#print(arg_min)
|
|
|
|
cnt_nearest=np.copy(all_found_texline_polygons[int(region_final)][arg_min])
|
|
cnt_nearest[:,0]=all_found_texline_polygons[int(region_final)][arg_min][:,0]+all_box_coord[int(region_final)][2]
|
|
cnt_nearest[:,1]=all_found_texline_polygons[int(region_final)][arg_min][:,1]+all_box_coord[int(region_final)][0]
|
|
|
|
img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
|
|
|
|
img_textlines=img_textlines.astype(np.uint8)
|
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
#print(len(contours_combined),'len textlines mixed')
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
|
|
|
contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
|
|
|
|
#print(np.shape(contours_biggest))
|
|
#print(contours_biggest[:])
|
|
contours_biggest[:,0,0]=contours_biggest[:,0,0]-all_box_coord[int(region_final)][2]
|
|
contours_biggest[:,0,1]=contours_biggest[:,0,1]-all_box_coord[int(region_final)][0]
|
|
|
|
contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
|
|
|
|
|
|
all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
|
|
|
|
except:
|
|
#print('gordun1')
|
|
pass
|
|
elif len(region_with_intersected_drop)==1:
|
|
region_final=region_with_intersected_drop[0]-1
|
|
|
|
|
|
#areas_main=np.array([cv2.contourArea(all_found_texline_polygons[int(region_final)][0][j] ) for j in range(len(all_found_texline_polygons[int(region_final)]))])
|
|
|
|
|
|
#cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
|
|
|
|
#print(cx_t,'print')
|
|
try:
|
|
#print(all_found_texline_polygons[j_cont][0])
|
|
cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[int(region_final)])
|
|
#print(all_box_coord[j_cont])
|
|
#print(cx_t)
|
|
#print(cy_t)
|
|
#print(cx_d[i_drop])
|
|
#print(cy_d[i_drop])
|
|
y_lines=all_box_coord[int(region_final)][0]+np.array(cy_t)
|
|
|
|
y_lines[y_lines<y_min_d[i_drop]]=0
|
|
#print(y_lines)
|
|
|
|
arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
|
|
#print(arg_min)
|
|
|
|
cnt_nearest=np.copy(all_found_texline_polygons[int(region_final)][arg_min])
|
|
cnt_nearest[:,0]=all_found_texline_polygons[int(region_final)][arg_min][:,0]+all_box_coord[int(region_final)][2]
|
|
cnt_nearest[:,1]=all_found_texline_polygons[int(region_final)][arg_min][:,1]+all_box_coord[int(region_final)][0]
|
|
|
|
img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
|
|
img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
|
|
|
|
img_textlines=img_textlines.astype(np.uint8)
|
|
imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
|
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
#print(len(contours_combined),'len textlines mixed')
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
|
|
|
contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
|
|
|
|
#print(np.shape(contours_biggest))
|
|
#print(contours_biggest[:])
|
|
contours_biggest[:,0,0]=contours_biggest[:,0,0]-all_box_coord[int(region_final)][2]
|
|
contours_biggest[:,0,1]=contours_biggest[:,0,1]-all_box_coord[int(region_final)][0]
|
|
|
|
contours_biggest=contours_biggest.reshape(np.shape(contours_biggest)[0],np.shape(contours_biggest)[2])
|
|
all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
#all_found_texline_polygons[int(region_final)][arg_min]=contours_biggest
|
|
|
|
except:
|
|
pass
|
|
else:
|
|
pass
|
|
|
|
|
|
#####for i_drop in range(len(polygons_of_drop_capitals)):
|
|
#####for j_cont in range(len(contours_only_text_parent)):
|
|
#####img_con=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
#####img_con=cv2.fillPoly(img_con,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
#####img_con=cv2.fillPoly(img_con,pts=[contours_only_text_parent[j_cont]],color=(255,255,255))
|
|
|
|
#####img_con=img_con.astype(np.uint8)
|
|
######imgray = cv2.cvtColor(img_con, cv2.COLOR_BGR2GRAY)
|
|
######ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
######contours_new,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
#####contours_new,hir_new=self.return_contours_of_image(img_con)
|
|
#####contours_new_parent=self.return_parent_contours( contours_new,hir_new)
|
|
######plt.imshow(img_con)
|
|
######plt.show()
|
|
#####try:
|
|
#####if len(contours_new_parent)==1:
|
|
######print(all_found_texline_polygons[j_cont][0])
|
|
#####cx_t,cy_t ,_, _, _ ,_,_=self.find_new_features_of_contoures(all_found_texline_polygons[j_cont])
|
|
######print(all_box_coord[j_cont])
|
|
######print(cx_t)
|
|
######print(cy_t)
|
|
######print(cx_d[i_drop])
|
|
######print(cy_d[i_drop])
|
|
#####y_lines=all_box_coord[j_cont][0]+np.array(cy_t)
|
|
|
|
|
|
######print(y_lines)
|
|
|
|
#####arg_min=np.argmin(np.abs(y_lines-y_min_d[i_drop]) )
|
|
######print(arg_min)
|
|
|
|
#####cnt_nearest=np.copy(all_found_texline_polygons[j_cont][arg_min])
|
|
#####cnt_nearest[:,0]=all_found_texline_polygons[j_cont][arg_min][:,0]+all_box_coord[j_cont][2]
|
|
#####cnt_nearest[:,1]=all_found_texline_polygons[j_cont][arg_min][:,1]+all_box_coord[j_cont][0]
|
|
|
|
#####img_textlines=np.zeros((text_regions_p.shape[0],text_regions_p.shape[1],3))
|
|
#####img_textlines=cv2.fillPoly(img_textlines,pts=[cnt_nearest],color=(255,255,255))
|
|
#####img_textlines=cv2.fillPoly(img_textlines,pts=[polygons_of_drop_capitals[i_drop] ],color=(255,255,255))
|
|
|
|
|
|
#####img_textlines=img_textlines.astype(np.uint8)
|
|
#####imgray = cv2.cvtColor(img_textlines, cv2.COLOR_BGR2GRAY)
