mirror of
				https://github.com/qurator-spk/eynollah.git
				synced 2025-11-04 11:44:15 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			370 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			370 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
Unused methods from eynollah
 | 
						|
"""
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from shapely import geometry
 | 
						|
import cv2
 | 
						|
 | 
						|
def color_images_diva(seg, n_classes):
 | 
						|
    """
 | 
						|
    XXX unused
 | 
						|
    """
 | 
						|
    ann_u = range(n_classes)
 | 
						|
    if len(np.shape(seg)) == 3:
 | 
						|
        seg = seg[:, :, 0]
 | 
						|
 | 
						|
    seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(float)
 | 
						|
    # colors=sns.color_palette("hls", n_classes)
 | 
						|
    colors = [[1, 0, 0], [8, 0, 0], [2, 0, 0], [4, 0, 0]]
 | 
						|
 | 
						|
    for c in ann_u:
 | 
						|
        c = int(c)
 | 
						|
        segl = seg == c
 | 
						|
        seg_img[:, :, 0][seg == c] = colors[c][0]  # segl*(colors[c][0])
 | 
						|
        seg_img[:, :, 1][seg == c] = colors[c][1]  # seg_img[:,:,1]=segl*(colors[c][1])
 | 
						|
        seg_img[:, :, 2][seg == c] = colors[c][2]  # seg_img[:,:,2]=segl*(colors[c][2])
 | 
						|
    return seg_img
 | 
						|
 | 
						|
def find_polygons_size_filter(contours, median_area, scaler_up=1.2, scaler_down=0.8):
 | 
						|
    """
 | 
						|
    XXX unused
 | 
						|
    """
 | 
						|
    found_polygons_early = list()
 | 
						|
 | 
						|
    for c in contours:
 | 
						|
        if len(c) < 3:  # A polygon cannot have less than 3 points
 | 
						|
            continue
 | 
						|
 | 
						|
        polygon = geometry.Polygon([point[0] for point in c])
 | 
						|
        area = polygon.area
 | 
						|
        # Check that polygon has area greater than minimal area
 | 
						|
        if area >= median_area * scaler_down and area <= median_area * scaler_up:
 | 
						|
            found_polygons_early.append(np.array([point for point in polygon.exterior.coords], dtype=np.uint))
 | 
						|
    return found_polygons_early
 | 
						|
 | 
						|
def resize_ann(seg_in, input_height, input_width):
 | 
						|
    """
 | 
						|
    XXX unused
 | 
						|
    """
 | 
						|
    return cv2.resize(seg_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
 | 
						|
 | 
						|
def get_one_hot(seg, input_height, input_width, n_classes):
 | 
						|
    seg = seg[:, :, 0]
 | 
						|
    seg_f = np.zeros((input_height, input_width, n_classes))
 | 
						|
    for j in range(n_classes):
 | 
						|
        seg_f[:, :, j] = (seg == j).astype(int)
 | 
						|
    return seg_f
 | 
						|
 | 
						|
def color_images(seg, n_classes):
 | 
						|
    ann_u = range(n_classes)
 | 
						|
    if len(np.shape(seg)) == 3:
 | 
						|
        seg = seg[:, :, 0]
 | 
						|
 | 
						|
    seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(np.uint8)
 | 
						|
    colors = sns.color_palette("hls", n_classes)
 | 
						|
 | 
						|
    for c in ann_u:
 | 
						|
        c = int(c)
 | 
						|
        segl = seg == c
 | 
						|
        seg_img[:, :, 0] = segl * c
 | 
						|
        seg_img[:, :, 1] = segl * c
 | 
						|
        seg_img[:, :, 2] = segl * c
 | 
						|
    return seg_img
 | 
						|
 | 
						|
def cleaning_probs(probs: np.ndarray, sigma: float) -> np.ndarray:
 | 
						|
    # Smooth
 | 
						|
    if sigma > 0.0:
 | 
						|
        return cv2.GaussianBlur(probs, (int(3 * sigma) * 2 + 1, int(3 * sigma) * 2 + 1), sigma)
 | 
						|
    elif sigma == 0.0:
 | 
						|
