You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
eynollah/sbb_newspapers_org_image/utils.py

4266 lines
182 KiB
Python

import numpy as np
from shapely import geometry
import cv2
import imutils
def filter_contours_area_of_image(image, contours, hirarchy, max_area, min_area):
found_polygons_early = list()
jv = 0
for c in contours:
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and hirarchy[0][jv][3] == -1: # and hirarchy[0][jv][3]==-1 :
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.uint))
jv += 1
return found_polygons_early
def filter_contours_area_of_image_interiors(image, contours, hirarchy, max_area, min_area):
found_polygons_early = list()
jv = 0
for c in contours:
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and hirarchy[0][jv][3] != -1:
# print(c[0][0][1])
found_polygons_early.append(np.array([point for point in polygon.exterior.coords], dtype=np.uint))
jv += 1
return found_polygons_early
def filter_contours_area_of_image_tables(image, contours, hirarchy, max_area, min_area):
found_polygons_early = list()
jv = 0
for c in contours:
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
# area = cv2.contourArea(c)
area = polygon.area
##print(np.prod(thresh.shape[:2]))
# Check that polygon has area greater than minimal area
# print(hirarchy[0][jv][3],hirarchy )
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]): # and hirarchy[0][jv][3]==-1 :
# print(c[0][0][1])
found_polygons_early.append(np.array([[point] for point in polygon.exterior.coords], dtype=np.int32))
jv += 1
return found_polygons_early
def resize_image(img_in, input_height, input_width):
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
def rotatedRectWithMaxArea(w, h, angle):
if w <= 0 or h <= 0:
return 0, 0
width_is_longer = w >= h
side_long, side_short = (w, h) if width_is_longer else (h, w)
# since the solutions for angle, -angle and 180-angle are all the same,
# if suffices to look at the first quadrant and the absolute values of sin,cos:
sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
if side_short <= 2.0 * sin_a * cos_a * side_long or abs(sin_a - cos_a) < 1e-10:
# half constrained case: two crop corners touch the longer side,
# the other two corners are on the mid-line parallel to the longer line
x = 0.5 * side_short
wr, hr = (x / sin_a, x / cos_a) if width_is_longer else (x / cos_a, x / sin_a)
else:
# fully constrained case: crop touches all 4 sides
cos_2a = cos_a * cos_a - sin_a * sin_a
wr, hr = (w * cos_a - h * sin_a) / cos_2a, (h * cos_a - w * sin_a) / cos_2a
return wr, hr
def rotate_max_area_new(image, rotated, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape
y1 = h // 2 - int(hr / 2)
y2 = y1 + int(hr)
x1 = w // 2 - int(wr / 2)
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2]
def rotation_image_new(img, thetha):
rotated = imutils.rotate(img, thetha)
return rotate_max_area_new(img, rotated, thetha)
def rotate_image(img_patch, slope):
(h, w) = img_patch.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, slope, 1.0)
return cv2.warpAffine(img_patch, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
def rotyate_image_different( img, slope):
# img = cv2.imread('images/input.jpg')
num_rows, num_cols = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((num_cols / 2, num_rows / 2), slope, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (num_cols, num_rows))
return img_rotation
def rotate_max_area(image, rotated, rotated_textline, rotated_layout, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape
y1 = h // 2 - int(hr / 2)
y2 = y1 + int(hr)
x1 = w // 2 - int(wr / 2)
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2]
def rotation_not_90_func(img, textline, text_regions_p_1, thetha):
rotated = imutils.rotate(img, thetha)
rotated_textline = imutils.rotate(textline, thetha)
rotated_layout = imutils.rotate(text_regions_p_1, thetha)
return rotate_max_area(img, rotated, rotated_textline, rotated_layout, thetha)
def rotation_not_90_func_full_layout(img, textline, text_regions_p_1, text_regions_p_fully, thetha):
rotated = imutils.rotate(img, thetha)
rotated_textline = imutils.rotate(textline, thetha)
rotated_layout = imutils.rotate(text_regions_p_1, thetha)
rotated_layout_full = imutils.rotate(text_regions_p_fully, thetha)
return rotate_max_area_full_layout(img, rotated, rotated_textline, rotated_layout, rotated_layout_full, thetha)
def rotate_max_area_full_layout(image, rotated, rotated_textline, rotated_layout, rotated_layout_full, angle):
wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0], math.radians(angle))
h, w, _ = rotated.shape
y1 = h // 2 - int(hr / 2)
y2 = y1 + int(hr)
x1 = w // 2 - int(wr / 2)
x2 = x1 + int(wr)
return rotated[y1:y2, x1:x2], rotated_textline[y1:y2, x1:x2], rotated_layout[y1:y2, x1:x2], rotated_layout_full[y1:y2, x1:x2]
def crop_image_inside_box(box, img_org_copy):
image_box = img_org_copy[box[1] : box[1] + box[3], box[0] : box[0] + box[2]]
return image_box, [box[1], box[1] + box[3], box[0], box[0] + box[2]]
def otsu_copy(img):
img_r = np.zeros(img.shape)
img1 = img[:, :, 0]
img2 = img[:, :, 1]
img3 = img[:, :, 2]
# print(img.min())
# print(img[:,:,0].min())
# blur = cv2.GaussianBlur(img,(5,5))
# ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
retval2, threshold2 = cv2.threshold(img2, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
retval3, threshold3 = cv2.threshold(img3, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img_r[:, :, 0] = threshold1
img_r[:, :, 1] = threshold1
img_r[:, :, 2] = threshold1
return img_r
def otsu_copy_binary(img):
img_r = np.zeros((img.shape[0], img.shape[1], 3))
img1 = img[:, :, 0]
retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
img_r[:, :, 0] = threshold1
img_r[:, :, 1] = threshold1
img_r[:, :, 2] = threshold1
img_r = img_r / float(np.max(img_r)) * 255
return img_r
def return_bonding_box_of_contours(cnts):
boxes_tot = []
for i in range(len(cnts)):
x, y, w, h = cv2.boundingRect(cnts[i])
box = [x, y, w, h]
boxes_tot.append(box)
return boxes_tot
def find_features_of_lines(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
slope_lines = []
for kk in range(len(contours_main)):
[vx, vy, x, y] = cv2.fitLine(contours_main[kk], cv2.DIST_L2, 0, 0.01, 0.01)
slope_lines.append(((vy / vx) / np.pi * 180)[0])
slope_lines_org = slope_lines
slope_lines = np.array(slope_lines)
slope_lines[(slope_lines < 10) & (slope_lines > -10)] = 0
slope_lines[(slope_lines < -200) | (slope_lines > 200)] = 1
slope_lines[(slope_lines != 0) & (slope_lines != 1)] = 2
dis_x = np.abs(x_max_main - x_min_main)
return slope_lines, dis_x, x_min_main, x_max_main, np.array(cy_main), np.array(slope_lines_org), y_min_main, y_max_main, np.array(cx_main)
def isNaN(num):
return num != num
def return_parent_contours(contours, hierarchy):
contours_parent = [contours[i] for i in range(len(contours)) if hierarchy[0][i][3] == -1]
return contours_parent
def return_contours_of_interested_region(region_pre_p, pixel, min_area=0.0002):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=min_area)
return contours_imgs
def boosting_headers_by_longshot_region_segmentation(textregion_pre_p, textregion_pre_np, img_only_text):
textregion_pre_p_org = np.copy(textregion_pre_p)
# 4 is drop capitals
headers_in_longshot = (textregion_pre_np[:, :, 0] == 2) * 1
# headers_in_longshot= ( (textregion_pre_np[:,:,0]==2) | (textregion_pre_np[:,:,0]==1) )*1
textregion_pre_p[:, :, 0][(headers_in_longshot[:, :] == 1) & (textregion_pre_p[:, :, 0] != 4)] = 2
textregion_pre_p[:, :, 0][textregion_pre_p[:, :, 0] == 1] = 0
# textregion_pre_p[:,:,0][( img_only_text[:,:]==1) & (textregion_pre_p[:,:,0]!=7) & (textregion_pre_p[:,:,0]!=2)]=1 # eralier it was so, but by this manner the drop capitals are alse deleted
textregion_pre_p[:, :, 0][(img_only_text[:, :] == 1) & (textregion_pre_p[:, :, 0] != 7) & (textregion_pre_p[:, :, 0] != 4) & (textregion_pre_p[:, :, 0] != 2)] = 1
return textregion_pre_p
def return_contours_of_image(image):
if len(image.shape) == 2:
image = np.repeat(image[:, :, np.newaxis], 3, axis=2)
image = image.astype(np.uint8)
else:
image = image.astype(np.uint8)
imgray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return contours, hierachy
def return_contours_of_interested_region_by_min_size(region_pre_p, pixel, min_size=0.00003):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=min_size)
return contours_imgs
def get_textregion_contours_in_org_image(cnts, img, slope_first):
cnts_org = []
# print(cnts,'cnts')
for i in range(len(cnts)):
img_copy = np.zeros(img.shape)
img_copy = cv2.fillPoly(img_copy, pts=[cnts[i]], color=(1, 1, 1))
# plt.imshow(img_copy)
# plt.show()
# print(img.shape,'img')
img_copy = rotation_image_new(img_copy, -slope_first)
##print(img_copy.shape,'img_copy')
# plt.imshow(img_copy)
# plt.show()
img_copy = img_copy.astype(np.uint8)
imgray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont_int, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cont_int[0][:, 0, 0] = cont_int[0][:, 0, 0] + np.abs(img_copy.shape[1] - img.shape[1])
cont_int[0][:, 0, 1] = cont_int[0][:, 0, 1] + np.abs(img_copy.shape[0] - img.shape[0])
# print(np.shape(cont_int[0]))
cnts_org.append(cont_int[0])
# print(cnts_org,'cnts_org')
# sys.exit()
# self.y_shift = np.abs(img_copy.shape[0] - img.shape[0])
# self.x_shift = np.abs(img_copy.shape[1] - img.shape[1])
return cnts_org
def return_contours_of_interested_textline(region_pre_p, pixel):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=0.000000003)
return contours_imgs
def seperate_lines_vertical_cont(img_patch, contour_text_interest, thetha, box_ind, add_boxes_coor_into_textlines):
kernel = np.ones((5, 5), np.uint8)
pixel = 255
min_area = 0
max_area = 1
if len(img_patch.shape) == 3:
cnts_images = (img_patch[:, :, 0] == pixel) * 1
else:
cnts_images = (img_patch[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=max_area, min_area=min_area)
cont_final = []
###print(add_boxes_coor_into_textlines,'ikki')
for i in range(len(contours_imgs)):
img_contour = np.zeros((cnts_images.shape[0], cnts_images.shape[1], 3))
img_contour = cv2.fillPoly(img_contour, pts=[contours_imgs[i]], color=(255, 255, 255))
img_contour = img_contour.astype(np.uint8)
img_contour = cv2.dilate(img_contour, kernel, iterations=4)
imgrayrot = cv2.cvtColor(img_contour, cv2.COLOR_BGR2GRAY)
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
##contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[
##0]
##contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
##if add_boxes_coor_into_textlines:
##print(np.shape(contours_text_rot[0]),'sjppo')
##contours_text_rot[0][:, 0, 0]=contours_text_rot[0][:, 0, 0] + box_ind[0]
##contours_text_rot[0][:, 0, 1]=contours_text_rot[0][:, 0, 1] + box_ind[1]
cont_final.append(contours_text_rot[0])
##print(cont_final,'nadizzzz')
return None, cont_final
def seperate_lines(img_patch, contour_text_interest, thetha, x_help, y_help):
(h, w) = img_patch.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
x_d = M[0, 2]
y_d = M[1, 2]
thetha = thetha / 180.0 * np.pi
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
contour_text_interest_copy = contour_text_interest.copy()
x_cont = contour_text_interest[:, 0, 0]
y_cont = contour_text_interest[:, 0, 1]
x_cont = x_cont - np.min(x_cont)
y_cont = y_cont - np.min(y_cont)
x_min_cont = 0
x_max_cont = img_patch.shape[1]
y_min_cont = 0
y_max_cont = img_patch.shape[0]
xv = np.linspace(x_min_cont, x_max_cont, 1000)
textline_patch_sum_along_width = img_patch.sum(axis=1)
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
y_padded = np.zeros(len(y) + 40)
y_padded[20 : len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
if 1 > 0:
try:
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
peaks_new = peaks_e[:]
peaks_neg_new = peaks_neg_e[:]
clusters_to_be_deleted = []
if len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot = np.sort(peaks_new_tot)
else:
peaks_new_tot = peaks_e[:]
textline_con, hierachy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
# print(sigma_gaus,'sigma_gaus')
except:
sigma_gaus = 12
if sigma_gaus < 3:
sigma_gaus = 3
# print(sigma_gaus,'sigma')
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
peaks, _ = find_peaks(y_padded_smoothed, height=0)
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
try:
neg_peaks_max = np.max(y_padded_smoothed[peaks])
arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
except:
arg_neg_must_be_deleted = []
arg_diff_cluster = []
try:
peaks_new = peaks[:]
peaks_neg_new = peaks_neg[:]
clusters_to_be_deleted = []
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
if len(arg_neg_must_be_deleted) == 1:
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot = np.sort(peaks_new_tot)
##plt.plot(y_padded_up_to_down_padded)
##plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
##plt.show()
##plt.plot(y_padded_up_to_down_padded)
##plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
##plt.show()
##plt.plot(y_padded_smoothed)
##plt.plot(peaks,y_padded_smoothed[peaks],'*')
##plt.show()
##plt.plot(y_padded_smoothed)
##plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
##plt.show()
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
else:
peaks_new_tot = peaks[:]
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
except:
pass
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
peaks_values = y_padded_smoothed[peaks]
peaks_neg = peaks_neg - 20 - 20
peaks = peaks - 20
for jj in range(len(peaks_neg)):
if peaks_neg[jj] > len(x) - 1:
peaks_neg[jj] = len(x) - 1
for jj in range(len(peaks)):
if peaks[jj] > len(x) - 1:
peaks[jj] = len(x) - 1
textline_boxes = []
textline_boxes_rot = []
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
for jj in range(len(peaks)):
if jj == (len(peaks) - 1):
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = y_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
else:
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = y_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
else:
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
else:
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
if point_down_narrow >= img_patch.shape[0]:
point_down_narrow = img_patch.shape[0] - 2
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
if len(xvinside) == 0:
x_min = x_min_cont
x_max = x_max_cont
else:
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
elif len(peaks) < 1:
pass
elif len(peaks) == 1:
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[0] + first_nonzero), True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
if len(xvinside) == 0:
x_min = x_min_cont
x_max = x_max_cont
else:
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
# x_min = x_min_cont
# x_max = x_max_cont
y_min = y_min_cont
y_max = y_max_cont
p1 = np.dot(rotation_matrix, [int(x_min), int(y_min)])