|
|
#####ret, thresh = cv2.threshold(imgray, 0, 255, 0)
|
|
|
|
#####contours_combined,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
#####areas_cnt_text=np.array([cv2.contourArea(contours_combined[j]) for j in range(len(contours_combined))])
|
|
|
|
#####contours_biggest=contours_combined[np.argmax(areas_cnt_text)]
|
|
|
|
######print(np.shape(contours_biggest))
|
|
######print(contours_biggest[:])
|
|
#####contours_biggest[:,0,0]=contours_biggest[:,0,0]-all_box_coord[j_cont][2]
|
|
#####contours_biggest[:,0,1]=contours_biggest[:,0,1]-all_box_coord[j_cont][0]
|
|
|
|
#####all_found_texline_polygons[j_cont][arg_min]=contours_biggest
|
|
######print(contours_biggest)
|
|
######plt.imshow(img_textlines[:,:,0])
|
|
######plt.show()
|
|
#####else:
|
|
#####pass
|
|
#####except:
|
|
#####pass
|
|
return all_found_texline_polygons
|
|
|
|
|
|
def save_plot_of_layout_main(self,text_regions_p,image_page):
|
|
values=np.unique(text_regions_p[:,:])
|
|
|
|
#pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
|
|
|
|
pixels=['Background' , 'Main text' , 'Images' , 'Seperators','Marginalia']
|
|
values_indexes=[0 , 1 , 2 , 3,4]
|
|
plt.figure(figsize=(40,40))
|
|
plt.rcParams['font.size']='40'
|
|
|
|
im=plt.imshow(text_regions_p[:,:])
|
|
colors=[im.cmap(im.norm(value)) for value in values]
|
|
patches=[ mpatches.Patch( color=colors[np.where(values==i)[0][0]], label="{l}".format(l=pixels[int( np.where(values_indexes==i)[0][0] )])) for i in values]
|
|
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,fontsize=40)
|
|
plt.savefig(os.path.join(self.dir_of_layout,self.f_name+'_layout_main.png') )
|
|
|
|
|
|
|
|
|
|
def save_plot_of_layout_main_all(self,text_regions_p,image_page):
|
|
values=np.unique(text_regions_p[:,:])
|
|
|
|
#pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
|
|
|
|
pixels=['Background' , 'Main text' , 'Images' , 'Seperators','Marginalia']
|
|
values_indexes=[0 , 1 , 2 , 3,4]
|
|
|
|
plt.figure(figsize=(70,40))
|
|
plt.rcParams['font.size']='40'
|
|
plt.subplot(1,2,1)
|
|
plt.imshow(image_page)
|
|
plt.subplot(1,2,2)
|
|
im=plt.imshow(text_regions_p[:,:])
|
|
colors=[im.cmap(im.norm(value)) for value in values]
|
|
patches=[ mpatches.Patch( color=colors[np.where(values==i)[0][0]], label="{l}".format(l=pixels[int( np.where(values_indexes==i)[0][0] )])) for i in values]
|
|
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,fontsize=60)
|
|
|
|
|
|
plt.savefig(os.path.join(self.dir_of_all,self.f_name+'_layout_main_and_page.png') )
|
|
|
|
def save_plot_of_layout(self,text_regions_p,image_page):
|
|
values=np.unique(text_regions_p[:,:])
|
|
|
|
#pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
|
|
|
|
pixels=['Background' , 'Main text' , 'Header' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators']
|
|
values_indexes=[0 , 1 , 2 , 8, 4, 5, 6]
|
|
plt.figure(figsize=(40,40))
|
|
plt.rcParams['font.size']='40'
|
|
im=plt.imshow(text_regions_p[:,:])
|
|
colors=[im.cmap(im.norm(value)) for value in values]
|
|
patches=[ mpatches.Patch( color=colors[np.where(values==i)[0][0]], label="{l}".format(l=pixels[int( np.where(values_indexes==i)[0][0] )])) for i in values]
|
|
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,fontsize=40)
|
|
plt.savefig(os.path.join(self.dir_of_layout,self.f_name+'_layout.png') )
|
|
|
|
|
|
|
|
def save_plot_of_layout_all(self,text_regions_p,image_page):
|
|
values=np.unique(text_regions_p[:,:])
|
|
|
|
#pixels=['Background' , 'Main text' , 'Heading' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators' , 'Tables', 'Graphics']
|
|
|
|
pixels=['Background' , 'Main text' , 'Header' , 'Marginalia' ,'Drop capitals' , 'Images' , 'Seperators']
|
|
values_indexes=[0 , 1 , 2 , 8, 4, 5, 6]
|
|
|
|
plt.figure(figsize=(70,40))
|
|
plt.rcParams['font.size']='40'
|
|
plt.subplot(1,2,1)
|
|
plt.imshow(image_page)
|
|
plt.subplot(1,2,2)
|
|
im=plt.imshow(text_regions_p[:,:])
|
|
colors=[im.cmap(im.norm(value)) for value in values]
|
|
patches=[ mpatches.Patch( color=colors[np.where(values==i)[0][0]], label="{l}".format(l=pixels[int( np.where(values_indexes==i)[0][0] )])) for i in values]
|
|
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,fontsize=60)
|
|
|
|
|
|
plt.savefig(os.path.join(self.dir_of_all,self.f_name+'_layout_and_page.png') )
|
|
|
|
def save_deskewed_image(self,slope_deskew):
|
|
img_rotated=self.rotyate_image_different(self.image_org,slope_deskew)
|
|
|
|
if self.dir_of_all is not None:
|
|
cv2.imwrite(os.path.join(self.dir_of_all,self.f_name+'_org.png'),self.image_org)
|
|
|
|
cv2.imwrite(os.path.join(self.dir_of_deskewed,self.f_name+'_deskewed.png'),img_rotated)
|
|
del img_rotated
|
|
|
|
def run(self):
|
|
is_image_enhanced=False
|
|
#get image and sclaes, then extract the page of scanned image
|
|
t1=time.time()
|
|
|
|
|
|
##########
|
|
|
|
###is_image_enhanced,img_org,img_res=self.resize_and_enhance_image(is_image_enhanced)
|
|
is_image_enhanced,img_org,img_res,num_col_classifier,num_column_is_classified=self.resize_and_enhance_image_with_column_classifier(is_image_enhanced)
|
|
|
|
print(is_image_enhanced,'is_image_enhanced')
|
|
K.clear_session()
|
|
scale=1
|
|
if (self.allow_enhancement=='true' or self.allow_enhancement=='True' or self.allow_enhancement=='TRUE') and is_image_enhanced:
|
|