        return cv2.fastNlMeansDenoising((probs * 255).astype(np.uint8), h=20) / 255
 | 
						|
    else:  # Negative sigma, do not do anything
 | 
						|
        return probs
 | 
						|
 | 
						|
 | 
						|
def early_deskewing_slope_calculation_based_on_lines(region_pre_p):
 | 
						|
    # lines are labels by 6 in this model
 | 
						|
    seperators_closeup = ((region_pre_p[:, :, :] == 6)) * 1
 | 
						|
 | 
						|
    seperators_closeup = seperators_closeup.astype(np.uint8)
 | 
						|
    imgray = cv2.cvtColor(seperators_closeup, cv2.COLOR_BGR2GRAY)
 | 
						|
    ret, thresh = cv2.threshold(imgray, 0, 255, 0)
 | 
						|
 | 
						|
    contours_lines, hierachy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
    slope_lines, dist_x, x_min_main, x_max_main, cy_main, slope_lines_org, y_min_main, y_max_main, cx_main = find_features_of_lines(contours_lines)
 | 
						|
 | 
						|
    slope_lines_org_hor = slope_lines_org[slope_lines == 0]
 | 
						|
    args = np.array(range(len(slope_lines)))
 | 
						|
    len_x = seperators_closeup.shape[1] / 4.0
 | 
						|
 | 
						|
    args_hor = args[slope_lines == 0]
 | 
						|
    dist_x_hor = dist_x[slope_lines == 0]
 | 
						|
    x_min_main_hor = x_min_main[slope_lines == 0]
 | 
						|
    x_max_main_hor = x_max_main[slope_lines == 0]
 | 
						|
    cy_main_hor = cy_main[slope_lines == 0]
 | 
						|
 | 
						|
    args_hor = args_hor[dist_x_hor >= len_x / 2.0]
 | 
						|
    x_max_main_hor = x_max_main_hor[dist_x_hor >= len_x / 2.0]
 | 
						|
    x_min_main_hor = x_min_main_hor[dist_x_hor >= len_x / 2.0]
 | 
						|
    cy_main_hor = cy_main_hor[dist_x_hor >= len_x / 2.0]
 | 
						|
    slope_lines_org_hor = slope_lines_org_hor[dist_x_hor >= len_x / 2.0]
 | 
						|
 | 
						|
    slope_lines_org_hor = slope_lines_org_hor[np.abs(slope_lines_org_hor) < 1.2]
 | 
						|
    slope_mean_hor = np.mean(slope_lines_org_hor)
 | 
						|
 | 
						|
    if np.abs(slope_mean_hor) > 1.2:
 | 
						|
        slope_mean_hor = 0
 | 
						|
 | 
						|
    # deskewed_new=rotate_image(image_regions_eraly_p[:,:,:],slope_mean_hor)
 | 
						|
 | 
						|
    args_ver = args[slope_lines == 1]
 | 
						|
    y_min_main_ver = y_min_main[slope_lines == 1]
 | 
						|
    y_max_main_ver = y_max_main[slope_lines == 1]
 | 
						|
    x_min_main_ver = x_min_main[slope_lines == 1]
 | 
						|
    x_max_main_ver = x_max_main[slope_lines == 1]
 | 
						|
    cx_main_ver = cx_main[slope_lines == 1]
 | 
						|
    dist_y_ver = y_max_main_ver - y_min_main_ver
 | 
						|
    len_y = seperators_closeup.shape[0] / 3.0
 | 
						|
 | 
						|
    return slope_mean_hor, cx_main_ver, dist_y_ver
 | 
						|
 | 
						|
def boosting_text_only_regions_by_header(textregion_pre_np, img_only_text):
 | 
						|
    result = ((img_only_text[:, :] == 1) | (textregion_pre_np[:, :, 0] == 2)) * 1
 | 
						|
    return result
 | 
						|
 | 
						|
def return_rotated_contours(slope, img_patch):
 | 
						|
    dst = rotate_image(img_patch, slope)
 | 
						|
    dst = dst.astype(np.uint8)
 | 
						|
    dst = dst[:, :, 0]
 | 
						|
    dst[dst != 0] = 1
 | 
						|
 | 
						|
    imgray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
 | 
						|
    _, thresh = cv2.threshold(imgray, 0, 255, 0)
 | 
						|
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
 | 
						|
    thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
 | 
						|
    contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
    return contours
 | 
						|
 | 
						|
def get_textlines_for_each_textregions(self, textline_mask_tot, boxes):
 | 
						|
    textline_mask_tot = cv2.erode(textline_mask_tot, self.kernel, iterations=1)