p2 = np.dot(rotation_matrix, [int(x_max), int(y_min)])
p3 = np.dot(rotation_matrix, [int(x_max), int(y_max)])
p4 = np.dot(rotation_matrix, [int(x_min), int(y_max)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(y_min)], [int(x_max), int(y_min)], [int(x_max), int(y_max)], [int(x_min), int(y_max)]]))
elif len(peaks) == 2:
dis_to_next = np.abs(peaks[1] - peaks[0])
for jj in range(len(peaks)):
if jj == 0:
point_up = 0 # peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
if point_up < 0:
point_up = 1
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
elif jj == 1:
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
if point_down >= img_patch.shape[0]:
point_down = img_patch.shape[0] - 2
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
if len(xvinside) == 0:
x_min = x_min_cont
x_max = x_max_cont
else:
x_min = np.min(xvinside)
x_max = np.max(xvinside)
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
else:
for jj in range(len(peaks)):
if jj == 0:
dis_to_next = peaks[jj + 1] - peaks[jj]
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
if point_up < 0:
point_up = 1
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next)
elif jj == len(peaks) - 1:
dis_to_next = peaks[jj] - peaks[jj - 1]
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.7 * dis_to_next)
if point_down >= img_patch.shape[0]:
point_down = img_patch.shape[0] - 2
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
else:
dis_to_next_down = peaks[jj + 1] - peaks[jj]
dis_to_next_up = peaks[jj] - peaks[jj - 1]
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
if len(xvinside) == 0:
x_min = x_min_cont
x_max = x_max_cont
else:
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
p1 = np.dot(rotation_matrix, [int(x_min), int(point_up)])
p2 = np.dot(rotation_matrix, [int(x_max), int(point_up)])
p3 = np.dot(rotation_matrix, [int(x_max), int(point_down)])
p4 = np.dot(rotation_matrix, [int(x_min), int(point_down)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
x_min_rot1 = x_min_rot1 - x_help
x_max_rot2 = x_max_rot2 - x_help
x_max_rot3 = x_max_rot3 - x_help
x_min_rot4 = x_min_rot4 - x_help
point_up_rot1 = point_up_rot1 - y_help
point_up_rot2 = point_up_rot2 - y_help
point_down_rot3 = point_down_rot3 - y_help
point_down_rot4 = point_down_rot4 - y_help
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
return peaks, textline_boxes_rot
def seperate_lines_vertical(img_patch, contour_text_interest, thetha):
thetha = thetha + 90
(h, w) = img_patch.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
x_d = M[0, 2]
y_d = M[1, 2]
thetha = thetha / 180.0 * np.pi
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
contour_text_interest_copy = contour_text_interest.copy()
x_cont = contour_text_interest[:, 0, 0]
y_cont = contour_text_interest[:, 0, 1]
x_cont = x_cont - np.min(x_cont)
y_cont = y_cont - np.min(y_cont)
x_min_cont = 0
x_max_cont = img_patch.shape[1]
y_min_cont = 0
y_max_cont = img_patch.shape[0]
xv = np.linspace(x_min_cont, x_max_cont, 1000)
textline_patch_sum_along_width = img_patch.sum(axis=0)
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
y_padded = np.zeros(len(y) + 40)
y_padded[20 : len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
if 1 > 0:
try:
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
peaks_new = peaks_e[:]
peaks_neg_new = peaks_neg_e[:]
clusters_to_be_deleted = []
if len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot = np.sort(peaks_new_tot)
else:
peaks_new_tot = peaks_e[:]
textline_con, hierachy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
# print(sigma_gaus,'sigma_gaus')
except:
sigma_gaus = 12
if sigma_gaus < 3:
sigma_gaus = 3
# print(sigma_gaus,'sigma')
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
peaks, _ = find_peaks(y_padded_smoothed, height=0)
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
# plt.plot(y_padded_up_to_down_padded)
# plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
# plt.title('negs')
# plt.show()
# plt.plot(y_padded_smoothed)
# plt.plot(peaks,y_padded_smoothed[peaks],'*')
# plt.title('poss')
# plt.show()
neg_peaks_max = np.max(y_padded_up_to_down_padded[peaks_neg])
arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.42]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
peaks_new = peaks[:]
peaks_neg_new = peaks_neg[:]
clusters_to_be_deleted = []
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
if len(arg_neg_must_be_deleted) == 1:
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot = np.sort(peaks_new_tot)
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
else:
peaks_new_tot = peaks[:]
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
peaks_values = y_padded_smoothed[peaks]
peaks_neg = peaks_neg - 20 - 20
peaks = peaks - 20
for jj in range(len(peaks_neg)):
if peaks_neg[jj] > len(x) - 1:
peaks_neg[jj] = len(x) - 1
for jj in range(len(peaks)):
if peaks[jj] > len(x) - 1:
peaks[jj] = len(x) - 1
textline_boxes = []
textline_boxes_rot = []
if len(peaks_neg) == len(peaks) + 1 and len(peaks) >= 3:
# print('11')
for jj in range(len(peaks)):
if jj == (len(peaks) - 1):
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
point_up = peaks[jj] + first_nonzero - int(1.3 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = x_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.3 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
else:
point_up = peaks[jj] + first_nonzero - int(1.4 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = x_max_cont - 1 ##peaks[jj] + first_nonzero + int(1.6 * dis_to_next_down) #point_up# np.max(y_cont)#peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(1.4 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
else:
dis_to_next_up = abs(peaks[jj] - peaks_neg[jj])
dis_to_next_down = abs(peaks[jj] - peaks_neg[jj + 1])
if peaks_values[jj] > mean_value_of_peaks - std_value_of_peaks / 2.0:
point_up = peaks[jj] + first_nonzero - int(1.1 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
else:
point_up = peaks[jj] + first_nonzero - int(1.23 * dis_to_next_up) ##+int(dis_to_next_up*1./4.0)
point_down = peaks[jj] + first_nonzero + int(1.33 * dis_to_next_down) ###-int(dis_to_next_down*1./4.0)
point_down_narrow = peaks[jj] + first_nonzero + int(1.1 * dis_to_next_down) ###-int(dis_to_next_down*1./2)
if point_down_narrow >= img_patch.shape[0]:
point_down_narrow = img_patch.shape[0] - 2
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
if len(xvinside) == 0:
x_min = x_min_cont
x_max = x_max_cont
else:
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
elif len(peaks) < 1:
pass
elif len(peaks) == 1:
x_min = x_min_cont
x_max = x_max_cont
y_min = y_min_cont
y_max = y_max_cont
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(y_min)], [int(x_max), int(y_min)], [int(x_max), int(y_max)], [int(x_min), int(y_max)]]))
elif len(peaks) == 2:
dis_to_next = np.abs(peaks[1] - peaks[0])
for jj in range(len(peaks)):
if jj == 0:
point_up = 0 # peaks[jj] + first_nonzero - int(1. / 1.7 * dis_to_next)
if point_up < 0:
point_up = 1
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
elif jj == 1:
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.8 * dis_to_next)
if point_down >= img_patch.shape[0]:
point_down = img_patch.shape[0] - 2
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.8 * dis_to_next)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
if len(xvinside) == 0:
x_min = x_min_cont
x_max = x_max_cont
else:
x_min = np.min(xvinside)
x_max = np.max(xvinside)
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
else:
for jj in range(len(peaks)):
if jj == 0:
dis_to_next = peaks[jj + 1] - peaks[jj]
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
if point_up < 0:
point_up = 1
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next)
elif jj == len(peaks) - 1:
dis_to_next = peaks[jj] - peaks[jj - 1]
# point_down=peaks[jj]+first_nonzero+int(1./3*dis_to_next)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.7 * dis_to_next)
if point_down >= img_patch.shape[0]:
point_down = img_patch.shape[0] - 2
# point_up=peaks[jj]+first_nonzero-int(1./3*dis_to_next)
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next)
else:
dis_to_next_down = peaks[jj + 1] - peaks[jj]
dis_to_next_up = peaks[jj] - peaks[jj - 1]
point_up = peaks[jj] + first_nonzero - int(1.0 / 1.9 * dis_to_next_up)
point_down = peaks[jj] + first_nonzero + int(1.0 / 1.9 * dis_to_next_down)
distances = [cv2.pointPolygonTest(contour_text_interest_copy, (xv[mj], peaks[jj] + first_nonzero), True) for mj in range(len(xv))]
distances = np.array(distances)
xvinside = xv[distances >= 0]
if len(xvinside) == 0:
x_min = x_min_cont
x_max = x_max_cont
else:
x_min = np.min(xvinside) # max(x_min_interest,x_min_cont)
x_max = np.max(xvinside) # min(x_max_interest,x_max_cont)
p1 = np.dot(rotation_matrix, [int(point_up), int(y_min_cont)])
p2 = np.dot(rotation_matrix, [int(point_down), int(y_min_cont)])
p3 = np.dot(rotation_matrix, [int(point_down), int(y_max_cont)])
p4 = np.dot(rotation_matrix, [int(point_up), int(y_max_cont)])
x_min_rot1, point_up_rot1 = p1[0] + x_d, p1[1] + y_d
x_max_rot2, point_up_rot2 = p2[0] + x_d, p2[1] + y_d
x_max_rot3, point_down_rot3 = p3[0] + x_d, p3[1] + y_d
x_min_rot4, point_down_rot4 = p4[0] + x_d, p4[1] + y_d
if x_min_rot1 < 0:
x_min_rot1 = 0
if x_min_rot4 < 0:
x_min_rot4 = 0
if point_up_rot1 < 0:
point_up_rot1 = 0
if point_up_rot2 < 0:
point_up_rot2 = 0
textline_boxes_rot.append(np.array([[int(x_min_rot1), int(point_up_rot1)], [int(x_max_rot2), int(point_up_rot2)], [int(x_max_rot3), int(point_down_rot3)], [int(x_min_rot4), int(point_down_rot4)]]))
textline_boxes.append(np.array([[int(x_min), int(point_up)], [int(x_max), int(point_up)], [int(x_max), int(point_down)], [int(x_min), int(point_down)]]))
return peaks, textline_boxes_rot
def seperate_lines_new_inside_teils2(img_patch, thetha):
(h, w) = img_patch.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
x_d = M[0, 2]
y_d = M[1, 2]
thetha = thetha / 180.0 * np.pi
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
# contour_text_interest_copy = contour_text_interest.copy()
# x_cont = contour_text_interest[:, 0, 0]
# y_cont = contour_text_interest[:, 0, 1]
# x_cont = x_cont - np.min(x_cont)
# y_cont = y_cont - np.min(y_cont)
x_min_cont = 0
x_max_cont = img_patch.shape[1]
y_min_cont = 0
y_max_cont = img_patch.shape[0]
xv = np.linspace(x_min_cont, x_max_cont, 1000)
textline_patch_sum_along_width = img_patch.sum(axis=1)
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
y = textline_patch_sum_along_width[:] # [first_nonzero:last_nonzero]
y_padded = np.zeros(len(y) + 40)
y_padded[20 : len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
if 1 > 0:
try:
y_padded_smoothed_e = gaussian_filter1d(y_padded, 2)
y_padded_up_to_down_e = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded_e = np.zeros(len(y_padded_up_to_down_e) + 40)
y_padded_up_to_down_padded_e[20 : len(y_padded_up_to_down_e) + 20] = y_padded_up_to_down_e
y_padded_up_to_down_padded_e = gaussian_filter1d(y_padded_up_to_down_padded_e, 2)
peaks_e, _ = find_peaks(y_padded_smoothed_e, height=0)
peaks_neg_e, _ = find_peaks(y_padded_up_to_down_padded_e, height=0)
neg_peaks_max = np.max(y_padded_up_to_down_padded_e[peaks_neg_e])
arg_neg_must_be_deleted = np.array(range(len(peaks_neg_e)))[y_padded_up_to_down_padded_e[peaks_neg_e] / float(neg_peaks_max) < 0.3]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
peaks_new = peaks_e[:]
peaks_neg_new = peaks_neg_e[:]
clusters_to_be_deleted = []
if len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster = np.min(peaks_e[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks_e[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks_e[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg_e[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot = np.sort(peaks_new_tot)
else:
peaks_new_tot = peaks_e[:]
textline_con, hierachy = return_contours_of_image(img_patch)
textline_con_fil = filter_contours_area_of_image(img_patch, textline_con, hierachy, max_area=1, min_area=0.0008)
y_diff_mean = np.mean(np.diff(peaks_new_tot)) # self.find_contours_mean_y_diff(textline_con_fil)
sigma_gaus = int(y_diff_mean * (7.0 / 40.0))
# print(sigma_gaus,'sigma_gaus')
except:
sigma_gaus = 12
if sigma_gaus < 3:
sigma_gaus = 3
# print(sigma_gaus,'sigma')
y_padded_smoothed = gaussian_filter1d(y_padded, sigma_gaus)
y_padded_up_to_down = -y_padded + np.max(y_padded)
y_padded_up_to_down_padded = np.zeros(len(y_padded_up_to_down) + 40)
y_padded_up_to_down_padded[20 : len(y_padded_up_to_down) + 20] = y_padded_up_to_down
y_padded_up_to_down_padded = gaussian_filter1d(y_padded_up_to_down_padded, sigma_gaus)
peaks, _ = find_peaks(y_padded_smoothed, height=0)
peaks_neg, _ = find_peaks(y_padded_up_to_down_padded, height=0)
peaks_new = peaks[:]
peaks_neg_new = peaks_neg[:]
try:
neg_peaks_max = np.max(y_padded_smoothed[peaks])
arg_neg_must_be_deleted = np.array(range(len(peaks_neg)))[y_padded_up_to_down_padded[peaks_neg] / float(neg_peaks_max) < 0.24]
diff_arg_neg_must_be_deleted = np.diff(arg_neg_must_be_deleted)
arg_diff = np.array(range(len(diff_arg_neg_must_be_deleted)))
arg_diff_cluster = arg_diff[diff_arg_neg_must_be_deleted > 1]
clusters_to_be_deleted = []
if len(arg_diff_cluster) >= 2 and len(arg_diff_cluster) > 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[0 : arg_diff_cluster[0] + 1])
for i in range(len(arg_diff_cluster) - 1):
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[i] + 1 : arg_diff_cluster[i + 1] + 1])
clusters_to_be_deleted.append(arg_neg_must_be_deleted[arg_diff_cluster[len(arg_diff_cluster) - 1] + 1 :])
elif len(arg_neg_must_be_deleted) >= 2 and len(arg_diff_cluster) == 0:
clusters_to_be_deleted.append(arg_neg_must_be_deleted[:])
if len(arg_neg_must_be_deleted) == 1:
clusters_to_be_deleted.append(arg_neg_must_be_deleted)
if len(clusters_to_be_deleted) > 0:
peaks_new_extra = []
for m in range(len(clusters_to_be_deleted)):
min_cluster = np.min(peaks[clusters_to_be_deleted[m]])
max_cluster = np.max(peaks[clusters_to_be_deleted[m]])
peaks_new_extra.append(int((min_cluster + max_cluster) / 2.0))
for m1 in range(len(clusters_to_be_deleted[m])):
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1] - 1]]
peaks_new = peaks_new[peaks_new != peaks[clusters_to_be_deleted[m][m1]]]
peaks_neg_new = peaks_neg_new[peaks_neg_new != peaks_neg[clusters_to_be_deleted[m][m1]]]
peaks_new_tot = []
for i1 in peaks_new:
peaks_new_tot.append(i1)
for i1 in peaks_new_extra:
peaks_new_tot.append(i1)
peaks_new_tot = np.sort(peaks_new_tot)