cv2.imwrite(os.path.join(self.dir_out, self.f_name) + ".tif",img_res)
|
|
img_res=img_res.astype(np.uint8)
|
|
self.get_image_and_scales(img_org,img_res,scale)
|
|
|
|
|
|
if (self.allow_enhancement=='False' or self.allow_enhancement=='false' or self.allow_enhancement=='FALSE' or self.allow_enhancement==None) and is_image_enhanced:
|
|
self.get_image_and_scales_after_enhancing(img_org,img_res)
|
|
|
|
if (self.allow_enhancement=='true' or self.allow_enhancement=='True' or self.allow_enhancement=='TRUE') and not is_image_enhanced:
|
|
self.get_image_and_scales(img_org,img_res,scale)
|
|
|
|
|
|
if (self.allow_enhancement=='False' or self.allow_enhancement=='false' or self.allow_enhancement=='FALSE' or self.allow_enhancement==None) and not is_image_enhanced:
|
|
self.get_image_and_scales(img_org,img_res,scale)
|
|
|
|
if (self.allow_scaling=='true' or self.allow_scaling=='True' or self.allow_scaling=='TRUE') and not is_image_enhanced :
|
|
img_org,img_res,is_image_enhanced=self.resize_image_with_column_classifier(is_image_enhanced)
|
|
self.get_image_and_scales_after_enhancing(img_org,img_res)
|
|
|
|
|
|
#print(self.scale_x)
|
|
|
|
print('enhancing: '+str(time.time()-t1))
|
|
text_regions_p_1=self.get_regions_from_xy_2models(img_res,is_image_enhanced)
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
print('textregion: '+str(time.time()-t1))
|
|
|
|
img_g=cv2.imread(self.image_dir,0)
|
|
img_g=img_g.astype(np.uint8)
|
|
|
|
img_g3=np.zeros((img_g.shape[0],img_g.shape[1],3))
|
|
|
|
img_g3 = img_g3.astype(np.uint8)
|
|
|
|
img_g3[:,:,0]=img_g[:,:]
|
|
img_g3[:,:,1]=img_g[:,:]
|
|
img_g3[:,:,2]=img_g[:,:]
|
|
|
|
###self.produce_groundtruth_for_textline()
|
|
image_page,page_coord=self.extract_page()
|
|
|
|
#print(image_page.shape,'page')
|
|
|
|
|
|
if self.dir_of_all is not None:
|
|
cv2.imwrite(os.path.join(self.dir_of_all,self.f_name+'_page.png'),image_page)
|
|
##########
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
img_g3_page=img_g3[page_coord[0]:page_coord[1],page_coord[2]:page_coord[3],:]
|
|
del img_g3
|
|
del img_g
|
|
|
|
text_regions_p_1=text_regions_p_1[page_coord[0]:page_coord[1],page_coord[2]:page_coord[3]]
|
|
|
|
|
|
|
|
mask_images=(text_regions_p_1[:,:]==2)*1
|
|
mask_lines=(text_regions_p_1[:,:]==3)*1
|
|
|
|
mask_images=mask_images.astype(np.uint8)
|
|
mask_lines=mask_lines.astype(np.uint8)
|
|
|
|
mask_images=cv2.erode(mask_images[:,:], self.kernel, iterations=10)
|
|
|
|
|
|
|
|
img_only_regions_with_sep=( (text_regions_p_1[:,:]!=3) & (text_regions_p_1[:,:]!=0) )*1
|
|
img_only_regions_with_sep=img_only_regions_with_sep.astype(np.uint8)
|
|
img_only_regions = cv2.erode(img_only_regions_with_sep[:,:], self.kernel, iterations=6)
|
|
|
|
|
|
|
|
|
|
try:
|
|
num_col, peaks_neg_fin=self.find_num_col(img_only_regions,multiplier=6.0)
|
|
if not num_column_is_classified:
|
|
num_col_classifier=num_col+1
|
|
except:
|
|
num_col=None
|
|
peaks_neg_fin=[]
|
|
|
|
print(num_col,'num_colnum_col')
|
|
if num_col is None:
|
|
txt_con_org=[]
|
|
order_text_new=[]
|
|
id_of_texts_tot=[]
|
|
all_found_texline_polygons=[]
|
|
all_box_coord=[]
|
|
polygons_of_images=[]
|
|
polygons_of_marginals=[]
|
|
all_found_texline_polygons_marginals=[]
|
|
all_box_coord_marginals=[]
|
|
slopes=[]
|
|
slopes_marginals=[]
|
|
self.write_into_page_xml(txt_con_org,page_coord,self.dir_out , order_text_new , id_of_texts_tot,all_found_texline_polygons,
|
|
all_box_coord,polygons_of_images,polygons_of_marginals,all_found_texline_polygons_marginals,all_box_coord_marginals,self.curved_line,slopes,slopes_marginals)
|
|
else:
|
|
#pass
|
|
try:
|
|
patches=True
|
|
scaler_h_textline=1#1.2#1.2
|
|
scaler_w_textline=1#0.9#1
|
|
textline_mask_tot_ea,textline_mask_tot_long_shot=self.textline_contours(image_page,patches,scaler_h_textline,scaler_w_textline)
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
print(np.unique(textline_mask_tot_ea[:,:]),'textline')
|
|
|
|
if self.dir_of_all is not None:
|
|
|
|
values=np.unique(textline_mask_tot_ea[:,:])
|
|
pixels=['Background' , 'Textlines']
|
|
values_indexes=[0 , 1]
|
|
plt.figure(figsize=(70,40))
|
|
plt.rcParams['font.size']='40'
|
|
plt.subplot(1,2,1)
|
|
plt.imshow(image_page)
|
|
plt.subplot(1,2,2)
|
|
im=plt.imshow(textline_mask_tot_ea[:,:])
|
|
colors=[im.cmap(im.norm(value)) for value in values]
|
|
patches=[ mpatches.Patch( color=colors[np.where(values==i)[0][0]], label="{l}".format(l=pixels[int( np.where(values_indexes==i)[0][0] )])) for i in values]
|
|
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,fontsize=60)
|
|
|
|
|
|
plt.savefig(os.path.join(self.dir_of_all,self.f_name+'_textline_and_page.png') )
|
|
print('textline: '+str(time.time()-t1))
|
|
#plt.imshow(textline_mask_tot_ea)
|
|
#plt.show()
|
|
#sys.exit()
|
|
|
|
|
|
sigma=2
|
|
main_page_deskew=True
|
|
slope_deskew=self.return_deskew_slop(cv2.erode(textline_mask_tot_ea, self.kernel, iterations=2),sigma,main_page_deskew)
|
|
slope_first=0#self.return_deskew_slop(cv2.erode(textline_mask_tot_ea, self.kernel, iterations=2),sigma)
|
|
|
|
if self.dir_of_deskewed is not None:
|
|
self.save_deskewed_image(slope_deskew)
|
|
#img_rotated=self.rotyate_image_different(self.image_org,slope_deskew)
|
|
print(slope_deskew,'slope_deskew')
|
|
|
|
##plt.imshow(img_rotated)
|
|
##plt.show()
|
|
##sys.exit()