 | 
						|
    self.area_of_cropped = []
 | 
						|
    self.all_text_region_raw = []
 | 
						|
    for jk in range(len(boxes)):
 | 
						|
        crop_img, crop_coor = crop_image_inside_box(boxes[jk], np.repeat(textline_mask_tot[:, :, np.newaxis], 3, axis=2))
 | 
						|
        crop_img = crop_img.astype(np.uint8)
 | 
						|
        self.all_text_region_raw.append(crop_img[:, :, 0])
 | 
						|
        self.area_of_cropped.append(crop_img.shape[0] * crop_img.shape[1])
 | 
						|
 | 
						|
def deskew_region_prediction(regions_prediction, slope):
 | 
						|
    image_regions_deskewd = np.zeros(regions_prediction[:, :].shape)
 | 
						|
    for ind in np.unique(regions_prediction[:, :]):
 | 
						|
        interest_reg = (regions_prediction[:, :] == ind) * 1
 | 
						|
        interest_reg = interest_reg.astype(np.uint8)
 | 
						|
        deskewed_new = rotate_image(interest_reg, slope)
 | 
						|
        deskewed_new = deskewed_new[:, :]
 | 
						|
        deskewed_new[deskewed_new != 0] = ind
 | 
						|
 | 
						|
        image_regions_deskewd = image_regions_deskewd + deskewed_new
 | 
						|
    return image_regions_deskewd
 | 
						|
 | 
						|
def deskew_erarly(textline_mask):
 | 
						|
    textline_mask_org = np.copy(textline_mask)
 | 
						|
    # print(textline_mask.shape,np.unique(textline_mask),'hizzzzz')
 | 
						|
    # slope_new=0#deskew_images(img_patch)
 | 
						|
 | 
						|
    textline_mask = np.repeat(textline_mask[:, :, np.newaxis], 3, axis=2) * 255
 | 
						|
 | 
						|
    textline_mask = textline_mask.astype(np.uint8)
 | 
						|
    kernel = np.ones((5, 5), np.uint8)
 | 
						|
 | 
						|
    imgray = cv2.cvtColor(textline_mask, cv2.COLOR_BGR2GRAY)
 | 
						|
 | 
						|
    ret, thresh = cv2.threshold(imgray, 0, 255, 0)
 | 
						|
 | 
						|
    contours, hirarchy = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
 | 
						|
    # print(hirarchy)
 | 
						|
 | 
						|
    commenst_contours = filter_contours_area_of_image(thresh, contours, hirarchy, max_area=0.01, min_area=0.003)
 | 
						|
    main_contours = filter_contours_area_of_image(thresh, contours, hirarchy, max_area=1, min_area=0.003)
 | 
						|
    interior_contours = filter_contours_area_of_image_interiors(thresh, contours, hirarchy, max_area=1, min_area=0)
 | 
						|
 | 
						|
    img_comm = np.zeros(thresh.shape)
 | 
						|
    img_comm_in = cv2.fillPoly(img_comm, pts=main_contours, color=(255, 255, 255))
 | 
						|
    ###img_comm_in=cv2.fillPoly(img_comm, pts =interior_contours, color=(0,0,0))
 | 
						|
 | 
						|
    img_comm_in = np.repeat(img_comm_in[:, :, np.newaxis], 3, axis=2)
 | 
						|
    img_comm_in = img_comm_in.astype(np.uint8)
 | 
						|
 | 
						|
    imgray = cv2.cvtColor(img_comm_in, cv2.COLOR_BGR2GRAY)
 | 
						|
    ##imgray = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
 | 
						|
 | 
						|
    ##mask = cv2.inRange(imgray, lower_blue, upper_blue)
 | 
						|
    ret, thresh = cv2.threshold(imgray, 0, 255, 0)
 | 
						|
    # print(np.unique(mask))
 | 
						|
    ##ret, thresh = cv2.threshold(imgray, 0, 255, 0)
 | 
						|
 | 
						|
    ##plt.imshow(thresh)
 | 
						|
    ##plt.show()
 | 
						|
 | 
						|
    contours, hirarchy = cv2.findContours(thresh.copy(), cv2.cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
 | 
						|
 | 
						|
    areas = [cv2.contourArea(contours[jj]) for jj in range(len(contours))]
 | 
						|
 | 
						|
    median_area = np.mean(areas)
 | 
						|
    contours_slope = contours  # self.find_polugons_size_filter(contours,median_area=median_area,scaler_up=100,scaler_down=0.5)
 | 
						|
 | 