# plt.plot(y_padded_up_to_down_padded)
# plt.plot(peaks_neg,y_padded_up_to_down_padded[peaks_neg],'*')
# plt.show()
# plt.plot(y_padded_up_to_down_padded)
# plt.plot(peaks_neg_new,y_padded_up_to_down_padded[peaks_neg_new],'*')
# plt.show()
# plt.plot(y_padded_smoothed)
# plt.plot(peaks,y_padded_smoothed[peaks],'*')
# plt.show()
# plt.plot(y_padded_smoothed)
# plt.plot(peaks_new_tot,y_padded_smoothed[peaks_new_tot],'*')
# plt.show()
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
except:
pass
else:
peaks_new_tot = peaks[:]
peaks = peaks_new_tot[:]
peaks_neg = peaks_neg_new[:]
mean_value_of_peaks = np.mean(y_padded_smoothed[peaks])
std_value_of_peaks = np.std(y_padded_smoothed[peaks])
peaks_values = y_padded_smoothed[peaks]
###peaks_neg = peaks_neg - 20 - 20
###peaks = peaks - 20
peaks_neg_true = peaks_neg[:]
peaks_pos_true = peaks[:]
if len(peaks_neg_true) > 0:
peaks_neg_true = np.array(peaks_neg_true)
peaks_neg_true = peaks_neg_true - 20 - 20
# print(peaks_neg_true)
for i in range(len(peaks_neg_true)):
img_patch[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
else:
pass
if len(peaks_pos_true) > 0:
peaks_pos_true = np.array(peaks_pos_true)
peaks_pos_true = peaks_pos_true - 20
for i in range(len(peaks_pos_true)):
##img_patch[peaks_pos_true[i]-8:peaks_pos_true[i]+8,:]=1
img_patch[peaks_pos_true[i] - 6 : peaks_pos_true[i] + 6, :] = 1
else:
pass
kernel = np.ones((5, 5), np.uint8)
# img_patch = cv2.erode(img_patch,kernel,iterations = 3)
#######################img_patch = cv2.erode(img_patch,kernel,iterations = 2)
img_patch = cv2.erode(img_patch, kernel, iterations=1)
return img_patch
def filter_small_drop_capitals_from_no_patch_layout(layout_no_patch, layout1):
drop_only = (layout_no_patch[:, :, 0] == 4) * 1
contours_drop, hir_on_drop = return_contours_of_image(drop_only)
contours_drop_parent = return_parent_contours(contours_drop, hir_on_drop)
areas_cnt_text = np.array([cv2.contourArea(contours_drop_parent[j]) for j in range(len(contours_drop_parent))])
areas_cnt_text = areas_cnt_text / float(drop_only.shape[0] * drop_only.shape[1])
contours_drop_parent = [contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz] > 0.001]
areas_cnt_text = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > 0.001]
contours_drop_parent_final = []
for jj in range(len(contours_drop_parent)):
x, y, w, h = cv2.boundingRect(contours_drop_parent[jj])
# boxes.append([int(x), int(y), int(w), int(h)])
iou_of_box_and_contoure = float(drop_only.shape[0] * drop_only.shape[1]) * areas_cnt_text[jj] / float(w * h) * 100
height_to_weight_ratio = h / float(w)
weigh_to_height_ratio = w / float(h)
if iou_of_box_and_contoure > 60 and weigh_to_height_ratio < 1.2 and height_to_weight_ratio < 2:
map_of_drop_contour_bb = np.zeros((layout1.shape[0], layout1.shape[1]))
map_of_drop_contour_bb[y : y + h, x : x + w] = layout1[y : y + h, x : x + w]
if (((map_of_drop_contour_bb == 1) * 1).sum() / float(((map_of_drop_contour_bb == 5) * 1).sum()) * 100) >= 15:
contours_drop_parent_final.append(contours_drop_parent[jj])
layout_no_patch[:, :, 0][layout_no_patch[:, :, 0] == 4] = 0
layout_no_patch = cv2.fillPoly(layout_no_patch, pts=contours_drop_parent_final, color=(4, 4, 4))
return layout_no_patch
def find_num_col_deskew(regions_without_seperators, sigma_, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=1)
meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1]
first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0)
last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0)
last_nonzero = len(regions_without_seperators_0) - last_nonzero
y = regions_without_seperators_0 # [first_nonzero:last_nonzero]
y_help = np.zeros(len(y) + 20)
y_help[10 : len(y) + 10] = y
x = np.array(range(len(y)))
zneg_rev = -y_help + np.max(y_help)
zneg = np.zeros(len(zneg_rev) + 20)
zneg[10 : len(zneg_rev) + 10] = zneg_rev
z = gaussian_filter1d(y, sigma_)
zneg = gaussian_filter1d(zneg, sigma_)
peaks_neg, _ = find_peaks(zneg, height=0)
peaks, _ = find_peaks(z, height=0)
peaks_neg = peaks_neg - 10 - 10
# print(np.std(z),'np.std(z)np.std(z)np.std(z)')
##plt.plot(z)
##plt.show()
##plt.imshow(regions_without_seperators)
##plt.show()
"""
last_nonzero=last_nonzero-0#100
first_nonzero=first_nonzero+0#+100
peaks_neg=peaks_neg[(peaks_neg>first_nonzero) & (peaks_neg<last_nonzero)]
peaks=peaks[(peaks>.06*regions_without_seperators.shape[1]) & (peaks<0.94*regions_without_seperators.shape[1])]
"""
interest_pos = z[peaks]
interest_pos = interest_pos[interest_pos > 10]
interest_neg = z[peaks_neg]
min_peaks_pos = np.mean(interest_pos)
min_peaks_neg = 0 # np.min(interest_neg)
dis_talaei = (min_peaks_pos - min_peaks_neg) / multiplier
# print(interest_pos)
grenze = min_peaks_pos - dis_talaei # np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
interest_neg_fin = interest_neg[(interest_neg < grenze)]
peaks_neg_fin = peaks_neg[(interest_neg < grenze)]
interest_neg_fin = interest_neg[(interest_neg < grenze)]
"""
if interest_neg[0]<0.1:
interest_neg=interest_neg[1:]
if interest_neg[len(interest_neg)-1]<0.1:
interest_neg=interest_neg[:len(interest_neg)-1]
min_peaks_pos=np.min(interest_pos)
min_peaks_neg=0#np.min(interest_neg)
dis_talaei=(min_peaks_pos-min_peaks_neg)/multiplier
grenze=min_peaks_pos-dis_talaei#np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
"""
# interest_neg_fin=interest_neg#[(interest_neg<grenze)]
# peaks_neg_fin=peaks_neg#[(interest_neg<grenze)]
# interest_neg_fin=interest_neg#[(interest_neg<grenze)]
num_col = (len(interest_neg_fin)) + 1
p_l = 0
p_u = len(y) - 1
p_m = int(len(y) / 2.0)
p_g_l = int(len(y) / 3.0)
p_g_u = len(y) - int(len(y) / 3.0)
diff_peaks = np.abs(np.diff(peaks_neg_fin))
diff_peaks_annormal = diff_peaks[diff_peaks < 30]
# print(len(interest_neg_fin),np.mean(interest_neg_fin))
return interest_neg_fin, np.std(z)
def return_hor_spliter_by_index_for_without_verticals(peaks_neg_fin_t, x_min_hor_some, x_max_hor_some):
# print(peaks_neg_fin_t,x_min_hor_some,x_max_hor_some)
arg_min_hor_sort = np.argsort(x_min_hor_some)
x_min_hor_some_sort = np.sort(x_min_hor_some)
x_max_hor_some_sort = x_max_hor_some[arg_min_hor_sort]
arg_minmax = np.array(range(len(peaks_neg_fin_t)))
indexer_lines = []
indexes_to_delete = []
indexer_lines_deletions_len = []
indexr_uniq_ind = []
for i in range(len(x_min_hor_some_sort)):
min_h = peaks_neg_fin_t - x_min_hor_some_sort[i]
max_h = peaks_neg_fin_t - x_max_hor_some_sort[i]
min_h[0] = min_h[0] # +20
max_h[len(max_h) - 1] = max_h[len(max_h) - 1] - 20
min_h_neg = arg_minmax[(min_h < 0)]
min_h_neg_n = min_h[min_h < 0]
try:
min_h_neg = [min_h_neg[np.argmax(min_h_neg_n)]]
except:
min_h_neg = []
max_h_neg = arg_minmax[(max_h > 0)]
max_h_neg_n = max_h[max_h > 0]
if len(max_h_neg_n) > 0:
max_h_neg = [max_h_neg[np.argmin(max_h_neg_n)]]
else:
max_h_neg = []
if len(min_h_neg) > 0 and len(max_h_neg) > 0:
deletions = list(range(min_h_neg[0] + 1, max_h_neg[0]))
unique_delets_int = []
# print(deletions,len(deletions),'delii')
if len(deletions) > 0:
for j in range(len(deletions)):
indexes_to_delete.append(deletions[j])
# print(deletions,indexes_to_delete,'badiii')
unique_delets = np.unique(indexes_to_delete)
# print(min_h_neg[0],unique_delets)
unique_delets_int = unique_delets[unique_delets < min_h_neg[0]]
indexer_lines_deletions_len.append(len(deletions))
indexr_uniq_ind.append([deletions])
else:
indexer_lines_deletions_len.append(0)
indexr_uniq_ind.append(-999)
index_line_true = min_h_neg[0] - len(unique_delets_int)
# print(index_line_true)
if index_line_true > 0 and min_h_neg[0] >= 2:
index_line_true = index_line_true
else:
index_line_true = min_h_neg[0]
indexer_lines.append(index_line_true)
if len(unique_delets_int) > 0:
for dd in range(len(unique_delets_int)):
indexes_to_delete.append(unique_delets_int[dd])
else:
indexer_lines.append(-999)
indexer_lines_deletions_len.append(-999)
indexr_uniq_ind.append(-999)
peaks_true = []
for m in range(len(peaks_neg_fin_t)):
if m in indexes_to_delete:
pass
else:
peaks_true.append(peaks_neg_fin_t[m])
return indexer_lines, peaks_true, arg_min_hor_sort, indexer_lines_deletions_len, indexr_uniq_ind
def find_new_features_of_contoures(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
try:
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
argmin_x_main = np.array([np.argmin(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 0] for j in range(len(contours_main))])
y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0, 1] for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
except:
x_min_main = np.array([np.min(contours_main[j][:, 0]) for j in range(len(contours_main))])
argmin_x_main = np.array([np.argmin(contours_main[j][:, 0]) for j in range(len(contours_main))])
x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 0] for j in range(len(contours_main))])
y_corr_x_min_from_argmin = np.array([contours_main[j][argmin_x_main[j], 1] for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 1]) for j in range(len(contours_main))])
# dis_x=np.abs(x_max_main-x_min_main)
return cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin
def find_num_col(regions_without_seperators, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=0)
##plt.plot(regions_without_seperators_0)
##plt.show()
sigma_ = 35 # 70#35
meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1]
first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0)
last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0)
# print(last_nonzero)
# print(isNaN(last_nonzero))
# last_nonzero=0#halalikh
last_nonzero = len(regions_without_seperators_0) - last_nonzero
y = regions_without_seperators_0 # [first_nonzero:last_nonzero]
y_help = np.zeros(len(y) + 20)
y_help[10 : len(y) + 10] = y
x = np.array(range(len(y)))
zneg_rev = -y_help + np.max(y_help)
zneg = np.zeros(len(zneg_rev) + 20)
zneg[10 : len(zneg_rev) + 10] = zneg_rev
z = gaussian_filter1d(y, sigma_)
zneg = gaussian_filter1d(zneg, sigma_)
peaks_neg, _ = find_peaks(zneg, height=0)
peaks, _ = find_peaks(z, height=0)
peaks_neg = peaks_neg - 10 - 10
last_nonzero = last_nonzero - 100
first_nonzero = first_nonzero + 200
peaks_neg = peaks_neg[(peaks_neg > first_nonzero) & (peaks_neg < last_nonzero)]
peaks = peaks[(peaks > 0.06 * regions_without_seperators.shape[1]) & (peaks < 0.94 * regions_without_seperators.shape[1])]
peaks_neg = peaks_neg[(peaks_neg > 370) & (peaks_neg < (regions_without_seperators.shape[1] - 370))]
# print(peaks)
interest_pos = z[peaks]
interest_pos = interest_pos[interest_pos > 10]
# plt.plot(z)
# plt.show()
interest_neg = z[peaks_neg]
min_peaks_pos = np.min(interest_pos)
max_peaks_pos = np.max(interest_pos)
if max_peaks_pos / min_peaks_pos >= 35:
min_peaks_pos = np.mean(interest_pos)
min_peaks_neg = 0 # np.min(interest_neg)
# print(np.min(interest_pos),np.max(interest_pos),np.max(interest_pos)/np.min(interest_pos),'minmax')
# $print(min_peaks_pos)
dis_talaei = (min_peaks_pos - min_peaks_neg) / multiplier
# print(interest_pos)
grenze = min_peaks_pos - dis_talaei # np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
# print(interest_neg,'interest_neg')
# print(grenze,'grenze')
# print(min_peaks_pos,'min_peaks_pos')
# print(dis_talaei,'dis_talaei')
# print(peaks_neg,'peaks_neg')
interest_neg_fin = interest_neg[(interest_neg < grenze)]
peaks_neg_fin = peaks_neg[(interest_neg < grenze)]
# interest_neg_fin=interest_neg[(interest_neg<grenze)]
num_col = (len(interest_neg_fin)) + 1
# print(peaks_neg_fin,'peaks_neg_fin')
# print(num_col,'diz')
p_l = 0
p_u = len(y) - 1
p_m = int(len(y) / 2.0)
p_g_l = int(len(y) / 4.0)
p_g_u = len(y) - int(len(y) / 4.0)
if num_col == 3:
if (peaks_neg_fin[0] > p_g_u and peaks_neg_fin[1] > p_g_u) or (peaks_neg_fin[0] < p_g_l and peaks_neg_fin[1] < p_g_l) or ((peaks_neg_fin[0] + 200) < p_m and peaks_neg_fin[1] < p_m) or ((peaks_neg_fin[0] - 200) > p_m and peaks_neg_fin[1] > p_m):
num_col = 1
peaks_neg_fin = []
else:
pass
if num_col == 2:
if (peaks_neg_fin[0] > p_g_u) or (peaks_neg_fin[0] < p_g_l):
num_col = 1
peaks_neg_fin = []
else:
pass
##print(len(peaks_neg_fin))
diff_peaks = np.abs(np.diff(peaks_neg_fin))
cut_off = 400
peaks_neg_true = []
forest = []
# print(len(peaks_neg_fin),'len_')
for i in range(len(peaks_neg_fin)):
if i == 0:
forest.append(peaks_neg_fin[i])
if i < (len(peaks_neg_fin) - 1):
if diff_peaks[i] <= cut_off:
forest.append(peaks_neg_fin[i + 1])
if diff_peaks[i] > cut_off:
# print(forest[np.argmin(z[forest]) ] )
if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
forest = []
forest.append(peaks_neg_fin[i + 1])
if i == (len(peaks_neg_fin) - 1):
# print(print(forest[np.argmin(z[forest]) ] ))
if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
num_col = (len(peaks_neg_true)) + 1
p_l = 0
p_u = len(y) - 1
p_m = int(len(y) / 2.0)
p_quarter = int(len(y) / 5.0)
p_g_l = int(len(y) / 4.0)
p_g_u = len(y) - int(len(y) / 4.0)
p_u_quarter = len(y) - p_quarter
##print(num_col,'early')
if num_col == 3:
if (peaks_neg_true[0] > p_g_u and peaks_neg_true[1] > p_g_u) or (peaks_neg_true[0] < p_g_l and peaks_neg_true[1] < p_g_l) or (peaks_neg_true[0] < p_m and (peaks_neg_true[1] + 200) < p_m) or ((peaks_neg_true[0] - 200) > p_m and peaks_neg_true[1] > p_m):
num_col = 1
peaks_neg_true = []
elif (peaks_neg_true[0] < p_g_u and peaks_neg_true[0] > p_g_l) and (peaks_neg_true[1] > p_u_quarter):
peaks_neg_true = [peaks_neg_true[0]]
elif (peaks_neg_true[1] < p_g_u and peaks_neg_true[1] > p_g_l) and (peaks_neg_true[0] < p_quarter):
peaks_neg_true = [peaks_neg_true[1]]
else:
pass
if num_col == 2:
if (peaks_neg_true[0] > p_g_u) or (peaks_neg_true[0] < p_g_l):
num_col = 1
peaks_neg_true = []
else:
pass
diff_peaks_annormal = diff_peaks[diff_peaks < 360]
if len(diff_peaks_annormal) > 0:
arg_help = np.array(range(len(diff_peaks)))
arg_help_ann = arg_help[diff_peaks < 360]
peaks_neg_fin_new = []
for ii in range(len(peaks_neg_fin)):
if ii in arg_help_ann:
arg_min = np.argmin([interest_neg_fin[ii], interest_neg_fin[ii + 1]])
if arg_min == 0:
peaks_neg_fin_new.append(peaks_neg_fin[ii])
else:
peaks_neg_fin_new.append(peaks_neg_fin[ii + 1])
elif (ii - 1) in arg_help_ann:
pass
else:
peaks_neg_fin_new.append(peaks_neg_fin[ii])
else:
peaks_neg_fin_new = peaks_neg_fin
# plt.plot(gaussian_filter1d(y, sigma_))
# plt.plot(peaks_neg_true,z[peaks_neg_true],'*')
# plt.plot([0,len(y)], [grenze,grenze])
# plt.show()
##print(len(peaks_neg_true))
return len(peaks_neg_true), peaks_neg_true
def find_num_col_only_image(regions_without_seperators, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=0)
##plt.plot(regions_without_seperators_0)
##plt.show()
sigma_ = 15
meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1]
first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0)
last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0)
last_nonzero = len(regions_without_seperators_0) - last_nonzero
y = regions_without_seperators_0 # [first_nonzero:last_nonzero]
y_help = np.zeros(len(y) + 20)
y_help[10 : len(y) + 10] = y
x = np.array(range(len(y)))
zneg_rev = -y_help + np.max(y_help)
zneg = np.zeros(len(zneg_rev) + 20)