|
|
print('deskewing: '+str(time.time()-t1))
|
|
|
|
image_page_rotated,textline_mask_tot=image_page[:,:],textline_mask_tot_ea[:,:]#self.rotation_not_90_func(image_page,textline_mask_tot_ea,slope_first)
|
|
textline_mask_tot[mask_images[:,:]==1]=0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pixel_img=1
|
|
min_area=0.00001
|
|
max_area=0.0006
|
|
textline_mask_tot_small_size=self.return_contours_of_interested_region_by_size(textline_mask_tot,pixel_img,min_area,max_area)
|
|
|
|
|
|
#text_regions_p_1[(textline_mask_tot[:,:]==1) & (text_regions_p_1[:,:]==2)]=1
|
|
|
|
|
|
text_regions_p_1[mask_lines[:,:]==1]=3
|
|
|
|
|
|
##text_regions_p_1[textline_mask_tot_small_size[:,:]==1]=1
|
|
|
|
|
|
text_regions_p=text_regions_p_1[:,:]#long_short_region[:,:]#self.get_regions_from_2_models(image_page)
|
|
|
|
text_regions_p=np.array(text_regions_p)
|
|
|
|
|
|
if num_col_classifier==1 or num_col_classifier==2:
|
|
|
|
try:
|
|
regions_without_seperators=(text_regions_p[:,:]==1)*1
|
|
regions_without_seperators=regions_without_seperators.astype(np.uint8)
|
|
|
|
|
|
text_regions_p=self.get_marginals(self.rotate_image(regions_without_seperators,slope_deskew),text_regions_p,num_col_classifier,slope_deskew)
|
|
|
|
except:
|
|
pass
|
|
else:
|
|
pass
|
|
|
|
|
|
#plt.imshow(text_regions_p)
|
|
#plt.show()
|
|
|
|
if self.dir_of_all is not None:
|
|
self.save_plot_of_layout_main_all(text_regions_p,image_page)
|
|
if self.dir_of_layout is not None:
|
|
self.save_plot_of_layout_main(text_regions_p,image_page)
|
|
|
|
print('marginals: '+str(time.time()-t1))
|
|
|
|
if self.full_layout is None or self.full_layout=='False' or self.full_layout=='false' or self.full_layout=='FALSE':
|
|
|
|
|
|
if np.abs(slope_deskew)>=.13:
|
|
image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n=self.rotation_not_90_func(image_page,textline_mask_tot,text_regions_p,slope_deskew)
|
|
|
|
text_regions_p_1_n=self.resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1])
|
|
textline_mask_tot_d=self.resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1])
|
|
|
|
regions_without_seperators_d=(text_regions_p_1_n[:,:]==1)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_without_seperators=(text_regions_p[:,:]==1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
pixel_lines=3
|
|
if np.abs(slope_deskew)<0.13:
|
|
num_col,peaks_neg_fin,matrix_of_lines_ch,spliter_y_new,seperators_closeup_n=self.find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2),num_col_classifier,pixel_lines)
|
|
|
|
if np.abs(slope_deskew)>=.13:
|
|
num_col_d,peaks_neg_fin_d,matrix_of_lines_ch_d,spliter_y_new_d,seperators_closeup_n_d=self.find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier,pixel_lines)
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
#print(peaks_neg_fin,num_col,'num_col2')
|
|
|
|
print(num_col_classifier,'num_col_classifier')
|
|
|
|
|
|
if num_col_classifier>=3:
|
|
if np.abs(slope_deskew)<0.13:
|
|
regions_without_seperators=regions_without_seperators.astype(np.uint8)
|
|
regions_without_seperators = cv2.erode(regions_without_seperators[:,:], self.kernel, iterations=6)
|
|
|
|
random_pixels_for_image=np.random.randn(regions_without_seperators.shape[0],regions_without_seperators.shape[1])
|
|
random_pixels_for_image[random_pixels_for_image<-.5]=0
|
|
random_pixels_for_image[random_pixels_for_image!=0]=1
|
|
|
|
regions_without_seperators[(random_pixels_for_image[:,:]==1) & (text_regions_p[:,:]==2)]=1
|
|
|
|
if np.abs(slope_deskew)>=.13:
|
|
regions_without_seperators_d=regions_without_seperators_d.astype(np.uint8)
|
|
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:,:], self.kernel, iterations=6)
|
|
|
|
random_pixels_for_image=np.random.randn(regions_without_seperators_d.shape[0],regions_without_seperators_d.shape[1])
|
|
random_pixels_for_image[random_pixels_for_image<-.5]=0
|
|
random_pixels_for_image[random_pixels_for_image!=0]=1
|
|
|
|
regions_without_seperators_d[(random_pixels_for_image[:,:]==1) & (text_regions_p_1_n[:,:]==2)]=1
|
|
else:
|
|
pass
|
|
|
|
if np.abs(slope_deskew)<0.13:
|
|
boxes=self.return_boxes_of_images_by_order_of_reading_new(spliter_y_new,regions_without_seperators,matrix_of_lines_ch)
|
|
else:
|
|
boxes_d=self.return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d,regions_without_seperators_d,matrix_of_lines_ch_d)
|
|
|
|
#print(len(boxes),'boxes')
|
|
|
|
#sys.exit()
|
|
|
|
print('boxes in: '+str(time.time()-t1))
|
|
img_revised_tab=text_regions_p[:,:]
|
|
|
|
#plt.imshow(img_revised_tab)
|
|
#plt.show()
|
|
K.clear_session()
|
|
|
|
|
|
|
|
|
|
pixel_img=4
|
|
min_area_mar=0.00001
|
|
polygons_of_marginals=self.return_contours_of_interested_region(text_regions_p,pixel_img,min_area_mar)
|
|
|
|
|
|
|
|
if self.full_layout=='true' or self.full_layout=='True' or self.full_layout=='TRUE':
|
|
# set first model with second model
|
|
text_regions_p[:,:][text_regions_p[:,:]==2]=5
|
|
text_regions_p[:,:][text_regions_p[:,:]==3]=6
|
|
text_regions_p[:,:][text_regions_p[:,:]==4]=8
|
|
|
|
|
|
K.clear_session()
|
|
#gc.collect()
|
|
|
|
patches=True
|
|
|
|
|
|
image_page=image_page.astype(np.uint8)
|
|
|
|
#print(type(image_page))
|
|
regions_fully,regions_fully_only_drop=self.extract_text_regions(image_page,patches,cols=num_col_classifier)
|
|
|
|
|
|
|
|
|
|