						|
    if len(contours_slope) > 0:
 | 
						|
        for jv in range(len(contours_slope)):
 | 
						|
            new_poly = list(contours_slope[jv])
 | 
						|
            if jv == 0:
 | 
						|
                merged_all = new_poly
 | 
						|
            else:
 | 
						|
                merged_all = merged_all + new_poly
 | 
						|
 | 
						|
        merge = np.array(merged_all)
 | 
						|
 | 
						|
        img_in = np.zeros(textline_mask.shape)
 | 
						|
        img_p_in = cv2.fillPoly(img_in, pts=[merge], color=(255, 255, 255))
 | 
						|
 | 
						|
        ##plt.imshow(img_p_in)
 | 
						|
        ##plt.show()
 | 
						|
 | 
						|
        rect = cv2.minAreaRect(merge)
 | 
						|
 | 
						|
        box = cv2.boxPoints(rect)
 | 
						|
 | 
						|
        box = np.int0(box)
 | 
						|
 | 
						|
        indexes = [0, 1, 2, 3]
 | 
						|
        x_list = box[:, 0]
 | 
						|
        y_list = box[:, 1]
 | 
						|
 | 
						|
        index_y_sort = np.argsort(y_list)
 | 
						|
 | 
						|
        index_upper_left = index_y_sort[np.argmin(x_list[index_y_sort[0:2]])]
 | 
						|
        index_upper_right = index_y_sort[np.argmax(x_list[index_y_sort[0:2]])]
 | 
						|
 | 
						|
        index_lower_left = index_y_sort[np.argmin(x_list[index_y_sort[2:]]) + 2]
 | 
						|
        index_lower_right = index_y_sort[np.argmax(x_list[index_y_sort[2:]]) + 2]
 | 
						|
 | 
						|
        alpha1 = float(box[index_upper_right][1] - box[index_upper_left][1]) / (float(box[index_upper_right][0] - box[index_upper_left][0]))
 | 
						|
        alpha2 = float(box[index_lower_right][1] - box[index_lower_left][1]) / (float(box[index_lower_right][0] - box[index_lower_left][0]))
 | 
						|
 | 
						|
        slope_true = (alpha1 + alpha2) / 2.0
 | 
						|
 | 
						|
        # slope=0#slope_true/np.pi*180
 | 
						|
 | 
						|
        # if abs(slope)>=1:
 | 
						|
        # slope=0
 | 
						|
 | 
						|
        # dst=rotate_image(textline_mask,slope_true)
 | 
						|
        # dst=dst[:,:,0]
 | 
						|
        # dst[dst!=0]=1
 | 
						|
    image_regions_deskewd = np.zeros(textline_mask_org[:, :].shape)
 | 
						|
    for ind in np.unique(textline_mask_org[:, :]):
 | 
						|
        interest_reg = (textline_mask_org[:, :] == ind) * 1
 | 
						|
        interest_reg = interest_reg.astype(np.uint8)
 | 
						|
        deskewed_new = rotate_image(interest_reg, slope_true)
 | 
						|
        deskewed_new = deskewed_new[:, :]
 | 
						|
        deskewed_new[deskewed_new != 0] = ind
 | 
						|
 | 
						|
        image_regions_deskewd = image_regions_deskewd + deskewed_new
 | 
						|
    return image_regions_deskewd, slope_true
 | 
						|
 | 
						|
def get_all_image_patches_coordination(self, image_page):
 | 
						|
    self.all_box_coord = []
 | 
						|
    for jk in range(len(self.boxes)):
 | 
						|
        _, crop_coor = crop_image_inside_box(self.boxes[jk], image_page)
 | 
						|
        self.all_box_coord.append(crop_coor)
 | 
						|
 | 
						|
def find_num_col_olddd(self, regions_without_seperators, sigma_, multiplier=3.8):
 | 
						|
    regions_without_seperators_0 = regions_without_seperators[:, :].sum(axis=1)
 | 
						|
 | 
						|
    meda_n_updown = regions_without_seperators_0[len(regions_without_seperators_0) :: -1]
 | 
						|
 | 
						|
    first_nonzero = next((i for i, x in enumerate(regions_without_seperators_0) if x), 0)
 | 
						|
    last_nonzero = next((i for i, x in enumerate(meda_n_updown) if x), 0)
 | 
						|
 | 
						|
    last_nonzero = len(regions_without_seperators_0) - last_nonzero
 | 
						|
 | 
						|