zneg[10 : len(zneg_rev) + 10] = zneg_rev
z = gaussian_filter1d(y, sigma_)
zneg = gaussian_filter1d(zneg, sigma_)
peaks_neg, _ = find_peaks(zneg, height=0)
peaks, _ = find_peaks(z, height=0)
peaks_neg = peaks_neg - 10 - 10
peaks_neg_org = np.copy(peaks_neg)
peaks_neg = peaks_neg[(peaks_neg > first_nonzero) & (peaks_neg < last_nonzero)]
peaks = peaks[(peaks > 0.09 * regions_without_seperators.shape[1]) & (peaks < 0.91 * regions_without_seperators.shape[1])]
peaks_neg = peaks_neg[(peaks_neg > 500) & (peaks_neg < (regions_without_seperators.shape[1] - 500))]
# print(peaks)
interest_pos = z[peaks]
interest_pos = interest_pos[interest_pos > 10]
interest_neg = z[peaks_neg]
min_peaks_pos = np.mean(interest_pos) # np.min(interest_pos)
min_peaks_neg = 0 # np.min(interest_neg)
# $print(min_peaks_pos)
dis_talaei = (min_peaks_pos - min_peaks_neg) / multiplier
# print(interest_pos)
grenze = min_peaks_pos - dis_talaei # np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
interest_neg_fin = interest_neg[(interest_neg < grenze)]
peaks_neg_fin = peaks_neg[(interest_neg < grenze)]
num_col = (len(interest_neg_fin)) + 1
p_l = 0
p_u = len(y) - 1
p_m = int(len(y) / 2.0)
p_g_l = int(len(y) / 3.0)
p_g_u = len(y) - int(len(y) / 3.0)
if num_col == 3:
if (peaks_neg_fin[0] > p_g_u and peaks_neg_fin[1] > p_g_u) or (peaks_neg_fin[0] < p_g_l and peaks_neg_fin[1] < p_g_l) or (peaks_neg_fin[0] < p_m and peaks_neg_fin[1] < p_m) or (peaks_neg_fin[0] > p_m and peaks_neg_fin[1] > p_m):
num_col = 1
else:
pass
if num_col == 2:
if (peaks_neg_fin[0] > p_g_u) or (peaks_neg_fin[0] < p_g_l):
num_col = 1
else:
pass
diff_peaks = np.abs(np.diff(peaks_neg_fin))
cut_off = 400
peaks_neg_true = []
forest = []
for i in range(len(peaks_neg_fin)):
if i == 0:
forest.append(peaks_neg_fin[i])
if i < (len(peaks_neg_fin) - 1):
if diff_peaks[i] <= cut_off:
forest.append(peaks_neg_fin[i + 1])
if diff_peaks[i] > cut_off:
# print(forest[np.argmin(z[forest]) ] )
if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
forest = []
forest.append(peaks_neg_fin[i + 1])
if i == (len(peaks_neg_fin) - 1):
# print(print(forest[np.argmin(z[forest]) ] ))
if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
num_col = (len(peaks_neg_true)) + 1
p_l = 0
p_u = len(y) - 1
p_m = int(len(y) / 2.0)
p_quarter = int(len(y) / 4.0)
p_g_l = int(len(y) / 3.0)
p_g_u = len(y) - int(len(y) / 3.0)
p_u_quarter = len(y) - p_quarter
if num_col == 3:
if (peaks_neg_true[0] > p_g_u and peaks_neg_true[1] > p_g_u) or (peaks_neg_true[0] < p_g_l and peaks_neg_true[1] < p_g_l) or (peaks_neg_true[0] < p_m and peaks_neg_true[1] < p_m) or (peaks_neg_true[0] > p_m and peaks_neg_true[1] > p_m):
num_col = 1
peaks_neg_true = []
elif (peaks_neg_true[0] < p_g_u and peaks_neg_true[0] > p_g_l) and (peaks_neg_true[1] > p_u_quarter):
peaks_neg_true = [peaks_neg_true[0]]
elif (peaks_neg_true[1] < p_g_u and peaks_neg_true[1] > p_g_l) and (peaks_neg_true[0] < p_quarter):
peaks_neg_true = [peaks_neg_true[1]]
else:
pass
if num_col == 2:
if (peaks_neg_true[0] > p_g_u) or (peaks_neg_true[0] < p_g_l):
num_col = 1
peaks_neg_true = []
if num_col == 4:
if len(np.array(peaks_neg_true)[np.array(peaks_neg_true) < p_g_l]) == 2 or len(np.array(peaks_neg_true)[np.array(peaks_neg_true) > (len(y) - p_g_l)]) == 2:
num_col = 1
peaks_neg_true = []
else:
pass
# no deeper hill around found hills
peaks_fin_true = []
for i in range(len(peaks_neg_true)):
hill_main = peaks_neg_true[i]
# deep_depth=z[peaks_neg]
hills_around = peaks_neg_org[((peaks_neg_org > hill_main) & (peaks_neg_org <= hill_main + 400)) | ((peaks_neg_org < hill_main) & (peaks_neg_org >= hill_main - 400))]
deep_depth_around = z[hills_around]
# print(hill_main,z[hill_main],hills_around,deep_depth_around,'manoooo')
try:
if np.min(deep_depth_around) < z[hill_main]:
pass
else:
peaks_fin_true.append(hill_main)
except:
pass
diff_peaks_annormal = diff_peaks[diff_peaks < 360]
if len(diff_peaks_annormal) > 0:
arg_help = np.array(range(len(diff_peaks)))
arg_help_ann = arg_help[diff_peaks < 360]
peaks_neg_fin_new = []
for ii in range(len(peaks_neg_fin)):
if ii in arg_help_ann:
arg_min = np.argmin([interest_neg_fin[ii], interest_neg_fin[ii + 1]])
if arg_min == 0:
peaks_neg_fin_new.append(peaks_neg_fin[ii])
else:
peaks_neg_fin_new.append(peaks_neg_fin[ii + 1])
elif (ii - 1) in arg_help_ann:
pass
else:
peaks_neg_fin_new.append(peaks_neg_fin[ii])
else:
peaks_neg_fin_new = peaks_neg_fin
# sometime pages with one columns gives also some negative peaks. delete those peaks
param = z[peaks_neg_true] / float(min_peaks_pos) * 100
if len(param[param <= 41]) == 0:
peaks_neg_true = []
return len(peaks_fin_true), peaks_fin_true
def find_num_col_by_vertical_lines(regions_without_seperators, multiplier=3.8):
regions_without_seperators_0 = regions_without_seperators[:, :, 0].sum(axis=0)
##plt.plot(regions_without_seperators_0)
##plt.show()
sigma_ = 35 # 70#35
z = gaussian_filter1d(regions_without_seperators_0, sigma_)
peaks, _ = find_peaks(z, height=0)
# print(peaks,'peaksnew')
return peaks
def contours_in_same_horizon(cy_main_hor):
X1 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
X2 = np.zeros((len(cy_main_hor), len(cy_main_hor)))
X1[0::1, :] = cy_main_hor[:]
X2 = X1.T
X_dif = np.abs(X2 - X1)
args_help = np.array(range(len(cy_main_hor)))
all_args = []
for i in range(len(cy_main_hor)):
list_h = list(args_help[X_dif[i, :] <= 20])
list_h.append(i)
if len(list_h) > 1:
all_args.append(list(set(list_h)))
return np.unique(all_args)
def find_contours_mean_y_diff(contours_main):
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
return np.mean(np.diff(np.sort(np.array(cy_main))))
def find_features_of_contours(contours_main):
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
return y_min_main, y_max_main, areas_main
def return_contours_of_interested_region_and_bounding_box(region_pre_p, pixel):
# pixels of images are identified by 5
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=1, min_area=0.0003)
boxes = []
for jj in range(len(contours_imgs)):
x, y, w, h = cv2.boundingRect(contours_imgs[jj])
boxes.append([int(x), int(y), int(w), int(h)])
return contours_imgs, boxes
def get_text_region_boxes_by_given_contours(contours):
kernel = np.ones((5, 5), np.uint8)
boxes = []
contours_new = []
for jj in range(len(contours)):
x, y, w, h = cv2.boundingRect(contours[jj])
boxes.append([x, y, w, h])
contours_new.append(contours[jj])
del contours
return boxes, contours_new
def seperate_lines_new_inside_teils(img_path, thetha):
(h, w) = img_path.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, -thetha, 1.0)
x_d = M[0, 2]
y_d = M[1, 2]
thetha = thetha / 180.0 * np.pi
rotation_matrix = np.array([[np.cos(thetha), -np.sin(thetha)], [np.sin(thetha), np.cos(thetha)]])
x_min_cont = 0
x_max_cont = img_path.shape[1]
y_min_cont = 0
y_max_cont = img_path.shape[0]
xv = np.linspace(x_min_cont, x_max_cont, 1000)
mada_n = img_path.sum(axis=1)
##plt.plot(mada_n)
##plt.show()
first_nonzero = 0 # (next((i for i, x in enumerate(mada_n) if x), None))
y = mada_n[:] # [first_nonzero:last_nonzero]
y_help = np.zeros(len(y) + 40)
y_help[20 : len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
if len(peaks_real) <= 2 and len(peaks_real) > 1:
sigma_gaus = 10
else:
sigma_gaus = 5
z = gaussian_filter1d(y_help, sigma_gaus)
zneg_rev = -y_help + np.max(y_help)
zneg = np.zeros(len(zneg_rev) + 40)
zneg[20 : len(zneg_rev) + 20] = zneg_rev
zneg = gaussian_filter1d(zneg, sigma_gaus)
peaks, _ = find_peaks(z, height=0)
peaks_neg, _ = find_peaks(zneg, height=0)
for nn in range(len(peaks_neg)):
if peaks_neg[nn] > len(z) - 1:
peaks_neg[nn] = len(z) - 1
if peaks_neg[nn] < 0:
peaks_neg[nn] = 0
diff_peaks = np.abs(np.diff(peaks_neg))
cut_off = 20
peaks_neg_true = []
forest = []
for i in range(len(peaks_neg)):
if i == 0:
forest.append(peaks_neg[i])
if i < (len(peaks_neg) - 1):
if diff_peaks[i] <= cut_off:
forest.append(peaks_neg[i + 1])
if diff_peaks[i] > cut_off:
# print(forest[np.argmin(z[forest]) ] )
if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
forest = []
forest.append(peaks_neg[i + 1])
if i == (len(peaks_neg) - 1):
# print(print(forest[np.argmin(z[forest]) ] ))
if not isNaN(forest[np.argmin(z[forest])]):
peaks_neg_true.append(forest[np.argmin(z[forest])])
diff_peaks_pos = np.abs(np.diff(peaks))
cut_off = 20
peaks_pos_true = []
forest = []
for i in range(len(peaks)):
if i == 0:
forest.append(peaks[i])
if i < (len(peaks) - 1):
if diff_peaks_pos[i] <= cut_off:
forest.append(peaks[i + 1])
if diff_peaks_pos[i] > cut_off:
# print(forest[np.argmin(z[forest]) ] )
if not isNaN(forest[np.argmax(z[forest])]):
peaks_pos_true.append(forest[np.argmax(z[forest])])
forest = []
forest.append(peaks[i + 1])
if i == (len(peaks) - 1):
# print(print(forest[np.argmin(z[forest]) ] ))
if not isNaN(forest[np.argmax(z[forest])]):
peaks_pos_true.append(forest[np.argmax(z[forest])])
# print(len(peaks_neg_true) ,len(peaks_pos_true) ,'lensss')
if len(peaks_neg_true) > 0:
peaks_neg_true = np.array(peaks_neg_true)
"""
#plt.figure(figsize=(40,40))
#plt.subplot(1,2,1)
#plt.title('Textline segmentation von Textregion')
#plt.imshow(img_path)
#plt.xlabel('X')
#plt.ylabel('Y')
#plt.subplot(1,2,2)
#plt.title('Dichte entlang X')
#base = pyplot.gca().transData
#rot = transforms.Affine2D().rotate_deg(90)
#plt.plot(zneg,np.array(range(len(zneg))))
#plt.plot(zneg[peaks_neg_true],peaks_neg_true,'*')
#plt.gca().invert_yaxis()
#plt.xlabel('Dichte')
#plt.ylabel('Y')
##plt.plot([0,len(y)], [grenze,grenze])
#plt.show()
"""
peaks_neg_true = peaks_neg_true - 20 - 20
# print(peaks_neg_true)
for i in range(len(peaks_neg_true)):
img_path[peaks_neg_true[i] - 6 : peaks_neg_true[i] + 6, :] = 0
else:
pass
if len(peaks_pos_true) > 0:
peaks_pos_true = np.array(peaks_pos_true)
peaks_pos_true = peaks_pos_true - 20
for i in range(len(peaks_pos_true)):
img_path[peaks_pos_true[i] - 8 : peaks_pos_true[i] + 8, :] = 1
else:
pass
kernel = np.ones((5, 5), np.uint8)
# img_path = cv2.erode(img_path,kernel,iterations = 3)
img_path = cv2.erode(img_path, kernel, iterations=2)
return img_path
def delete_seperator_around(spliter_y, peaks_neg, image_by_region):
# format of subboxes box=[x1, x2 , y1, y2]
if len(image_by_region.shape) == 3:
for i in range(len(spliter_y) - 1):
for j in range(1, len(peaks_neg[i]) - 1):
image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0] == 6] = 0
image_by_region[spliter_y[i] : spliter_y[i + 1], peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 1] == 6] = 0
image_by_region[spliter_y[i] : spliter_y[i + 1], peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 2] == 6] = 0
image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0] == 7] = 0
image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 1] == 7] = 0
image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 0][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j]), 2] == 7] = 0
else:
for i in range(len(spliter_y) - 1):
for j in range(1, len(peaks_neg[i]) - 1):
image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j])][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j])] == 6] = 0
image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j])][image_by_region[int(spliter_y[i]) : int(spliter_y[i + 1]), peaks_neg[i][j] - int(1.0 / 20.0 * peaks_neg[i][j]) : peaks_neg[i][j] + int(1.0 / 20.0 * peaks_neg[i][j])] == 7] = 0
return image_by_region
def return_regions_without_seperators(regions_pre):
kernel = np.ones((5, 5), np.uint8)
regions_without_seperators = ((regions_pre[:, :] != 6) & (regions_pre[:, :] != 0)) * 1
# regions_without_seperators=( (image_regions_eraly_p[:,:,:]!=6) & (image_regions_eraly_p[:,:,:]!=0) & (image_regions_eraly_p[:,:,:]!=5) & (image_regions_eraly_p[:,:,:]!=8) & (image_regions_eraly_p[:,:,:]!=7))*1
regions_without_seperators = regions_without_seperators.astype(np.uint8)
regions_without_seperators = cv2.erode(regions_without_seperators, kernel, iterations=6)
return regions_without_seperators
def return_deskew_slop(img_patch_org, sigma_des, main_page=False, dir_of_all=None, f_name=None):
if main_page and dir_of_all is not None:
plt.figure(figsize=(70, 40))
plt.rcParams["font.size"] = "50"
plt.subplot(1, 2, 1)
plt.imshow(img_patch_org)
plt.subplot(1, 2, 2)
plt.plot(gaussian_filter1d(img_patch_org.sum(axis=1), 3), np.array(range(len(gaussian_filter1d(img_patch_org.sum(axis=1), 3)))), linewidth=8)
plt.xlabel("Density of textline prediction in direction of X axis", fontsize=60)
plt.ylabel("Height", fontsize=60)
plt.yticks([0, len(gaussian_filter1d(img_patch_org.sum(axis=1), 3))])
plt.gca().invert_yaxis()
plt.savefig(os.path.join(dir_of_all, f_name + "_density_of_textline.png"))
# print(np.max(img_patch_org.sum(axis=0)) ,np.max(img_patch_org.sum(axis=1)),'axislar')
# img_patch_org=resize_image(img_patch_org,int(img_patch_org.shape[0]*2.5),int(img_patch_org.shape[1]/2.5))
# print(np.max(img_patch_org.sum(axis=0)) ,np.max(img_patch_org.sum(axis=1)),'axislar2')
img_int = np.zeros((img_patch_org.shape[0], img_patch_org.shape[1]))
img_int[:, :] = img_patch_org[:, :] # img_patch_org[:,:,0]
img_resized = np.zeros((int(img_int.shape[0] * (1.8)), int(img_int.shape[1] * (2.6))))
img_resized[int(img_int.shape[0] * (0.4)) : int(img_int.shape[0] * (0.4)) + img_int.shape[0], int(img_int.shape[1] * (0.8)) : int(img_int.shape[1] * (0.8)) + img_int.shape[1]] = img_int[:, :]
if main_page and img_patch_org.shape[1] > img_patch_org.shape[0]:
# plt.imshow(img_resized)
# plt.show()
angels = np.array(
[
-45,
0,
45,
90,
]
) # np.linspace(-12,12,100)#np.array([0 , 45 , 90 , -45])
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
# plt.imshow(img_rot)
# plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
# neg_peaks,var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 )
# print(var_spectrum,'var_spectrum')
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(rot,var_spectrum,'var_spectrum')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
angels = np.linspace(ang_int - 22.5, ang_int + 22.5, 100)
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
##plt.imshow(img_rot)
##plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(indexer,'indexer')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
elif main_page and img_patch_org.shape[1] <= img_patch_org.shape[0]:
# plt.imshow(img_resized)
# plt.show()
angels = np.linspace(-12, 12, 100) # np.array([0 , 45 , 90 , -45])
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
# plt.imshow(img_rot)
# plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
# neg_peaks,var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 )
# print(var_spectrum,'var_spectrum')
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(rot,var_spectrum,'var_spectrum')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
if dir_of_all is not None:
print("galdi?")