regions_fully_only_drop=self.put_drop_out_from_only_drop_model(regions_fully_only_drop,text_regions_p)
|
|
regions_fully[:,:,0][regions_fully_only_drop[:,:,0]==4]=4
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
#plt.imshow(regions_fully[:,:,0])
|
|
#plt.show()
|
|
|
|
regions_fully=self.putt_bb_of_drop_capitals_of_model_in_patches_in_layout(regions_fully)
|
|
|
|
|
|
#plt.imshow(regions_fully[:,:,0])
|
|
#plt.show()
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
patches=False
|
|
regions_fully_np,_=self.extract_text_regions(image_page,patches,cols=num_col_classifier)
|
|
|
|
|
|
|
|
|
|
|
|
#plt.imshow(regions_fully_np[:,:,0])
|
|
#plt.show()
|
|
|
|
if num_col_classifier>2:
|
|
regions_fully_np[:,:,0][regions_fully_np[:,:,0]==4]=0
|
|
else:
|
|
regions_fully_np=self.filter_small_drop_capitals_from_no_patch_layout(regions_fully_np,text_regions_p)
|
|
|
|
#regions_fully_np=self.filter_small_drop_capitals_from_no_patch_layout(regions_fully_np,text_regions_p)
|
|
#plt.imshow(regions_fully_np[:,:,0])
|
|
#plt.show()
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
#plt.imshow(regions_fully[:,:,0])
|
|
#plt.show()
|
|
|
|
regions_fully=self.boosting_headers_by_longshot_region_segmentation(regions_fully,regions_fully_np,img_only_regions)
|
|
|
|
|
|
#plt.imshow(regions_fully[:,:,0])
|
|
#plt.show()
|
|
|
|
text_regions_p[:,:][regions_fully[:,:,0]==4]=4
|
|
##text_regions_p[:,:][(regions_fully[:,:,0]==7) & (text_regions_p[:,:]!=0)]=7
|
|
|
|
text_regions_p[:,:][regions_fully_np[:,:,0]==4]=4
|
|
|
|
|
|
#plt.imshow(text_regions_p)
|
|
#plt.show()
|
|
|
|
|
|
if np.abs(slope_deskew)>=0.13:
|
|
image_page_rotated_n,textline_mask_tot_d,text_regions_p_1_n,regions_fully_n=self.rotation_not_90_func_full_layout(image_page,textline_mask_tot,text_regions_p,regions_fully,slope_deskew)
|
|
|
|
text_regions_p_1_n=self.resize_image(text_regions_p_1_n,text_regions_p.shape[0],text_regions_p.shape[1])
|
|
textline_mask_tot_d=self.resize_image(textline_mask_tot_d,text_regions_p.shape[0],text_regions_p.shape[1])
|
|
regions_fully_n=self.resize_image(regions_fully_n,text_regions_p.shape[0],text_regions_p.shape[1])
|
|
|
|
regions_without_seperators_d=(text_regions_p_1_n[:,:]==1)*1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
regions_without_seperators=(text_regions_p[:,:]==1)*1#( (text_regions_p[:,:]==1) | (text_regions_p[:,:]==2) )*1 #self.return_regions_without_seperators_new(text_regions_p[:,:,0],img_only_regions)
|
|
|
|
|
|
|
|
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
img_revised_tab=np.copy(text_regions_p[:,:])
|
|
|
|
print('full layout in: '+str(time.time()-t1))
|
|
|
|
#sys.exit()
|
|
|
|
|
|
|
|
pixel_img=5
|
|
polygons_of_images=self.return_contours_of_interested_region(img_revised_tab,pixel_img)
|
|
|
|
#plt.imshow(img_revised_tab)
|
|
#plt.show()
|
|
|
|
#print(img_revised_tab.shape,text_regions_p_1_n.shape)
|
|
|
|
#text_regions_p_1_n=self.resize_image(text_regions_p_1_n,img_revised_tab.shape[0],img_revised_tab.shape[1])
|
|
|
|
#print(np.unique(text_regions_p_1_n),'uni')
|
|
text_only=( (img_revised_tab[:,:]==1) )*1
|
|
if np.abs(slope_deskew)>=0.13:
|
|
text_only_d=( (text_regions_p_1_n[:,:]==1) )*1
|
|
##text_only_h=( (img_revised_tab[:,:,0]==2) )*1
|
|
|
|
|
|
|
|
|
|
#print(text_only.shape,text_only_d.shape)
|
|
#plt.imshow(text_only)
|
|
#plt.show()
|
|
|
|
#plt.imshow(text_only_d)
|
|
#plt.show()
|
|
|
|
min_con_area=0.000005
|
|
|
|
if np.abs(slope_deskew)>=0.13:
|
|
|
|
contours_only_text,hir_on_text=self.return_contours_of_image(text_only)
|
|
contours_only_text_parent=self.return_parent_contours( contours_only_text,hir_on_text)
|
|
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))])
|
|
|
|
|
|
areas_cnt_text=areas_cnt_text/float(text_only.shape[0]*text_only.shape[1])
|
|
|
|
|
|
contours_biggest=contours_only_text_parent[np.argmax(areas_cnt_text)]
|
|
contours_only_text_parent=[contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz]>min_con_area]
|
|
areas_cnt_text_parent=[areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz]>min_con_area]
|
|
|
|
|
|
index_con_parents=np.argsort(areas_cnt_text_parent)
|
|
contours_only_text_parent=list(np.array(contours_only_text_parent)[index_con_parents] )
|
|
areas_cnt_text_parent=list(np.array(areas_cnt_text_parent)[index_con_parents] )
|
|
|
|
cx_bigest_big,cy_biggest_big ,_, _, _ ,_,_=self.find_new_features_of_contoures([contours_biggest])
|
|
cx_bigest,cy_biggest ,_, _, _ ,_,_=self.find_new_features_of_contoures(contours_only_text_parent)
|
|
|
|
|
|
|
|
contours_only_text_d,hir_on_text_d=self.return_contours_of_image(text_only_d)
|
|
contours_only_text_parent_d=self.return_parent_contours( contours_only_text_d,hir_on_text_d)
|
|
|
|
|
|
|
|
areas_cnt_text_d=np.array([cv2.contourArea(contours_only_text_parent_d[j]) for j in range(len(contours_only_text_parent_d))])
|
|
|
|
areas_cnt_text_d=areas_cnt_text_d/float(text_only_d.shape[0]*text_only_d.shape[1])
|
|
|
|
|
|
contours_biggest_d=contours_only_text_parent_d[np.argmax(areas_cnt_text_d)]
|
|
|
|
cx_bigest_d_big,cy_biggest_d_big ,_, _, _ ,_,_=self.find_new_features_of_contoures([contours_biggest_d])
|
|
cx_bigest_d,cy_biggest_d ,_, _, _ ,_,_=self.find_new_features_of_contoures(contours_only_text_parent_d)
|
|
|
|
|
|
(h, w) = text_only.shape[:2]
|
|
center = (w // 2., h // 2.)