    y = regions_without_seperators_0  # [first_nonzero:last_nonzero]
 | 
						|
 | 
						|
    y_help = np.zeros(len(y) + 20)
 | 
						|
 | 
						|
    y_help[10 : len(y) + 10] = y
 | 
						|
 | 
						|
    x = np.array(range(len(y)))
 | 
						|
 | 
						|
    zneg_rev = -y_help + np.max(y_help)
 | 
						|
 | 
						|
    zneg = np.zeros(len(zneg_rev) + 20)
 | 
						|
 | 
						|
    zneg[10 : len(zneg_rev) + 10] = zneg_rev
 | 
						|
 | 
						|
    z = gaussian_filter1d(y, sigma_)
 | 
						|
    zneg = gaussian_filter1d(zneg, sigma_)
 | 
						|
 | 
						|
    peaks_neg, _ = find_peaks(zneg, height=0)
 | 
						|
    peaks, _ = find_peaks(z, height=0)
 | 
						|
 | 
						|
    peaks_neg = peaks_neg - 10 - 10
 | 
						|
 | 
						|
    last_nonzero = last_nonzero - 0  # 100
 | 
						|
    first_nonzero = first_nonzero + 0  # +100
 | 
						|
 | 
						|
    peaks_neg = peaks_neg[(peaks_neg > first_nonzero) & (peaks_neg < last_nonzero)]
 | 
						|
 | 
						|
    peaks = peaks[(peaks > 0.06 * regions_without_seperators.shape[1]) & (peaks < 0.94 * regions_without_seperators.shape[1])]
 | 
						|
 | 
						|
    interest_pos = z[peaks]
 | 
						|
 | 
						|
    interest_pos = interest_pos[interest_pos > 10]
 | 
						|
 | 
						|
    interest_neg = z[peaks_neg]
 | 
						|
 | 
						|
    if interest_neg[0] < 0.1:
 | 
						|
        interest_neg = interest_neg[1:]
 | 
						|
    if interest_neg[len(interest_neg) - 1] < 0.1:
 | 
						|
        interest_neg = interest_neg[: len(interest_neg) - 1]
 | 
						|
 | 
						|
    min_peaks_pos = np.min(interest_pos)
 | 
						|
    min_peaks_neg = 0  # np.min(interest_neg)
 | 
						|
 | 
						|
    dis_talaei = (min_peaks_pos - min_peaks_neg) / multiplier
 | 
						|
    grenze = min_peaks_pos - dis_talaei  # np.mean(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])-np.std(y[peaks_neg[0]:peaks_neg[len(peaks_neg)-1]])/2.0
 | 
						|
 | 
						|
    interest_neg_fin = interest_neg  # [(interest_neg<grenze)]
 | 
						|
    peaks_neg_fin = peaks_neg  # [(interest_neg<grenze)]
 | 
						|
    interest_neg_fin = interest_neg  # [(interest_neg<grenze)]
 | 
						|
 | 
						|
    num_col = (len(interest_neg_fin)) + 1
 | 
						|
 | 
						|
    p_l = 0
 | 
						|
    p_u = len(y) - 1
 | 
						|
    p_m = int(len(y) / 2.0)
 | 
						|
    p_g_l = int(len(y) / 3.0)
 | 
						|
    p_g_u = len(y) - int(len(y) / 3.0)
 | 
						|
 | 
						|
    diff_peaks = np.abs(np.diff(peaks_neg_fin))
 | 
						|
    diff_peaks_annormal = diff_peaks[diff_peaks < 30]
 | 
						|
 | 
						|
    return interest_neg_fin
 | 
						|
 | 
						|
def return_regions_without_seperators_new(self, regions_pre, regions_only_text):
 | 
						|
    kernel = np.ones((5, 5), np.uint8)
 | 
						|
 | 
						|
    regions_without_seperators = ((regions_pre[:, :] != 6) & (regions_pre[:, :] != 0) & (regions_pre[:, :] != 1) & (regions_pre[:, :] != 2)) * 1
 | 
						|
 | 
						|
    # plt.imshow(regions_without_seperators)
 | 
						|
    # plt.show()
 | 
						|
 | 
						|
    regions_without_seperators_n = ((regions_without_seperators[:, :] == 1) | (regions_only_text[:, :] == 1)) * 1
 | 
						|
 | 
						|
    # regions_without_seperators=( (image_regions_eraly_p[:,:,:]!=6) & (image_regions_eraly_p[:,:,:]!=0) & (image_regions_eraly_p[:,:,:]!=5) & (image_regions_eraly_p[:,:,:]!=8) & (image_regions_eraly_p[:,:,:]!=7))*1
 | 
						|
 | 
						|
    regions_without_seperators_n = regions_without_seperators_n.astype(np.uint8)
 | 
						|
 | 
						|
    regions_without_seperators_n = cv2.erode(regions_without_seperators_n, kernel, iterations=6)
 | 
						|
 | 
						|
    return regions_without_seperators_n
 |