plt.figure(figsize=(60, 30))
plt.rcParams["font.size"] = "50"
plt.plot(angels, np.array(var_res), "-o", markersize=25, linewidth=4)
plt.xlabel("angle", fontsize=50)
plt.ylabel("variance of sum of rotated textline in direction of x axis", fontsize=50)
plt.plot(angels[np.argmax(var_res)], var_res[np.argmax(np.array(var_res))], "*", markersize=50, label="Angle of deskewing=" + str("{:.2f}".format(angels[np.argmax(var_res)])) + r"$\degree$")
plt.legend(loc="best")
plt.savefig(os.path.join(dir_of_all, f_name + "_rotation_angle.png"))
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
early_slope_edge = 11
if abs(ang_int) > early_slope_edge and ang_int < 0:
angels = np.linspace(-90, -12, 100)
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
##plt.imshow(img_rot)
##plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(indexer,'indexer')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
elif abs(ang_int) > early_slope_edge and ang_int > 0:
angels = np.linspace(90, 12, 100)
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
##plt.imshow(img_rot)
##plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(indexer,'indexer')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
else:
angels = np.linspace(-25, 25, 60)
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
# plt.imshow(img_rot)
# plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
# neg_peaks,var_spectrum=find_num_col_deskew(img_rot,sigma_des,20.3 )
# print(var_spectrum,'var_spectrum')
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(rot,var_spectrum,'var_spectrum')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
# print(ang_int,'ang_int')
early_slope_edge = 22
if abs(ang_int) > early_slope_edge and ang_int < 0:
angels = np.linspace(-90, -25, 60)
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
##plt.imshow(img_rot)
##plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(indexer,'indexer')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
elif abs(ang_int) > early_slope_edge and ang_int > 0:
angels = np.linspace(90, 25, 60)
res = []
num_of_peaks = []
index_cor = []
var_res = []
indexer = 0
for rot in angels:
img_rot = rotate_image(img_resized, rot)
##plt.imshow(img_rot)
##plt.show()
img_rot[img_rot != 0] = 1
# res_me=np.mean(find_num_col_deskew(img_rot,sigma_des,2.0 ))
try:
neg_peaks, var_spectrum = find_num_col_deskew(img_rot, sigma_des, 20.3)
# print(indexer,'indexer')
res_me = np.mean(neg_peaks)
if res_me == 0:
res_me = VERY_LARGE_NUMBER
else:
pass
res_num = len(neg_peaks)
except:
res_me = VERY_LARGE_NUMBER
res_num = 0
var_spectrum = 0
if isNaN(res_me):
pass
else:
res.append(res_me)
var_res.append(var_spectrum)
num_of_peaks.append(res_num)
index_cor.append(indexer)
indexer = indexer + 1
try:
var_res = np.array(var_res)
ang_int = angels[np.argmax(var_res)] # angels_sorted[arg_final]#angels[arg_sort_early[arg_sort[arg_final]]]#angels[arg_fin]
except:
ang_int = 0
return ang_int
def put_drop_out_from_only_drop_model(layout_no_patch, layout1):
drop_only = (layout_no_patch[:, :, 0] == 4) * 1
contours_drop, hir_on_drop = return_contours_of_image(drop_only)
contours_drop_parent = return_parent_contours(contours_drop, hir_on_drop)
areas_cnt_text = np.array([cv2.contourArea(contours_drop_parent[j]) for j in range(len(contours_drop_parent))])
areas_cnt_text = areas_cnt_text / float(drop_only.shape[0] * drop_only.shape[1])
contours_drop_parent = [contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz] > 0.00001]
areas_cnt_text = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > 0.00001]
contours_drop_parent_final = []
for jj in range(len(contours_drop_parent)):
x, y, w, h = cv2.boundingRect(contours_drop_parent[jj])
# boxes.append([int(x), int(y), int(w), int(h)])
map_of_drop_contour_bb = np.zeros((layout1.shape[0], layout1.shape[1]))
map_of_drop_contour_bb[y : y + h, x : x + w] = layout1[y : y + h, x : x + w]
if (((map_of_drop_contour_bb == 1) * 1).sum() / float(((map_of_drop_contour_bb == 5) * 1).sum()) * 100) >= 15:
contours_drop_parent_final.append(contours_drop_parent[jj])
layout_no_patch[:, :, 0][layout_no_patch[:, :, 0] == 4] = 0
layout_no_patch = cv2.fillPoly(layout_no_patch, pts=contours_drop_parent_final, color=(4, 4, 4))
return layout_no_patch
def putt_bb_of_drop_capitals_of_model_in_patches_in_layout(layout_in_patch):
drop_only = (layout_in_patch[:, :, 0] == 4) * 1
contours_drop, hir_on_drop = return_contours_of_image(drop_only)
contours_drop_parent = return_parent_contours(contours_drop, hir_on_drop)
areas_cnt_text = np.array([cv2.contourArea(contours_drop_parent[j]) for j in range(len(contours_drop_parent))])
areas_cnt_text = areas_cnt_text / float(drop_only.shape[0] * drop_only.shape[1])
contours_drop_parent = [contours_drop_parent[jz] for jz in range(len(contours_drop_parent)) if areas_cnt_text[jz] > 0.00001]
areas_cnt_text = [areas_cnt_text[jz] for jz in range(len(areas_cnt_text)) if areas_cnt_text[jz] > 0.001]
contours_drop_parent_final = []
for jj in range(len(contours_drop_parent)):
x, y, w, h = cv2.boundingRect(contours_drop_parent[jj])
layout_in_patch[y : y + h, x : x + w, 0] = 4
return layout_in_patch
def check_any_text_region_in_model_one_is_main_or_header(regions_model_1, regions_model_full, contours_only_text_parent, all_box_coord, all_found_texline_polygons, slopes, contours_only_text_parent_d_ordered):
text_only = (regions_model_1[:, :] == 1) * 1
contours_only_text, hir_on_text = return_contours_of_image(text_only)
"""
contours_only_text_parent=return_parent_contours( contours_only_text,hir_on_text)
areas_cnt_text=np.array([cv2.contourArea(contours_only_text_parent[j]) for j in range(len(contours_only_text_parent))])
areas_cnt_text=areas_cnt_text/float(text_only.shape[0]*text_only.shape[1])
###areas_cnt_text_h=np.array([cv2.contourArea(contours_only_text_parent_h[j]) for j in range(len(contours_only_text_parent_h))])
###areas_cnt_text_h=areas_cnt_text_h/float(text_only_h.shape[0]*text_only_h.shape[1])
###contours_only_text_parent=[contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz]>0.0002]
contours_only_text_parent=[contours_only_text_parent[jz] for jz in range(len(contours_only_text_parent)) if areas_cnt_text[jz]>0.00001]
"""
cx_main, cy_main, x_min_main, x_max_main, y_min_main, y_max_main, y_corr_x_min_from_argmin = find_new_features_of_contoures(contours_only_text_parent)
length_con = x_max_main - x_min_main
height_con = y_max_main - y_min_main
all_found_texline_polygons_main = []
all_found_texline_polygons_head = []
all_box_coord_main = []
all_box_coord_head = []
slopes_main = []
slopes_head = []
contours_only_text_parent_main = []
contours_only_text_parent_head = []
contours_only_text_parent_main_d = []
contours_only_text_parent_head_d = []
for ii in range(len(contours_only_text_parent)):
con = contours_only_text_parent[ii]
img = np.zeros((regions_model_1.shape[0], regions_model_1.shape[1], 3))
img = cv2.fillPoly(img, pts=[con], color=(255, 255, 255))
all_pixels = ((img[:, :, 0] == 255) * 1).sum()
pixels_header = (((img[:, :, 0] == 255) & (regions_model_full[:, :, 0] == 2)) * 1).sum()
pixels_main = all_pixels - pixels_header
if (pixels_header >= pixels_main) and ((length_con[ii] / float(height_con[ii])) >= 1.3):
regions_model_1[:, :][(regions_model_1[:, :] == 1) & (img[:, :, 0] == 255)] = 2
contours_only_text_parent_head.append(con)
if contours_only_text_parent_d_ordered is not None:
contours_only_text_parent_head_d.append(contours_only_text_parent_d_ordered[ii])
all_box_coord_head.append(all_box_coord[ii])
slopes_head.append(slopes[ii])
all_found_texline_polygons_head.append(all_found_texline_polygons[ii])
else:
regions_model_1[:, :][(regions_model_1[:, :] == 1) & (img[:, :, 0] == 255)] = 1
contours_only_text_parent_main.append(con)
if contours_only_text_parent_d_ordered is not None:
contours_only_text_parent_main_d.append(contours_only_text_parent_d_ordered[ii])
all_box_coord_main.append(all_box_coord[ii])
slopes_main.append(slopes[ii])
all_found_texline_polygons_main.append(all_found_texline_polygons[ii])
# print(all_pixels,pixels_main,pixels_header)
# plt.imshow(img[:,:,0])
# plt.show()
return regions_model_1, contours_only_text_parent_main, contours_only_text_parent_head, all_box_coord_main, all_box_coord_head, all_found_texline_polygons_main, all_found_texline_polygons_head, slopes_main, slopes_head, contours_only_text_parent_main_d, contours_only_text_parent_head_d
def small_textlines_to_parent_adherence2(textlines_con, textline_iamge, num_col):
# print(textlines_con)
# textlines_con=textlines_con.astype(np.uint32)
textlines_con_changed = []
for m1 in range(len(textlines_con)):
# textlines_tot=textlines_con[m1]
# textlines_tot=textlines_tot.astype()
textlines_tot = []
textlines_tot_org_form = []
# print(textlines_tot)
for nn in range(len(textlines_con[m1])):
textlines_tot.append(np.array(textlines_con[m1][nn], dtype=np.int32))
textlines_tot_org_form.append(textlines_con[m1][nn])
##img_text_all=np.zeros((textline_iamge.shape[0],textline_iamge.shape[1]))
##img_text_all=cv2.fillPoly(img_text_all, pts =textlines_tot , color=(1,1,1))
##plt.imshow(img_text_all)
##plt.show()
areas_cnt_text = np.array([cv2.contourArea(textlines_tot[j]) for j in range(len(textlines_tot))])
areas_cnt_text = areas_cnt_text / float(textline_iamge.shape[0] * textline_iamge.shape[1])
indexes_textlines = np.array(range(len(textlines_tot)))
# print(areas_cnt_text,np.min(areas_cnt_text),np.max(areas_cnt_text))
if num_col == 0:
min_area = 0.0004
elif num_col == 1:
min_area = 0.0003
else:
min_area = 0.0001
indexes_textlines_small = indexes_textlines[areas_cnt_text < min_area]
# print(indexes_textlines)
textlines_small = []
textlines_small_org_form = []
for i in indexes_textlines_small:
textlines_small.append(textlines_tot[i])
textlines_small_org_form.append(textlines_tot_org_form[i])
textlines_big = []
textlines_big_org_form = []
for i in list(set(indexes_textlines) - set(indexes_textlines_small)):
textlines_big.append(textlines_tot[i])
textlines_big_org_form.append(textlines_tot_org_form[i])
img_textline_s = np.zeros((textline_iamge.shape[0], textline_iamge.shape[1]))
img_textline_s = cv2.fillPoly(img_textline_s, pts=textlines_small, color=(1, 1, 1))
img_textline_b = np.zeros((textline_iamge.shape[0], textline_iamge.shape[1]))
img_textline_b = cv2.fillPoly(img_textline_b, pts=textlines_big, color=(1, 1, 1))
sum_small_big_all = img_textline_s + img_textline_b
sum_small_big_all2 = (sum_small_big_all[:, :] == 2) * 1
sum_intersection_sb = sum_small_big_all2.sum(axis=1).sum()
if sum_intersection_sb > 0:
dis_small_from_bigs_tot = []
for z1 in range(len(textlines_small)):
# print(len(textlines_small),'small')
intersections = []
for z2 in range(len(textlines_big)):
img_text = np.zeros((textline_iamge.shape[0], textline_iamge.shape[1]))
img_text = cv2.fillPoly(img_text, pts=[textlines_small[z1]], color=(1, 1, 1))
img_text2 = np.zeros((textline_iamge.shape[0], textline_iamge.shape[1]))
img_text2 = cv2.fillPoly(img_text2, pts=[textlines_big[z2]], color=(1, 1, 1))
sum_small_big = img_text2 + img_text
sum_small_big_2 = (sum_small_big[:, :] == 2) * 1
sum_intersection = sum_small_big_2.sum(axis=1).sum()
# print(sum_intersection)
intersections.append(sum_intersection)
if len(np.array(intersections)[np.array(intersections) > 0]) == 0:
intersections = []
try:
dis_small_from_bigs_tot.append(np.argmax(intersections))
except:
dis_small_from_bigs_tot.append(-1)
smalls_list = np.array(dis_small_from_bigs_tot)[np.array(dis_small_from_bigs_tot) >= 0]
# index_small_textlines_rest=list( set(indexes_textlines_small)-set(smalls_list) )
textlines_big_with_change = []
textlines_big_with_change_con = []
textlines_small_with_change = []
for z in list(set(smalls_list)):
index_small_textlines = list(np.where(np.array(dis_small_from_bigs_tot) == z)[0])
# print(z,index_small_textlines)
img_text2 = np.zeros((textline_iamge.shape[0], textline_iamge.shape[1], 3))
img_text2 = cv2.fillPoly(img_text2, pts=[textlines_big[z]], color=(255, 255, 255))
textlines_big_with_change.append(z)
for k in index_small_textlines:
img_text2 = cv2.fillPoly(img_text2, pts=[textlines_small[k]], color=(255, 255, 255))
textlines_small_with_change.append(k)
img_text2 = img_text2.astype(np.uint8)
imgray = cv2.cvtColor(img_text2, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
cont, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(cont[0],type(cont))
textlines_big_with_change_con.append(cont)
textlines_big_org_form[z] = cont[0]
# plt.imshow(img_text2)
# plt.show()
# print(textlines_big_with_change,'textlines_big_with_change')
# print(textlines_small_with_change,'textlines_small_with_change')
# print(textlines_big)
textlines_con_changed.append(textlines_big_org_form)
else:
textlines_con_changed.append(textlines_big_org_form)
return textlines_con_changed
def return_contours_of_interested_region_by_size(region_pre_p, pixel, min_area, max_area):
# pixels of images are identified by 5
if len(region_pre_p.shape) == 3:
cnts_images = (region_pre_p[:, :, 0] == pixel) * 1
else:
cnts_images = (region_pre_p[:, :] == pixel) * 1
cnts_images = cnts_images.astype(np.uint8)
cnts_images = np.repeat(cnts_images[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(cnts_images, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_imgs, hiearchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours_imgs = return_parent_contours(contours_imgs, hiearchy)
contours_imgs = filter_contours_area_of_image_tables(thresh, contours_imgs, hiearchy, max_area=max_area, min_area=min_area)
img_ret = np.zeros((region_pre_p.shape[0], region_pre_p.shape[1], 3))
img_ret = cv2.fillPoly(img_ret, pts=contours_imgs, color=(1, 1, 1))
return img_ret[:, :, 0]
def order_and_id_of_texts(found_polygons_text_region, found_polygons_text_region_h, matrix_of_orders, indexes_sorted, index_of_types, kind_of_texts, ref_point):
indexes_sorted = np.array(indexes_sorted)
index_of_types = np.array(index_of_types)
kind_of_texts = np.array(kind_of_texts)
id_of_texts = []
order_of_texts = []
index_of_types_1 = index_of_types[kind_of_texts == 1]
indexes_sorted_1 = indexes_sorted[kind_of_texts == 1]
index_of_types_2 = index_of_types[kind_of_texts == 2]
indexes_sorted_2 = indexes_sorted[kind_of_texts == 2]
##print(index_of_types,'index_of_types')
##print(kind_of_texts,'kind_of_texts')
##print(len(found_polygons_text_region),'found_polygons_text_region')
##print(index_of_types_1,'index_of_types_1')
##print(indexes_sorted_1,'indexes_sorted_1')
index_b = 0 + ref_point
for mm in range(len(found_polygons_text_region)):
id_of_texts.append("r" + str(index_b))
interest = indexes_sorted_1[indexes_sorted_1 == index_of_types_1[mm]]
if len(interest) > 0:
order_of_texts.append(interest[0])
index_b += 1
else:
pass
for mm in range(len(found_polygons_text_region_h)):
id_of_texts.append("r" + str(index_b))
interest = indexes_sorted_2[index_of_types_2[mm]]
order_of_texts.append(interest)
index_b += 1
return order_of_texts, id_of_texts
def order_of_regions(textline_mask, contours_main, contours_header, y_ref):
##plt.imshow(textline_mask)
##plt.show()
"""
print(len(contours_main),'contours_main')
mada_n=textline_mask.sum(axis=1)
y=mada_n[:]
y_help=np.zeros(len(y)+40)
y_help[20:len(y)+20]=y
x=np.array( range(len(y)) )
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
##plt.imshow(textline_mask[:,:])
##plt.show()
sigma_gaus=8
z= gaussian_filter1d(y_help, sigma_gaus)
zneg_rev=-y_help+np.max(y_help)
zneg=np.zeros(len(zneg_rev)+40)
zneg[20:len(zneg_rev)+20]=zneg_rev
zneg= gaussian_filter1d(zneg, sigma_gaus)