|
|
M = cv2.getRotationMatrix2D(center, slope_deskew, 1.0)
|
|
|
|
|
|
M_22=np.array(M)[:2,:2]
|
|
|
|
p_big=np.dot(M_22,[cx_bigest_big,cy_biggest_big])
|
|
|
|
x_diff=p_big[0]-cx_bigest_d_big
|
|
y_diff=p_big[1]-cy_biggest_d_big
|
|
|
|
|
|
#print(p_big)
|
|
#print(cx_bigest_d_big,cy_biggest_d_big)
|
|
#print(x_diff,y_diff)
|
|
|
|
contours_only_text_parent_d_ordered=[]
|
|
for i in range(len(contours_only_text_parent)):
|
|
#img1=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
#img1=cv2.fillPoly(img1,pts=[contours_only_text_parent[i]] ,color=(1,1,1))
|
|
|
|
#plt.imshow(img1[:,:,0])
|
|
#plt.show()
|
|
|
|
p=np.dot(M_22,[cx_bigest[i],cy_biggest[i]])
|
|
#print(p)
|
|
p[0]=p[0]-x_diff[0]
|
|
p[1]=p[1]-y_diff[0]
|
|
#print(p)
|
|
#print(cx_bigest_d)
|
|
#print(cy_biggest_d)
|
|
dists = [math.sqrt((p[0]-cx_bigest_d[j])**2 + (p[1]-cy_biggest_d[j])**2) for j in range(len(cx_bigest_d))]
|
|
#print(np.argmin(dists))
|
|
contours_only_text_parent_d_ordered.append(contours_only_text_parent_d[np.argmin(dists)])
|
|
|
|
#img2=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
#img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d[np.argmin(dists)]] ,color=(1,1,1))
|
|
|
|
#plt.imshow(img2[:,:,0])
|
|
#plt.show()
|
|
|
|
else:
|
|
contours_only_text,hir_on_text=self.return_contours_of_image(text_only)
|
|
contours_only_text_parent=self.return_parent_contours( contours_only_text,hir_on_text)
|
|
|
|
areas_cnt_text=np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))])
|
|
|
|
|
|
areas_cnt_text=areas_cnt_text/float(text_only.shape[0]*text_only.shape[1])
|
|
|
|
|
|
contours_biggest=contours_only_text_parent[np.argmax(areas_cnt_text)]
|
|
contours_only_text_parent=[contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz]>min_con_area]
|
|
areas_cnt_text_parent=[areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz]>min_con_area]
|
|
|
|
|
|
index_con_parents=np.argsort(areas_cnt_text_parent)
|
|
contours_only_text_parent=list(np.array(contours_only_text_parent)[index_con_parents] )
|
|
areas_cnt_text_parent=list(np.array(areas_cnt_text_parent)[index_con_parents] )
|
|
|
|
cx_bigest_big,cy_biggest_big ,_, _, _ ,_,_=self.find_new_features_of_contoures([contours_biggest])
|
|
cx_bigest,cy_biggest ,_, _, _ ,_,_=self.find_new_features_of_contoures(contours_only_text_parent)
|
|
#print(areas_cnt_text_parent,'areas_cnt_text_parent')
|
|
|
|
###index_con_parents_d=np.argsort(areas_cnt_text_parent_d)
|
|
##contours_only_text_parent_d=list(np.array(contours_only_text_parent_d)[index_con_parents_d])
|
|
###areas_cnt_text_parent_d=list(np.array(areas_cnt_text_parent_d)[index_con_parents_d])
|
|
|
|
##print(areas_cnt_text_parent_d,'areas_cnt_text_parent_d')
|
|
|
|
#print(len(contours_only_text_parent),len(contours_only_text_parent_d),'vizzz')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
txt_con_org=self.get_textregion_contours_in_org_image(contours_only_text_parent,self.image,slope_first)
|
|
|
|
###boxes_text,_=self.get_text_region_boxes_by_given_contours(contours_only_text_parent)
|
|
boxes_text,_=self.get_text_region_boxes_by_given_contours(contours_only_text_parent)
|
|
boxes_marginals,_=self.get_text_region_boxes_by_given_contours(polygons_of_marginals)
|
|
####boxes_text_h,_=self.get_text_region_boxes_by_given_contours(text_only_h,contours_only_text_parent_h,image_page)
|
|
|
|
|
|
|
|
|
|
if self.curved_line is None or self.curved_line=='false' or self.curved_line=='False' or self.curved_line=='FALSE' :
|
|
slopes,all_found_texline_polygons,boxes_text,txt_con_org,contours_only_text_parent,all_box_coord,index_by_text_par_con=self.get_slopes_and_deskew_new(txt_con_org,contours_only_text_parent,textline_mask_tot_ea,image_page_rotated,boxes_text,slope_deskew)
|
|
|
|
|
|
slopes_marginals,all_found_texline_polygons_marginals,boxes_marginals,_,polygons_of_marginals,all_box_coord_marginals,index_by_text_par_con_marginal=self.get_slopes_and_deskew_new(polygons_of_marginals,polygons_of_marginals,textline_mask_tot_ea,image_page_rotated,boxes_marginals,slope_deskew)
|
|
|
|
|
|
if self.curved_line=='true' or self.curved_line=='True' or self.curved_line=='TRUE' :
|
|
scale_param=1
|
|
all_found_texline_polygons,boxes_text,txt_con_org,contours_only_text_parent,all_box_coord,index_by_text_par_con,slopes=self.get_slopes_and_deskew_new_curved(txt_con_org,contours_only_text_parent,cv2.erode(textline_mask_tot_ea,kernel=self.kernel,iterations=1),image_page_rotated,boxes_text,text_only,num_col_classifier,scale_param,slope_deskew)
|
|
|
|
#all_found_texline_polygons,boxes_text,txt_con_org,contours_only_text_parent,all_box_coord=self.get_slopes_and_deskew_new_curved(txt_con_org,contours_only_text_parent,textline_mask_tot_ea,image_page_rotated,boxes_text,text_only,num_col,scale_param)
|
|
all_found_texline_polygons=self.small_textlines_to_parent_adherence2(all_found_texline_polygons,textline_mask_tot_ea,num_col_classifier)
|
|
|
|
#slopes=list(np.zeros(len(contours_only_text_parent)))
|
|
|
|
|
|
all_found_texline_polygons_marginals,boxes_marginals,_,polygons_of_marginals,all_box_coord_marginals,index_by_text_par_con_marginal,slopes_marginals=self.get_slopes_and_deskew_new_curved(polygons_of_marginals,polygons_of_marginals,cv2.erode(textline_mask_tot_ea,kernel=self.kernel,iterations=1),image_page_rotated,boxes_marginals,text_only,num_col_classifier,scale_param,slope_deskew)
|
|
|
|
#all_found_texline_polygons,boxes_text,txt_con_org,contours_only_text_parent,all_box_coord=self.get_slopes_and_deskew_new_curved(txt_con_org,contours_only_text_parent,textline_mask_tot_ea,image_page_rotated,boxes_text,text_only,num_col,scale_param)
|
|
all_found_texline_polygons_marginals=self.small_textlines_to_parent_adherence2(all_found_texline_polygons_marginals,textline_mask_tot_ea,num_col_classifier)
|
|
|
|
index_of_vertical_text_contours=np.array(range(len(slopes)) )[(abs(np.array(slopes))>60)]
|
|
|
|
contours_text_vertical=[contours_only_text_parent[i] for i in index_of_vertical_text_contours]
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
|
|
#contours_only_text_parent_d_ordered=list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con])
|
|
###print(index_by_text_par_con,'index_by_text_par_con')
|
|
|
|
if self.full_layout=='true' or self.full_layout=='True' or self.full_layout=='TRUE':
|
|
##for iii in range(len(contours_only_text_parent)):
|
|
##img1=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
##img1=cv2.fillPoly(img1,pts=[contours_only_text_parent[iii]] ,color=(1,1,1))
|
|
|
|
##plt.imshow(img1[:,:,0])
|
|
##plt.show()
|
|
|
|
##img2=np.zeros((text_only.shape[0],text_only.shape[1],3))
|
|
##img2=cv2.fillPoly(img2,pts=[contours_only_text_parent_d_ordered[iii]] ,color=(1,1,1))
|
|
|
|
##plt.imshow(img2[:,:,0])
|
|
##plt.show()
|
|
|
|
if np.abs(slope_deskew)>=0.13:
|
|
contours_only_text_parent_d_ordered=list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con])
|
|
|
|
|
|
text_regions_p,contours_only_text_parent,contours_only_text_parent_h,all_box_coord,all_box_coord_h,all_found_texline_polygons,all_found_texline_polygons_h,slopes,slopes_h,contours_only_text_parent_d_ordered,contours_only_text_parent_h_d_ordered=self.check_any_text_region_in_model_one_is_main_or_header(text_regions_p,regions_fully,contours_only_text_parent,all_box_coord,all_found_texline_polygons,slopes,contours_only_text_parent_d_ordered)
|
|
else:
|
|
contours_only_text_parent_d_ordered=None
|
|
|
|
|
|
text_regions_p,contours_only_text_parent,contours_only_text_parent_h,all_box_coord,all_box_coord_h,all_found_texline_polygons,all_found_texline_polygons_h,slopes,slopes_h,contours_only_text_parent_d_ordered,contours_only_text_parent_h_d_ordered=self.check_any_text_region_in_model_one_is_main_or_header(text_regions_p,regions_fully,contours_only_text_parent,all_box_coord,all_found_texline_polygons,slopes,contours_only_text_parent_d_ordered)
|
|
|
|
|
|
###text_regions_p,contours_only_text_parent,contours_only_text_parent_h,all_box_coord,all_box_coord_h,all_found_texline_polygons,all_found_texline_polygons_h=self.check_any_text_region_in_model_one_is_main_or_header(text_regions_p,regions_fully,contours_only_text_parent,all_box_coord,all_found_texline_polygons)
|
|
#text_regions_p=self.return_region_segmentation_after_implementing_not_head_maintext_parallel(text_regions_p,boxes)
|
|
|
|
# if you want to save the layout result just uncommet following plot
|
|
|
|
|
|
if self.dir_of_layout is not None:
|
|
self.save_plot_of_layout(text_regions_p,image_page)
|
|
if self.dir_of_all is not None:
|
|
self.save_plot_of_layout_all(text_regions_p,image_page)
|
|
|
|
|
|
|
|
K.clear_session()
|
|
gc.collect()
|
|
|
|
##print('Job done in: '+str(time.time()-t1))
|
|
|
|
|
|
polygons_of_tabels=[]
|
|
|
|
|
|
pixel_img=4
|
|
polygons_of_drop_capitals=self.return_contours_of_interested_region_by_min_size(text_regions_p,pixel_img)
|
|
#polygons_of_drop_capitals=[]
|
|
|
|
all_found_texline_polygons=self.adhere_drop_capital_region_into_cprresponding_textline(text_regions_p,polygons_of_drop_capitals,contours_only_text_parent,contours_only_text_parent_h,all_box_coord,all_box_coord_h,all_found_texline_polygons,all_found_texline_polygons_h)
|
|
|
|
|
|
#print(len(contours_only_text_parent_h),len(contours_only_text_parent_h_d_ordered),'contours_only_text_parent_h')
|
|
pixel_lines=6
|
|
|
|
if self.headers_off is None or self.headers_off=='false' or self.headers_off=='False' or self.headers_off=='FALSE':
|
|
if np.abs(slope_deskew)<0.13:
|
|
num_col,peaks_neg_fin,matrix_of_lines_ch,spliter_y_new,seperators_closeup_n=self.find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2),num_col_classifier,pixel_lines,contours_only_text_parent_h)
|
|
else:
|
|
num_col_d,peaks_neg_fin_d,matrix_of_lines_ch_d,spliter_y_new_d,seperators_closeup_n_d=self.find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier,pixel_lines,contours_only_text_parent_h_d_ordered)
|
|
elif self.headers_off=='true' or self.headers_off=='True' or self.headers_off=='TRUE':
|
|
if np.abs(slope_deskew)<0.13:
|
|
num_col,peaks_neg_fin,matrix_of_lines_ch,spliter_y_new,seperators_closeup_n=self.find_number_of_columns_in_document(np.repeat(text_regions_p[:, :, np.newaxis], 3, axis=2),num_col_classifier,pixel_lines)
|
|
else:
|
|
num_col_d,peaks_neg_fin_d,matrix_of_lines_ch_d,spliter_y_new_d,seperators_closeup_n_d=self.find_number_of_columns_in_document(np.repeat(text_regions_p_1_n[:, :, np.newaxis], 3, axis=2),num_col_classifier,pixel_lines)
|
|
|
|
#print(peaks_neg_fin,peaks_neg_fin_d,'num_col2')
|
|
|
|
#print(spliter_y_new,spliter_y_new_d,'num_col_classifier')
|
|
|
|
#print(matrix_of_lines_ch.shape,matrix_of_lines_ch_d.shape,'matrix_of_lines_ch')
|
|
|
|
|
|
|
|
if num_col_classifier>=3:
|
|
|
|
if np.abs(slope_deskew)<0.13:
|
|
regions_without_seperators=regions_without_seperators.astype(np.uint8)
|
|
regions_without_seperators = cv2.erode(regions_without_seperators[:,:], self.kernel, iterations=6)
|
|
|
|
random_pixels_for_image=np.random.randn(regions_without_seperators.shape[0],regions_without_seperators.shape[1])
|
|
random_pixels_for_image[random_pixels_for_image<-.5]=0
|
|
random_pixels_for_image[random_pixels_for_image!=0]=1
|
|
|
|
regions_without_seperators[(random_pixels_for_image[:,:]==1) & (text_regions_p[:,:]==5)]=1
|
|
|
|
else:
|
|
|
|
|
|
regions_without_seperators_d=regions_without_seperators_d.astype(np.uint8)
|
|
regions_without_seperators_d = cv2.erode(regions_without_seperators_d[:,:], self.kernel, iterations=6)