peaks, _ = find_peaks(z, height=0)
peaks_neg, _ = find_peaks(zneg, height=0)
peaks_neg=peaks_neg-20-20
peaks=peaks-20
"""
textline_sum_along_width = textline_mask.sum(axis=1)
y = textline_sum_along_width[:]
y_padded = np.zeros(len(y) + 40)
y_padded[20 : len(y) + 20] = y
x = np.array(range(len(y)))
peaks_real, _ = find_peaks(gaussian_filter1d(y, 3), height=0)
sigma_gaus = 8
z = gaussian_filter1d(y_padded, sigma_gaus)
zneg_rev = -y_padded + np.max(y_padded)
zneg = np.zeros(len(zneg_rev) + 40)
zneg[20 : len(zneg_rev) + 20] = zneg_rev
zneg = gaussian_filter1d(zneg, sigma_gaus)
peaks, _ = find_peaks(z, height=0)
peaks_neg, _ = find_peaks(zneg, height=0)
peaks_neg = peaks_neg - 20 - 20
peaks = peaks - 20
##plt.plot(z)
##plt.show()
if contours_main != None:
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
if len(contours_header) != None:
areas_header = np.array([cv2.contourArea(contours_header[j]) for j in range(len(contours_header))])
M_header = [cv2.moments(contours_header[j]) for j in range(len(contours_header))]
cx_header = [(M_header[j]["m10"] / (M_header[j]["m00"] + 1e-32)) for j in range(len(M_header))]
cy_header = [(M_header[j]["m01"] / (M_header[j]["m00"] + 1e-32)) for j in range(len(M_header))]
x_min_header = np.array([np.min(contours_header[j][:, 0, 0]) for j in range(len(contours_header))])
x_max_header = np.array([np.max(contours_header[j][:, 0, 0]) for j in range(len(contours_header))])
y_min_header = np.array([np.min(contours_header[j][:, 0, 1]) for j in range(len(contours_header))])
y_max_header = np.array([np.max(contours_header[j][:, 0, 1]) for j in range(len(contours_header))])
# print(cy_main,'mainy')
peaks_neg_new = []
peaks_neg_new.append(0 + y_ref)
for iii in range(len(peaks_neg)):
peaks_neg_new.append(peaks_neg[iii] + y_ref)
peaks_neg_new.append(textline_mask.shape[0] + y_ref)
if len(cy_main) > 0 and np.max(cy_main) > np.max(peaks_neg_new):
cy_main = np.array(cy_main) * (np.max(peaks_neg_new) / np.max(cy_main)) - 10
if contours_main != None:
indexer_main = np.array(range(len(contours_main)))
if contours_main != None:
len_main = len(contours_main)
else:
len_main = 0
matrix_of_orders = np.zeros((len(contours_main) + len(contours_header), 5))
matrix_of_orders[:, 0] = np.array(range(len(contours_main) + len(contours_header)))
matrix_of_orders[: len(contours_main), 1] = 1
matrix_of_orders[len(contours_main) :, 1] = 2
matrix_of_orders[: len(contours_main), 2] = cx_main
matrix_of_orders[len(contours_main) :, 2] = cx_header
matrix_of_orders[: len(contours_main), 3] = cy_main
matrix_of_orders[len(contours_main) :, 3] = cy_header
matrix_of_orders[: len(contours_main), 4] = np.array(range(len(contours_main)))
matrix_of_orders[len(contours_main) :, 4] = np.array(range(len(contours_header)))
# print(peaks_neg_new,'peaks_neg_new')
# print(matrix_of_orders,'matrix_of_orders')
# print(peaks_neg_new,np.max(peaks_neg_new))
final_indexers_sorted = []
final_types = []
final_index_type = []
for i in range(len(peaks_neg_new) - 1):
top = peaks_neg_new[i]
down = peaks_neg_new[i + 1]
# print(top,down,'topdown')
indexes_in = matrix_of_orders[:, 0][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))]
cxs_in = matrix_of_orders[:, 2][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))]
cys_in = matrix_of_orders[:, 3][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))]
types_of_text = matrix_of_orders[:, 1][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))]
index_types_of_text = matrix_of_orders[:, 4][(matrix_of_orders[:, 3] >= top) & ((matrix_of_orders[:, 3] < down))]
# print(top,down)
# print(cys_in,'cyyyins')
# print(indexes_in,'indexes')
sorted_inside = np.argsort(cxs_in)
ind_in_int = indexes_in[sorted_inside]
ind_in_type = types_of_text[sorted_inside]
ind_ind_type = index_types_of_text[sorted_inside]
for j in range(len(ind_in_int)):
final_indexers_sorted.append(int(ind_in_int[j]))
final_types.append(int(ind_in_type[j]))
final_index_type.append(int(ind_ind_type[j]))
##matrix_of_orders[:len_main,4]=final_indexers_sorted[:]
# print(peaks_neg_new,'peaks')
# print(final_indexers_sorted,'indexsorted')
# print(final_types,'types')
# print(final_index_type,'final_index_type')
return final_indexers_sorted, matrix_of_orders, final_types, final_index_type
def implent_law_head_main_not_parallel(text_regions):
# print(text_regions.shape)
text_indexes = [1, 2] # 1: main text , 2: header , 3: comments
for t_i in text_indexes:
textline_mask = text_regions[:, :] == t_i
textline_mask = textline_mask * 255.0
textline_mask = textline_mask.astype(np.uint8)
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2)
kernel = np.ones((5, 5), np.uint8)
# print(type(textline_mask),np.unique(textline_mask),textline_mask.shape)
imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
if t_i == 1:
contours_main, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(type(contours_main))
areas_main = np.array([cv2.contourArea(contours_main[j]) for j in range(len(contours_main))])
M_main = [cv2.moments(contours_main[j]) for j in range(len(contours_main))]
cx_main = [(M_main[j]["m10"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
cy_main = [(M_main[j]["m01"] / (M_main[j]["m00"] + 1e-32)) for j in range(len(M_main))]
x_min_main = np.array([np.min(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
x_max_main = np.array([np.max(contours_main[j][:, 0, 0]) for j in range(len(contours_main))])
y_min_main = np.array([np.min(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
y_max_main = np.array([np.max(contours_main[j][:, 0, 1]) for j in range(len(contours_main))])
# print(contours_main[0],np.shape(contours_main[0]),contours_main[0][:,0,0])
elif t_i == 2:
contours_header, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# print(type(contours_header))
areas_header = np.array([cv2.contourArea(contours_header[j]) for j in range(len(contours_header))])
M_header = [cv2.moments(contours_header[j]) for j in range(len(contours_header))]
cx_header = [(M_header[j]["m10"] / (M_header[j]["m00"] + 1e-32)) for j in range(len(M_header))]
cy_header = [(M_header[j]["m01"] / (M_header[j]["m00"] + 1e-32)) for j in range(len(M_header))]
x_min_header = np.array([np.min(contours_header[j][:, 0, 0]) for j in range(len(contours_header))])
x_max_header = np.array([np.max(contours_header[j][:, 0, 0]) for j in range(len(contours_header))])
y_min_header = np.array([np.min(contours_header[j][:, 0, 1]) for j in range(len(contours_header))])
y_max_header = np.array([np.max(contours_header[j][:, 0, 1]) for j in range(len(contours_header))])
args = np.array(range(1, len(cy_header) + 1))
args_main = np.array(range(1, len(cy_main) + 1))
for jj in range(len(contours_main)):
headers_in_main = [(cy_header > y_min_main[jj]) & ((cy_header < y_max_main[jj]))]
mains_in_main = [(cy_main > y_min_main[jj]) & ((cy_main < y_max_main[jj]))]
args_log = args * headers_in_main
res = args_log[args_log > 0]
res_true = res - 1
args_log_main = args_main * mains_in_main
res_main = args_log_main[args_log_main > 0]
res_true_main = res_main - 1
if len(res_true) > 0:
sum_header = np.sum(areas_header[res_true])
sum_main = np.sum(areas_main[res_true_main])
if sum_main > sum_header:
cnt_int = [contours_header[j] for j in res_true]
text_regions = cv2.fillPoly(text_regions, pts=cnt_int, color=(1, 1, 1))
else:
cnt_int = [contours_main[j] for j in res_true_main]
text_regions = cv2.fillPoly(text_regions, pts=cnt_int, color=(2, 2, 2))
for jj in range(len(contours_header)):
main_in_header = [(cy_main > y_min_header[jj]) & ((cy_main < y_max_header[jj]))]
header_in_header = [(cy_header > y_min_header[jj]) & ((cy_header < y_max_header[jj]))]
args_log = args_main * main_in_header
res = args_log[args_log > 0]
res_true = res - 1
args_log_header = args * header_in_header
res_header = args_log_header[args_log_header > 0]
res_true_header = res_header - 1
if len(res_true) > 0:
sum_header = np.sum(areas_header[res_true_header])
sum_main = np.sum(areas_main[res_true])
if sum_main > sum_header:
cnt_int = [contours_header[j] for j in res_true_header]
text_regions = cv2.fillPoly(text_regions, pts=cnt_int, color=(1, 1, 1))
else:
cnt_int = [contours_main[j] for j in res_true]
text_regions = cv2.fillPoly(text_regions, pts=cnt_int, color=(2, 2, 2))
return text_regions
def return_hor_spliter_by_index(peaks_neg_fin_t, x_min_hor_some, x_max_hor_some):
arg_min_hor_sort = np.argsort(x_min_hor_some)
x_min_hor_some_sort = np.sort(x_min_hor_some)
x_max_hor_some_sort = x_max_hor_some[arg_min_hor_sort]
arg_minmax = np.array(range(len(peaks_neg_fin_t)))
indexer_lines = []
indexes_to_delete = []
indexer_lines_deletions_len = []
indexr_uniq_ind = []
for i in range(len(x_min_hor_some_sort)):
min_h = peaks_neg_fin_t - x_min_hor_some_sort[i]
max_h = peaks_neg_fin_t - x_max_hor_some_sort[i]
min_h[0] = min_h[0] # +20
max_h[len(max_h) - 1] = max_h[len(max_h) - 1] ##-20
min_h_neg = arg_minmax[(min_h < 0) & (np.abs(min_h) < 360)]
max_h_neg = arg_minmax[(max_h >= 0) & (np.abs(max_h) < 360)]
if len(min_h_neg) > 0 and len(max_h_neg) > 0:
deletions = list(range(min_h_neg[0] + 1, max_h_neg[0]))
unique_delets_int = []
# print(deletions,len(deletions),'delii')
if len(deletions) > 0:
# print(deletions,len(deletions),'delii2')
for j in range(len(deletions)):
indexes_to_delete.append(deletions[j])
# print(deletions,indexes_to_delete,'badiii')
unique_delets = np.unique(indexes_to_delete)
# print(min_h_neg[0],unique_delets)
unique_delets_int = unique_delets[unique_delets < min_h_neg[0]]
indexer_lines_deletions_len.append(len(deletions))
indexr_uniq_ind.append([deletions])
else:
indexer_lines_deletions_len.append(0)
indexr_uniq_ind.append(-999)
index_line_true = min_h_neg[0] - len(unique_delets_int)
# print(index_line_true)
if index_line_true > 0 and min_h_neg[0] >= 2:
index_line_true = index_line_true
else:
index_line_true = min_h_neg[0]
indexer_lines.append(index_line_true)
if len(unique_delets_int) > 0:
for dd in range(len(unique_delets_int)):
indexes_to_delete.append(unique_delets_int[dd])
else:
indexer_lines.append(-999)
indexer_lines_deletions_len.append(-999)
indexr_uniq_ind.append(-999)
peaks_true = []
for m in range(len(peaks_neg_fin_t)):
if m in indexes_to_delete:
pass
else:
peaks_true.append(peaks_neg_fin_t[m])
return indexer_lines, peaks_true, arg_min_hor_sort, indexer_lines_deletions_len, indexr_uniq_ind
def combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(img_p_in_ver, img_in_hor):
# plt.imshow(img_in_hor)
# plt.show()
# img_p_in_ver = cv2.erode(img_p_in_ver, self.kernel, iterations=2)
img_p_in_ver = img_p_in_ver.astype(np.uint8)
img_p_in_ver = np.repeat(img_p_in_ver[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(img_p_in_ver, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_lines_ver, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
slope_lines_ver, dist_x_ver, x_min_main_ver, x_max_main_ver, cy_main_ver, slope_lines_org_ver, y_min_main_ver, y_max_main_ver, cx_main_ver = find_features_of_lines(contours_lines_ver)
for i in range(len(x_min_main_ver)):
img_p_in_ver[int(y_min_main_ver[i]) : int(y_min_main_ver[i]) + 30, int(cx_main_ver[i]) - 25 : int(cx_main_ver[i]) + 25, 0] = 0
img_p_in_ver[int(y_max_main_ver[i]) - 30 : int(y_max_main_ver[i]), int(cx_main_ver[i]) - 25 : int(cx_main_ver[i]) + 25, 0] = 0
# plt.imshow(img_p_in_ver[:,:,0])
# plt.show()
img_in_hor = img_in_hor.astype(np.uint8)
img_in_hor = np.repeat(img_in_hor[:, :, np.newaxis], 3, axis=2)
imgray = cv2.cvtColor(img_in_hor, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_lines_hor, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
slope_lines_hor, dist_x_hor, x_min_main_hor, x_max_main_hor, cy_main_hor, slope_lines_org_hor, y_min_main_hor, y_max_main_hor, cx_main_hor = find_features_of_lines(contours_lines_hor)
args_hor = np.array(range(len(slope_lines_hor)))
all_args_uniq = contours_in_same_horizon(cy_main_hor)
# print(all_args_uniq,'all_args_uniq')
if len(all_args_uniq) > 0:
if type(all_args_uniq[0]) is list:
special_seperators = []
contours_new = []
for dd in range(len(all_args_uniq)):
merged_all = None
some_args = args_hor[all_args_uniq[dd]]
some_cy = cy_main_hor[all_args_uniq[dd]]
some_x_min = x_min_main_hor[all_args_uniq[dd]]
some_x_max = x_max_main_hor[all_args_uniq[dd]]
# img_in=np.zeros(seperators_closeup_n[:,:,2].shape)
for jv in range(len(some_args)):
img_p_in = cv2.fillPoly(img_in_hor, pts=[contours_lines_hor[some_args[jv]]], color=(1, 1, 1))
img_p_in[int(np.mean(some_cy)) - 5 : int(np.mean(some_cy)) + 5, int(np.min(some_x_min)) : int(np.max(some_x_max))] = 1
sum_dis = dist_x_hor[some_args].sum()
diff_max_min_uniques = np.max(x_max_main_hor[some_args]) - np.min(x_min_main_hor[some_args])
# print( sum_dis/float(diff_max_min_uniques) ,diff_max_min_uniques/float(img_p_in_ver.shape[1]),dist_x_hor[some_args].sum(),diff_max_min_uniques,np.mean( dist_x_hor[some_args]),np.std( dist_x_hor[some_args]) )
if diff_max_min_uniques > sum_dis and ((sum_dis / float(diff_max_min_uniques)) > 0.85) and ((diff_max_min_uniques / float(img_p_in_ver.shape[1])) > 0.85) and np.std(dist_x_hor[some_args]) < (0.55 * np.mean(dist_x_hor[some_args])):
# print(dist_x_hor[some_args],dist_x_hor[some_args].sum(),np.min(x_min_main_hor[some_args]) ,np.max(x_max_main_hor[some_args]),'jalibdi')
# print(np.mean( dist_x_hor[some_args] ),np.std( dist_x_hor[some_args] ),np.var( dist_x_hor[some_args] ),'jalibdiha')
special_seperators.append(np.mean(cy_main_hor[some_args]))
else:
img_p_in = img_in_hor
special_seperators = []
else:
img_p_in = img_in_hor
special_seperators = []
img_p_in_ver[:, :, 0][img_p_in_ver[:, :, 0] == 255] = 1
# print(img_p_in_ver.shape,np.unique(img_p_in_ver[:,:,0]))
# plt.imshow(img_p_in[:,:,0])
# plt.show()
# plt.imshow(img_p_in_ver[:,:,0])
# plt.show()
sep_ver_hor = img_p_in + img_p_in_ver
# print(sep_ver_hor.shape,np.unique(sep_ver_hor[:,:,0]),'sep_ver_horsep_ver_horsep_ver_hor')
# plt.imshow(sep_ver_hor[:,:,0])
# plt.show()
sep_ver_hor_cross = (sep_ver_hor[:, :, 0] == 2) * 1
sep_ver_hor_cross = np.repeat(sep_ver_hor_cross[:, :, np.newaxis], 3, axis=2)
sep_ver_hor_cross = sep_ver_hor_cross.astype(np.uint8)
imgray = cv2.cvtColor(sep_ver_hor_cross, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_cross, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cx_cross, cy_cross, _, _, _, _, _ = find_new_features_of_contoures(contours_cross)
for ii in range(len(cx_cross)):
img_p_in[int(cy_cross[ii]) - 30 : int(cy_cross[ii]) + 30, int(cx_cross[ii]) + 5 : int(cx_cross[ii]) + 40, 0] = 0
img_p_in[int(cy_cross[ii]) - 30 : int(cy_cross[ii]) + 30, int(cx_cross[ii]) - 40 : int(cx_cross[ii]) - 4, 0] = 0
# plt.imshow(img_p_in[:,:,0])
# plt.show()
return img_p_in[:, :, 0], special_seperators
def return_points_with_boundies(peaks_neg_fin, first_point, last_point):
peaks_neg_tot = []
peaks_neg_tot.append(first_point)
for ii in range(len(peaks_neg_fin)):
peaks_neg_tot.append(peaks_neg_fin[ii])
peaks_neg_tot.append(last_point)
return peaks_neg_tot
def textline_contours_postprocessing(textline_mask, slope, contour_text_interest, box_ind, slope_first, add_boxes_coor_into_textlines=False):
textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
textline_mask = textline_mask.astype(np.uint8)
kernel = np.ones((5, 5), np.uint8)
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_OPEN, kernel)
textline_mask = cv2.morphologyEx(textline_mask, cv2.MORPH_CLOSE, kernel)
textline_mask = cv2.erode(textline_mask, kernel, iterations=2)
# textline_mask = cv2.erode(textline_mask, kernel, iterations=1)
# print(textline_mask.shape[0]/float(textline_mask.shape[1]),'miz')
try:
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(textline_mask)
# plt.show()
# if abs(slope)>1:
# x_help=30
# y_help=2
# else:
# x_help=2
# y_help=2
x_help = 30
y_help = 2
textline_mask_help = np.zeros((textline_mask.shape[0] + int(2 * y_help), textline_mask.shape[1] + int(2 * x_help), 3))
textline_mask_help[y_help : y_help + textline_mask.shape[0], x_help : x_help + textline_mask.shape[1], :] = np.copy(textline_mask[:, :, :])
dst = rotate_image(textline_mask_help, slope)
dst = dst[:, :, 0]
dst[dst != 0] = 1
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(dst)
# plt.show()
contour_text_copy = contour_text_interest.copy()
contour_text_copy[:, 0, 0] = contour_text_copy[:, 0, 0] - box_ind[0]
contour_text_copy[:, 0, 1] = contour_text_copy[:, 0, 1] - box_ind[1]
img_contour = np.zeros((box_ind[3], box_ind[2], 3))
img_contour = cv2.fillPoly(img_contour, pts=[contour_text_copy], color=(255, 255, 255))
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(img_contour)
# plt.show()
img_contour_help = np.zeros((img_contour.shape[0] + int(2 * y_help), img_contour.shape[1] + int(2 * x_help), 3))
img_contour_help[y_help : y_help + img_contour.shape[0], x_help : x_help + img_contour.shape[1], :] = np.copy(img_contour[:, :, :])
img_contour_rot = rotate_image(img_contour_help, slope)
# plt.imshow(img_contour_rot_help)
# plt.show()
# plt.imshow(dst_help)
# plt.show()
# if np.abs(slope)>.5 and textline_mask.shape[0]/float(textline_mask.shape[1])>3:
# plt.imshow(img_contour_rot_help)
# plt.show()
# plt.imshow(dst_help)
# plt.show()
img_contour_rot = img_contour_rot.astype(np.uint8)
# dst_help = dst_help.astype(np.uint8)
imgrayrot = cv2.cvtColor(img_contour_rot, cv2.COLOR_BGR2GRAY)
_, threshrot = cv2.threshold(imgrayrot, 0, 255, 0)
contours_text_rot, _ = cv2.findContours(threshrot.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
len_con_text_rot = [len(contours_text_rot[ib]) for ib in range(len(contours_text_rot))]
ind_big_con = np.argmax(len_con_text_rot)
# print('juzaa')
if abs(slope) > 45:
# print(add_boxes_coor_into_textlines,'avval')
_, contours_rotated_clean = seperate_lines_vertical_cont(textline_mask, contours_text_rot[ind_big_con], box_ind, slope, add_boxes_coor_into_textlines=add_boxes_coor_into_textlines)
else:
_, contours_rotated_clean = seperate_lines(dst, contours_text_rot[ind_big_con], slope, x_help, y_help)
except:
contours_rotated_clean = []
return contours_rotated_clean
def find_number_of_columns_in_document(region_pre_p, num_col_classifier, pixel_lines, contours_h=None):
seperators_closeup = ((region_pre_p[:, :, :] == pixel_lines)) * 1
seperators_closeup[0:110, :, :] = 0
seperators_closeup[seperators_closeup.shape[0] - 150 :, :, :] = 0
kernel = np.ones((5, 5), np.uint8)
seperators_closeup = seperators_closeup.astype(np.uint8)
seperators_closeup = cv2.dilate(seperators_closeup, kernel, iterations=1)
seperators_closeup = cv2.erode(seperators_closeup, kernel, iterations=1)
##plt.imshow(seperators_closeup[:,:,0])
##plt.show()
seperators_closeup_new = np.zeros((seperators_closeup.shape[0], seperators_closeup.shape[1]))
##_,seperators_closeup_n=self.combine_hor_lines_and_delete_cross_points_and_get_lines_features_back(region_pre_p[:,:,0])
seperators_closeup_n = np.copy(seperators_closeup)
seperators_closeup_n = seperators_closeup_n.astype(np.uint8)
##plt.imshow(seperators_closeup_n[:,:,0])
##plt.show()
seperators_closeup_n_binary = np.zeros((seperators_closeup_n.shape[0], seperators_closeup_n.shape[1]))
seperators_closeup_n_binary[:, :] = seperators_closeup_n[:, :, 0]
seperators_closeup_n_binary[:, :][seperators_closeup_n_binary[:, :] != 0] = 1
# seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==0]=255
# seperators_closeup_n_binary[:,:][seperators_closeup_n_binary[:,:]==-255]=0
# seperators_closeup_n_binary=(seperators_closeup_n_binary[:,:]==2)*1
# gray = cv2.cvtColor(seperators_closeup_n, cv2.COLOR_BGR2GRAY)
# print(np.unique(seperators_closeup_n_binary))
##plt.imshow(seperators_closeup_n_binary)
##plt.show()
# print( np.unique(gray),np.unique(seperators_closeup_n[:,:,1]) )
gray = cv2.bitwise_not(seperators_closeup_n_binary)
gray = gray.astype(np.uint8)
##plt.imshow(gray)
##plt.show()
bw = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 15, -2)
##plt.imshow(bw[:,:])
##plt.show()
horizontal = np.copy(bw)
vertical = np.copy(bw)
cols = horizontal.shape[1]
horizontal_size = cols // 30
# Create structure element for extracting horizontal lines through morphology operations
horizontalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontal_size, 1))
# Apply morphology operations
horizontal = cv2.erode(horizontal, horizontalStructure)
horizontal = cv2.dilate(horizontal, horizontalStructure)
kernel = np.ones((5, 5), np.uint8)
horizontal = cv2.dilate(horizontal, kernel, iterations=2)
horizontal = cv2.erode(horizontal, kernel, iterations=2)
# plt.imshow(horizontal)
# plt.show()
rows = vertical.shape[0]
verticalsize = rows // 30
# Create structure element for extracting vertical lines through morphology operations
verticalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, verticalsize))
# Apply morphology operations
vertical = cv2.erode(vertical, verticalStructure)
vertical = cv2.dilate(vertical, verticalStructure)
vertical = cv2.dilate(vertical, kernel, iterations=1)
# Show extracted vertical lines
horizontal, special_seperators = combine_hor_lines_and_delete_cross_points_and_get_lines_features_back_new(vertical, horizontal)
##plt.imshow(vertical)
##plt.show()
# print(vertical.shape,np.unique(vertical),'verticalvertical')
seperators_closeup_new[:, :][vertical[:, :] != 0] = 1
seperators_closeup_new[:, :][horizontal[:, :] != 0] = 1
##plt.imshow(seperators_closeup_new)
##plt.show()
##seperators_closeup_n
vertical = np.repeat(vertical[:, :, np.newaxis], 3, axis=2)
vertical = vertical.astype(np.uint8)
##plt.plot(vertical[:,:,0].sum(axis=0))
##plt.show()
# plt.plot(vertical[:,:,0].sum(axis=1))
# plt.show()
imgray = cv2.cvtColor(vertical, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_line_vers, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_line_vers)
# print(slope_lines,'vertical')
args = np.array(range(len(slope_lines)))
args_ver = args[slope_lines == 1]
dist_x_ver = dist_x[slope_lines == 1]
y_min_main_ver = y_min_main[slope_lines == 1]
y_max_main_ver = y_max_main[slope_lines == 1]
x_min_main_ver = x_min_main[slope_lines == 1]
x_max_main_ver = x_max_main[slope_lines == 1]
cx_main_ver = cx_main[slope_lines == 1]
dist_y_ver = y_max_main_ver - y_min_main_ver
len_y = seperators_closeup.shape[0] / 3.0
# plt.imshow(horizontal)
# plt.show()
horizontal = np.repeat(horizontal[:, :, np.newaxis], 3, axis=2)
horizontal = horizontal.astype(np.uint8)
imgray = cv2.cvtColor(horizontal, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_line_hors, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_line_hors)
slope_lines_org_hor = slope_lines_org[slope_lines == 0]
args = np.array(range(len(slope_lines)))
len_x = seperators_closeup.shape[1] / 5.0
dist_y = np.abs(y_max_main - y_min_main)
args_hor = args[slope_lines == 0]
dist_x_hor = dist_x[slope_lines == 0]
y_min_main_hor = y_min_main[slope_lines == 0]
y_max_main_hor = y_max_main[slope_lines == 0]
x_min_main_hor = x_min_main[slope_lines == 0]
x_max_main_hor = x_max_main[slope_lines == 0]
dist_y_hor = dist_y[slope_lines == 0]
cy_main_hor = cy_main[slope_lines == 0]
args_hor = args_hor[dist_x_hor >= len_x / 2.0]
x_max_main_hor = x_max_main_hor[dist_x_hor >= len_x / 2.0]
x_min_main_hor = x_min_main_hor[dist_x_hor >= len_x / 2.0]
cy_main_hor = cy_main_hor[dist_x_hor >= len_x / 2.0]
y_min_main_hor = y_min_main_hor[dist_x_hor >= len_x / 2.0]
y_max_main_hor = y_max_main_hor[dist_x_hor >= len_x / 2.0]
dist_y_hor = dist_y_hor[dist_x_hor >= len_x / 2.0]
slope_lines_org_hor = slope_lines_org_hor[dist_x_hor >= len_x / 2.0]
dist_x_hor = dist_x_hor[dist_x_hor >= len_x / 2.0]
matrix_of_lines_ch = np.zeros((len(cy_main_hor) + len(cx_main_ver), 10))
matrix_of_lines_ch[: len(cy_main_hor), 0] = args_hor
matrix_of_lines_ch[len(cy_main_hor) :, 0] = args_ver
matrix_of_lines_ch[len(cy_main_hor) :, 1] = cx_main_ver
matrix_of_lines_ch[: len(cy_main_hor), 2] = x_min_main_hor + 50 # x_min_main_hor+150
matrix_of_lines_ch[len(cy_main_hor) :, 2] = x_min_main_ver
matrix_of_lines_ch[: len(cy_main_hor), 3] = x_max_main_hor - 50 # x_max_main_hor-150
matrix_of_lines_ch[len(cy_main_hor) :, 3] = x_max_main_ver
matrix_of_lines_ch[: len(cy_main_hor), 4] = dist_x_hor
matrix_of_lines_ch[len(cy_main_hor) :, 4] = dist_x_ver
matrix_of_lines_ch[: len(cy_main_hor), 5] = cy_main_hor
matrix_of_lines_ch[: len(cy_main_hor), 6] = y_min_main_hor
matrix_of_lines_ch[len(cy_main_hor) :, 6] = y_min_main_ver
matrix_of_lines_ch[: len(cy_main_hor), 7] = y_max_main_hor
matrix_of_lines_ch[len(cy_main_hor) :, 7] = y_max_main_ver
matrix_of_lines_ch[: len(cy_main_hor), 8] = dist_y_hor
matrix_of_lines_ch[len(cy_main_hor) :, 8] = dist_y_ver
matrix_of_lines_ch[len(cy_main_hor) :, 9] = 1
if contours_h is not None:
slope_lines_head, dist_x_head, x_min_main_head, x_max_main_head, cy_main_head, slope_lines_org_head, y_min_main_head, y_max_main_head, cx_main_head = find_features_of_lines(contours_h)
matrix_l_n = np.zeros((matrix_of_lines_ch.shape[0] + len(cy_main_head), matrix_of_lines_ch.shape[1]))
matrix_l_n[: matrix_of_lines_ch.shape[0], :] = np.copy(matrix_of_lines_ch[:, :])
args_head = np.array(range(len(cy_main_head))) + len(cy_main_hor)
matrix_l_n[matrix_of_lines_ch.shape[0] :, 0] = args_head
matrix_l_n[matrix_of_lines_ch.shape[0] :, 2] = x_min_main_head + 30
matrix_l_n[matrix_of_lines_ch.shape[0] :, 3] = x_max_main_head - 30
matrix_l_n[matrix_of_lines_ch.shape[0] :, 4] = dist_x_head
matrix_l_n[matrix_of_lines_ch.shape[0] :, 5] = y_min_main_head - 3 - 8
matrix_l_n[matrix_of_lines_ch.shape[0] :, 6] = y_min_main_head - 5 - 8
matrix_l_n[matrix_of_lines_ch.shape[0] :, 7] = y_min_main_head + 1 - 8
matrix_l_n[matrix_of_lines_ch.shape[0] :, 8] = 4
matrix_of_lines_ch = np.copy(matrix_l_n)
# print(matrix_of_lines_ch)
"""
seperators_closeup=seperators_closeup.astype(np.uint8)
imgray = cv2.cvtColor(seperators_closeup, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(imgray, 0, 255, 0)
contours_lines,hierachy=cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
slope_lines,dist_x, x_min_main ,x_max_main ,cy_main,slope_lines_org,y_min_main, y_max_main, cx_main=find_features_of_lines(contours_lines)
slope_lines_org_hor=slope_lines_org[slope_lines==0]
args=np.array( range(len(slope_lines) ))
len_x=seperators_closeup.shape[1]/4.0
args_hor=args[slope_lines==0]
dist_x_hor=dist_x[slope_lines==0]
x_min_main_hor=x_min_main[slope_lines==0]
x_max_main_hor=x_max_main[slope_lines==0]
cy_main_hor=cy_main[slope_lines==0]
args_hor=args_hor[dist_x_hor>=len_x/2.0]
x_max_main_hor=x_max_main_hor[dist_x_hor>=len_x/2.0]
x_min_main_hor=x_min_main_hor[dist_x_hor>=len_x/2.0]
cy_main_hor=cy_main_hor[dist_x_hor>=len_x/2.0]
slope_lines_org_hor=slope_lines_org_hor[dist_x_hor>=len_x/2.0]
slope_lines_org_hor=slope_lines_org_hor[np.abs(slope_lines_org_hor)<1.2]
slope_mean_hor=np.mean(slope_lines_org_hor)
args_ver=args[slope_lines==1]
y_min_main_ver=y_min_main[slope_lines==1]
y_max_main_ver=y_max_main[slope_lines==1]
x_min_main_ver=x_min_main[slope_lines==1]
x_max_main_ver=x_max_main[slope_lines==1]
cx_main_ver=cx_main[slope_lines==1]
dist_y_ver=y_max_main_ver-y_min_main_ver
len_y=seperators_closeup.shape[0]/3.0
print(matrix_of_lines_ch[:,8][matrix_of_lines_ch[:,9]==0],'khatlarrrr')
args_main_spliters=matrix_of_lines_ch[:,0][ (matrix_of_lines_ch[:,9]==0) & ((matrix_of_lines_ch[:,8]<=290)) & ((matrix_of_lines_ch[:,2]<=.16*region_pre_p.shape[1])) & ((matrix_of_lines_ch[:,3]>=.84*region_pre_p.shape[1]))]
cy_main_spliters=matrix_of_lines_ch[:,5][ (matrix_of_lines_ch[:,9]==0) & ((matrix_of_lines_ch[:,8]<=290)) & ((matrix_of_lines_ch[:,2]<=.16*region_pre_p.shape[1])) & ((matrix_of_lines_ch[:,3]>=.84*region_pre_p.shape[1]))]
"""
cy_main_spliters = cy_main_hor[(x_min_main_hor <= 0.16 * region_pre_p.shape[1]) & (x_max_main_hor >= 0.84 * region_pre_p.shape[1])]
cy_main_spliters = np.array(list(cy_main_spliters) + list(special_seperators))
if contours_h is not None:
try:
cy_main_spliters_head = cy_main_head[(x_min_main_head <= 0.16 * region_pre_p.shape[1]) & (x_max_main_head >= 0.84 * region_pre_p.shape[1])]
cy_main_spliters = np.array(list(cy_main_spliters) + list(cy_main_spliters_head))
except:
pass
args_cy_spliter = np.argsort(cy_main_spliters)
cy_main_spliters_sort = cy_main_spliters[args_cy_spliter]
spliter_y_new = []
spliter_y_new.append(0)
for i in range(len(cy_main_spliters_sort)):
spliter_y_new.append(cy_main_spliters_sort[i])
spliter_y_new.append(region_pre_p.shape[0])
spliter_y_new_diff = np.diff(spliter_y_new) / float(region_pre_p.shape[0]) * 100
args_big_parts = np.array(range(len(spliter_y_new_diff)))[spliter_y_new_diff > 22]
regions_without_seperators = return_regions_without_seperators(region_pre_p)
##print(args_big_parts,'args_big_parts')
# image_page_otsu=otsu_copy(image_page_deskewd)
# print(np.unique(image_page_otsu[:,:,0]))
# image_page_background_zero=self.image_change_background_pixels_to_zero(image_page_otsu)
length_y_threshold = regions_without_seperators.shape[0] / 4.0
num_col_fin = 0
peaks_neg_fin_fin = []
for iteils in args_big_parts:
regions_without_seperators_teil = regions_without_seperators[int(spliter_y_new[iteils]) : int(spliter_y_new[iteils + 1]), :, 0]
# image_page_background_zero_teil=image_page_background_zero[int(spliter_y_new[iteils]):int(spliter_y_new[iteils+1]),:]
# print(regions_without_seperators_teil.shape)
##plt.imshow(regions_without_seperators_teil)
##plt.show()
# num_col, peaks_neg_fin=find_num_col(regions_without_seperators_teil,multiplier=6.0)
# regions_without_seperators_teil=cv2.erode(regions_without_seperators_teil,kernel,iterations = 3)
#
num_col, peaks_neg_fin = find_num_col(regions_without_seperators_teil, multiplier=7.0)
if num_col > num_col_fin:
num_col_fin = num_col
peaks_neg_fin_fin = peaks_neg_fin
"""
#print(length_y_vertical_lines,length_y_threshold,'x_center_of_ver_linesx_center_of_ver_linesx_center_of_ver_lines')
if len(cx_main_ver)>0 and len( dist_y_ver[dist_y_ver>=length_y_threshold] ) >=1:
num_col, peaks_neg_fin=find_num_col(regions_without_seperators_teil,multiplier=6.0)
else:
#plt.imshow(image_page_background_zero_teil)
#plt.show()
#num_col, peaks_neg_fin=find_num_col_only_image(image_page_background_zero,multiplier=2.4)#2.3)
num_col, peaks_neg_fin=find_num_col_only_image(image_page_background_zero_teil,multiplier=3.4)#2.3)
print(num_col,'birda')
if num_col>0:
pass
elif num_col==0:
print(num_col,'birda2222')
num_col_regions, peaks_neg_fin_regions=find_num_col(regions_without_seperators_teil,multiplier=10.0)
if num_col_regions==0:
pass
else:
num_col=num_col_regions
peaks_neg_fin=peaks_neg_fin_regions[:]
"""
# print(num_col+1,'num colmsssssssss')
if len(args_big_parts) == 1 and (len(peaks_neg_fin_fin) + 1) < num_col_classifier:
peaks_neg_fin = find_num_col_by_vertical_lines(vertical)
peaks_neg_fin = peaks_neg_fin[peaks_neg_fin >= 500]
peaks_neg_fin = peaks_neg_fin[peaks_neg_fin <= (vertical.shape[1] - 500)]
peaks_neg_fin_fin = peaks_neg_fin[:]
# print(peaks_neg_fin_fin,'peaks_neg_fin_fintaza')
return num_col_fin, peaks_neg_fin_fin, matrix_of_lines_ch, spliter_y_new, seperators_closeup_n
def return_boxes_of_images_by_order_of_reading_new(spliter_y_new, regions_without_seperators, matrix_of_lines_ch):
boxes = []