|
|
|
|
|
|
random_pixels_for_image=np.random.randn(regions_without_seperators_d.shape[0],regions_without_seperators_d.shape[1])
|
|
random_pixels_for_image[random_pixels_for_image<-.5]=0
|
|
random_pixels_for_image[random_pixels_for_image!=0]=1
|
|
|
|
|
|
|
|
regions_without_seperators_d[(random_pixels_for_image[:,:]==1) & (text_regions_p_1_n[:,:]==5)]=1
|
|
else:
|
|
pass
|
|
|
|
|
|
|
|
if np.abs(slope_deskew)<0.13:
|
|
boxes=self.return_boxes_of_images_by_order_of_reading_new(spliter_y_new,regions_without_seperators,matrix_of_lines_ch)
|
|
else:
|
|
boxes_d=self.return_boxes_of_images_by_order_of_reading_new(spliter_y_new_d,regions_without_seperators_d,matrix_of_lines_ch_d)
|
|
|
|
|
|
|
|
#print(slopes)
|
|
if self.dir_of_cropped_images is not None:
|
|
self.write_images_into_directory(polygons_of_images,self.dir_of_cropped_images,image_page)
|
|
|
|
|
|
if self.full_layout=='true' or self.full_layout=='True' or self.full_layout=='TRUE':
|
|
if np.abs(slope_deskew)<0.13:
|
|
order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot)
|
|
else:
|
|
order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent_d_ordered,contours_only_text_parent_h_d_ordered,boxes_d,textline_mask_tot_d)
|
|
|
|
|
|
|
|
|
|
self.write_into_page_xml_full(contours_only_text_parent,contours_only_text_parent_h,page_coord,self.dir_out , order_text_new , id_of_texts_tot,all_found_texline_polygons,all_found_texline_polygons_h,
|
|
all_box_coord,all_box_coord_h,polygons_of_images ,polygons_of_tabels,polygons_of_drop_capitals,polygons_of_marginals,all_found_texline_polygons_marginals,all_box_coord_marginals,slopes,slopes_marginals)
|
|
else:
|
|
contours_only_text_parent_h=None
|
|
#print('bura galmir?')
|
|
if np.abs(slope_deskew)<0.13:
|
|
contours_only_text_parent=list(np.array(contours_only_text_parent)[index_by_text_par_con])
|
|
order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot)
|
|
else:
|
|
contours_only_text_parent_d_ordered=list(np.array(contours_only_text_parent_d_ordered)[index_by_text_par_con])
|
|
order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent_d_ordered,contours_only_text_parent_h,boxes_d,textline_mask_tot_d)
|
|
#order_text_new , id_of_texts_tot=self.do_order_of_regions(contours_only_text_parent,contours_only_text_parent_h,boxes,textline_mask_tot)
|
|
self.write_into_page_xml(txt_con_org,page_coord,self.dir_out , order_text_new , id_of_texts_tot,all_found_texline_polygons,
|
|
all_box_coord,polygons_of_images,polygons_of_marginals,all_found_texline_polygons_marginals,all_box_coord_marginals,self.curved_line,slopes,slopes_marginals)
|
|
|
|
except:
|
|
txt_con_org=[]
|
|
order_text_new=[]
|
|
id_of_texts_tot=[]
|
|
all_found_texline_polygons=[]
|
|
all_box_coord=[]
|
|
polygons_of_images=[]
|
|
polygons_of_marginals=[]
|
|
all_found_texline_polygons_marginals=[]
|
|
all_box_coord_marginals=[]
|
|
slopes=[]
|
|
slopes_marginals=[]
|
|
self.write_into_page_xml(txt_con_org,page_coord,self.dir_out , order_text_new , id_of_texts_tot,all_found_texline_polygons,
|
|
all_box_coord,polygons_of_images,polygons_of_marginals,all_found_texline_polygons_marginals,all_box_coord_marginals,self.curved_line,slopes,slopes_marginals)
|
|
|
|
|
|
print('Job done in: '+str(time.time()-t1))
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
@click.option('--image', '-i', help='image filename', type=click.Path(exists=True, dir_okay=False))
|
|
@click.option('--out', '-o', help='directory to write output xml data', type=click.Path(exists=True, file_okay=False))
|
|
@click.option('--model', '-m', help='directory of models', type=click.Path(exists=True, file_okay=False))
|
|
@click.option('--save_images', '-si', help='if a directory is given, images in documents will be cropped and saved there', type=click.Path(exists=True, file_okay=False))
|
|
@click.option('--save_layout', '-sl', help='if a directory is given, plot of layout will be saved there', type=click.Path(exists=True, file_okay=False))
|
|
@click.option('--save_deskewed', '-sd', help='if a directory is given, deskewed image will be saved there', type=click.Path(exists=True, file_okay=False))
|
|
@click.option('--save_all', '-sa', help='if a directory is given, all plots needed for documentation will be saved there', type=click.Path(exists=True, file_okay=False))
|
|
@click.option('--allow_enhancement', '-ae', help='if this parameter set to true, this tool would check that input image need resizing and enhancement or not. If so output of resized and enhanced image and corresponding layout data will be written in out directory')
|
|
@click.option('--curved_line', '-cl', help='if this parameter set to true, this tool will try to return contoure of textlines instead of rectabgle bounding box of textline. This should be taken into account that with this option the tool need more time to do process.')
|
|
|
|
@click.option('--full_layout', '-fl', help='if this parameter set to true, this tool will try to return all elements of layout.')
|
|
@click.option('--allow_scaling', '-as', help='if this parameter set to true, this tool would check the scale and if needed it will scale it to perform better layout detection')
|
|
@click.option('--headers_off', '-ho', help='if this parameter set to true, this tool would ignore headers role in reading order')
|
|
def main(image,out, model,save_images,save_layout,save_deskewed,save_all,allow_enhancement,curved_line,full_layout,allow_scaling,headers_off):
|
|
x = eynollah(image, None, out, model, save_images, save_layout, save_deskewed, save_all, allow_enhancement, curved_line, full_layout, allow_scaling, headers_off)
|
|
x.run()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|