# here I go through main spliters and i do check whether a vertical seperator there is. If so i am searching for \
# holes in the text and also finding spliter which covers more than one columns.
for i in range(len(spliter_y_new) - 1):
# print(spliter_y_new[i],spliter_y_new[i+1])
matrix_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 6] > spliter_y_new[i]) & (matrix_of_lines_ch[:, 7] < spliter_y_new[i + 1])]
# print(len( matrix_new[:,9][matrix_new[:,9]==1] ))
# print(matrix_new[:,8][matrix_new[:,9]==1],'gaddaaa')
# check to see is there any vertical seperator to find holes.
if 1 > 0: # len( matrix_new[:,9][matrix_new[:,9]==1] )>0 and np.max(matrix_new[:,8][matrix_new[:,9]==1])>=0.1*(np.abs(spliter_y_new[i+1]-spliter_y_new[i] )):
# org_img_dichte=-gaussian_filter1d(( image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,0]/255.).sum(axis=0) ,30)
# org_img_dichte=org_img_dichte-np.min(org_img_dichte)
##plt.figure(figsize=(20,20))
##plt.plot(org_img_dichte)
##plt.show()
###find_num_col_both_layout_and_org(regions_without_seperators,image_page[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:,:],7.)
# print(int(spliter_y_new[i]),int(spliter_y_new[i+1]),'firssst')
# plt.imshow(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:])
# plt.show()
try:
num_col, peaks_neg_fin = find_num_col(regions_without_seperators[int(spliter_y_new[i]) : int(spliter_y_new[i + 1]), :], multiplier=7.0)
except:
peaks_neg_fin = []
# print(peaks_neg_fin,'peaks_neg_fin')
# num_col, peaks_neg_fin=find_num_col(regions_without_seperators[int(spliter_y_new[i]):int(spliter_y_new[i+1]),:],multiplier=7.0)
x_min_hor_some = matrix_new[:, 2][(matrix_new[:, 9] == 0)]
x_max_hor_some = matrix_new[:, 3][(matrix_new[:, 9] == 0)]
cy_hor_some = matrix_new[:, 5][(matrix_new[:, 9] == 0)]
arg_org_hor_some = matrix_new[:, 0][(matrix_new[:, 9] == 0)]
peaks_neg_tot = return_points_with_boundies(peaks_neg_fin, 0, regions_without_seperators[:, :].shape[1])
start_index_of_hor, newest_peaks, arg_min_hor_sort, lines_length_dels, lines_indexes_deleted = return_hor_spliter_by_index_for_without_verticals(peaks_neg_tot, x_min_hor_some, x_max_hor_some)
arg_org_hor_some_sort = arg_org_hor_some[arg_min_hor_sort]
start_index_of_hor_with_subset = [start_index_of_hor[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0] # start_index_of_hor[lines_length_dels>0]
arg_min_hor_sort_with_subset = [arg_min_hor_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
lines_indexes_deleted_with_subset = [lines_indexes_deleted[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
lines_length_dels_with_subset = [lines_length_dels[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
arg_org_hor_some_sort_subset = [arg_org_hor_some_sort[vij] for vij in range(len(start_index_of_hor)) if lines_length_dels[vij] > 0]
# arg_min_hor_sort_with_subset=arg_min_hor_sort[lines_length_dels>0]
# lines_indexes_deleted_with_subset=lines_indexes_deleted[lines_length_dels>0]
# lines_length_dels_with_subset=lines_length_dels[lines_length_dels>0]
vahid_subset = np.zeros((len(start_index_of_hor_with_subset), len(start_index_of_hor_with_subset))) - 1
for kkk1 in range(len(start_index_of_hor_with_subset)):
index_del_sub = np.unique(lines_indexes_deleted_with_subset[kkk1])
for kkk2 in range(len(start_index_of_hor_with_subset)):
if set(lines_indexes_deleted_with_subset[kkk2][0]) < set(lines_indexes_deleted_with_subset[kkk1][0]):
vahid_subset[kkk1, kkk2] = kkk1
else:
pass
# print(set(lines_indexes_deleted[kkk2][0]), set(lines_indexes_deleted[kkk1][0]))
# check the len of matrix if it has no length means that there is no spliter at all
if len(vahid_subset > 0):
# print('hihoo')
# find parenets args
line_int = np.zeros(vahid_subset.shape[0])
childs_id = []
arg_child = []
for li in range(vahid_subset.shape[0]):
# print(vahid_subset[:,li])
if np.all(vahid_subset[:, li] == -1):
line_int[li] = -1
else:
line_int[li] = 1
# childs_args_in=[ idd for idd in range(vahid_subset.shape[0]) if vahid_subset[idd,li]!=-1]
# helpi=[]
# for nad in range(len(childs_args_in)):
# helpi.append(arg_min_hor_sort_with_subset[childs_args_in[nad]])
arg_child.append(arg_min_hor_sort_with_subset[li])
# line_int=vahid_subset[0,:]
arg_parent = [arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
start_index_of_hor_parent = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] == -1]
# arg_parent=[lines_indexes_deleted_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
# arg_parent=[lines_length_dels_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]==-1]
# arg_child=[arg_min_hor_sort_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij]!=-1]
start_index_of_hor_child = [start_index_of_hor_with_subset[vij] for vij in range(len(arg_min_hor_sort_with_subset)) if line_int[vij] != -1]
cy_hor_some_sort = cy_hor_some[arg_parent]
# print(start_index_of_hor, lines_length_dels ,lines_indexes_deleted,'zartt')
# args_indexes=np.array(range(len(start_index_of_hor) ))
newest_y_spliter_tot = []
for tj in range(len(newest_peaks) - 1):
newest_y_spliter = []
newest_y_spliter.append(spliter_y_new[i])
if tj in np.unique(start_index_of_hor_parent):
# print(cy_hor_some_sort)
cy_help = np.array(cy_hor_some_sort)[np.array(start_index_of_hor_parent) == tj]
cy_help_sort = np.sort(cy_help)
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
for mj in range(len(cy_help_sort)):
newest_y_spliter.append(cy_help_sort[mj])
newest_y_spliter.append(spliter_y_new[i + 1])
newest_y_spliter_tot.append(newest_y_spliter)
else:
line_int = []
newest_y_spliter_tot = []
for tj in range(len(newest_peaks) - 1):
newest_y_spliter = []
newest_y_spliter.append(spliter_y_new[i])
newest_y_spliter.append(spliter_y_new[i + 1])
newest_y_spliter_tot.append(newest_y_spliter)
# if line_int is all -1 means that big spliters have no child and we can easily go through
if np.all(np.array(line_int) == -1):
for j in range(len(newest_peaks) - 1):
newest_y_spliter = newest_y_spliter_tot[j]
for n in range(len(newest_y_spliter) - 1):
# print(j,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'maaaa')
##plt.imshow(regions_without_seperators[int(newest_y_spliter[n]):int(newest_y_spliter[n+1]),newest_peaks[j]:newest_peaks[j+1]])
##plt.show()
# print(matrix_new[:,0][ (matrix_new[:,9]==1 )])
for jvt in matrix_new[:, 0][(matrix_new[:, 9] == 1) & (matrix_new[:, 6] > newest_y_spliter[n]) & (matrix_new[:, 7] < newest_y_spliter[n + 1]) & ((matrix_new[:, 1]) < newest_peaks[j + 1]) & ((matrix_new[:, 1]) > newest_peaks[j])]:
pass
###plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
# print( int(newest_y_spliter[n]),int(newest_y_spliter[n+1]),newest_peaks[j],newest_peaks[j+1] )
try:
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=7.0)
except:
peaks_neg_fin_sub = []
else:
peaks_neg_fin_sub = []
peaks_sub = []
peaks_sub.append(newest_peaks[j])
for kj in range(len(peaks_neg_fin_sub)):
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
peaks_sub.append(newest_peaks[j + 1])
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
for kh in range(len(peaks_sub) - 1):
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
else:
for j in range(len(newest_peaks) - 1):
newest_y_spliter = newest_y_spliter_tot[j]
if j in start_index_of_hor_parent:
x_min_ch = x_min_hor_some[arg_child]
x_max_ch = x_max_hor_some[arg_child]
cy_hor_some_sort_child = cy_hor_some[arg_child]
cy_hor_some_sort_child = np.sort(cy_hor_some_sort_child)
for n in range(len(newest_y_spliter) - 1):
cy_child_in = cy_hor_some_sort_child[(cy_hor_some_sort_child > newest_y_spliter[n]) & (cy_hor_some_sort_child < newest_y_spliter[n + 1])]
if len(cy_child_in) > 0:
try:
num_col_ch, peaks_neg_ch = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=7.0)
except:
peaks_neg_ch = []
# print(peaks_neg_ch,'mizzzz')
# peaks_neg_ch=[]
# for djh in range(len(peaks_neg_ch)):
# peaks_neg_ch.append( peaks_neg_ch[djh]+newest_peaks[j] )
peaks_neg_ch_tot = return_points_with_boundies(peaks_neg_ch, newest_peaks[j], newest_peaks[j + 1])
ss_in_ch, nst_p_ch, arg_n_ch, lines_l_del_ch, lines_in_del_ch = return_hor_spliter_by_index_for_without_verticals(peaks_neg_ch_tot, x_min_ch, x_max_ch)
newest_y_spliter_ch_tot = []
for tjj in range(len(nst_p_ch) - 1):
newest_y_spliter_new = []
newest_y_spliter_new.append(newest_y_spliter[n])
if tjj in np.unique(ss_in_ch):
# print(tj,cy_hor_some_sort,start_index_of_hor,cy_help,'maashhaha')
for mjj in range(len(cy_child_in)):
newest_y_spliter_new.append(cy_child_in[mjj])
newest_y_spliter_new.append(newest_y_spliter[n + 1])
newest_y_spliter_ch_tot.append(newest_y_spliter_new)
for jn in range(len(nst_p_ch) - 1):
newest_y_spliter_h = newest_y_spliter_ch_tot[jn]
for nd in range(len(newest_y_spliter_h) - 1):
matrix_new_new2 = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter_h[nd]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter_h[nd + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < nst_p_ch[jn + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > nst_p_ch[jn])]
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
if 1 > 0: # len( matrix_new_new2[:,9][matrix_new_new2[:,9]==1] )>0 and np.max(matrix_new_new2[:,8][matrix_new_new2[:,9]==1])>=0.2*(np.abs(newest_y_spliter_h[nd+1]-newest_y_spliter_h[nd] )):
try:
num_col_sub_ch, peaks_neg_fin_sub_ch = find_num_col(regions_without_seperators[int(newest_y_spliter_h[nd]) : int(newest_y_spliter_h[nd + 1]), nst_p_ch[jn] : nst_p_ch[jn + 1]], multiplier=7.0)
except:
peaks_neg_fin_sub_ch = []
else:
peaks_neg_fin_sub_ch = []
peaks_sub_ch = []
peaks_sub_ch.append(nst_p_ch[jn])
for kjj in range(len(peaks_neg_fin_sub_ch)):
peaks_sub_ch.append(peaks_neg_fin_sub_ch[kjj] + nst_p_ch[jn])
peaks_sub_ch.append(nst_p_ch[jn + 1])
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
for khh in range(len(peaks_sub_ch) - 1):
boxes.append([peaks_sub_ch[khh], peaks_sub_ch[khh + 1], newest_y_spliter_h[nd], newest_y_spliter_h[nd + 1]])
else:
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
try:
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=7.0)
except:
peaks_neg_fin_sub = []
else:
peaks_neg_fin_sub = []
peaks_sub = []
peaks_sub.append(newest_peaks[j])
for kj in range(len(peaks_neg_fin_sub)):
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
peaks_sub.append(newest_peaks[j + 1])
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
for kh in range(len(peaks_sub) - 1):
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
else:
for n in range(len(newest_y_spliter) - 1):
# plot_contour(regions_without_seperators.shape[0],regions_without_seperators.shape[1], contours_lines[int(jvt)])
# print(matrix_of_lines_ch[matrix_of_lines_ch[:,9]==1])
matrix_new_new = matrix_of_lines_ch[:, :][(matrix_of_lines_ch[:, 9] == 1) & (matrix_of_lines_ch[:, 6] > newest_y_spliter[n]) & (matrix_of_lines_ch[:, 7] < newest_y_spliter[n + 1]) & ((matrix_of_lines_ch[:, 1] + 500) < newest_peaks[j + 1]) & ((matrix_of_lines_ch[:, 1] - 500) > newest_peaks[j])]
# print(matrix_new_new,newest_y_spliter[n],newest_y_spliter[n+1],newest_peaks[j],newest_peaks[j+1],'gada')
if 1 > 0: # len( matrix_new_new[:,9][matrix_new_new[:,9]==1] )>0 and np.max(matrix_new_new[:,8][matrix_new_new[:,9]==1])>=0.2*(np.abs(newest_y_spliter[n+1]-newest_y_spliter[n] )):
try:
num_col_sub, peaks_neg_fin_sub = find_num_col(regions_without_seperators[int(newest_y_spliter[n]) : int(newest_y_spliter[n + 1]), newest_peaks[j] : newest_peaks[j + 1]], multiplier=5.0)
except:
peaks_neg_fin_sub = []
else:
peaks_neg_fin_sub = []
peaks_sub = []
peaks_sub.append(newest_peaks[j])
for kj in range(len(peaks_neg_fin_sub)):
peaks_sub.append(peaks_neg_fin_sub[kj] + newest_peaks[j])
peaks_sub.append(newest_peaks[j + 1])
# peaks_sub=return_points_with_boundies(peaks_neg_fin_sub+newest_peaks[j],newest_peaks[j], newest_peaks[j+1])
for kh in range(len(peaks_sub) - 1):
boxes.append([peaks_sub[kh], peaks_sub[kh + 1], newest_y_spliter[n], newest_y_spliter[n + 1]])
else:
boxes.append([0, regions_without_seperators[:, :].shape[1], spliter_y_new[i], spliter_y_new[i + 1]])
return boxes