You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
84 lines
2.6 KiB
Python
84 lines
2.6 KiB
Python
"""
|
|
Unused methods from eynollah
|
|
"""
|
|
|
|
import numpy as np
|
|
from shapely import geometry
|
|
import cv2
|
|
|
|
def color_images_diva(seg, n_classes):
|
|
"""
|
|
XXX unused
|
|
"""
|
|
ann_u = range(n_classes)
|
|
if len(np.shape(seg)) == 3:
|
|
seg = seg[:, :, 0]
|
|
|
|
seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(float)
|
|
# colors=sns.color_palette("hls", n_classes)
|
|
colors = [[1, 0, 0], [8, 0, 0], [2, 0, 0], [4, 0, 0]]
|
|
|
|
for c in ann_u:
|
|
c = int(c)
|
|
segl = seg == c
|
|
seg_img[:, :, 0][seg == c] = colors[c][0] # segl*(colors[c][0])
|
|
seg_img[:, :, 1][seg == c] = colors[c][1] # seg_img[:,:,1]=segl*(colors[c][1])
|
|
seg_img[:, :, 2][seg == c] = colors[c][2] # seg_img[:,:,2]=segl*(colors[c][2])
|
|
return seg_img
|
|
|
|
def find_polygons_size_filter(contours, median_area, scaler_up=1.2, scaler_down=0.8):
|
|
"""
|
|
XXX unused
|
|
"""
|
|
found_polygons_early = list()
|
|
|
|
for c in contours:
|
|
if len(c) < 3: # A polygon cannot have less than 3 points
|
|
continue
|
|
|
|
polygon = geometry.Polygon([point[0] for point in c])
|
|
area = polygon.area
|
|
# Check that polygon has area greater than minimal area
|
|
if area >= median_area * scaler_down and area <= median_area * scaler_up:
|
|
found_polygons_early.append(np.array([point for point in polygon.exterior.coords], dtype=np.uint))
|
|
return found_polygons_early
|
|
|
|
def resize_ann(seg_in, input_height, input_width):
|
|
"""
|
|
XXX unused
|
|
"""
|
|
return cv2.resize(seg_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
def get_one_hot(seg, input_height, input_width, n_classes):
|
|
seg = seg[:, :, 0]
|
|
seg_f = np.zeros((input_height, input_width, n_classes))
|
|
for j in range(n_classes):
|
|
seg_f[:, :, j] = (seg == j).astype(int)
|
|
return seg_f
|
|
|
|
def color_images(seg, n_classes):
|
|
ann_u = range(n_classes)
|
|
if len(np.shape(seg)) == 3:
|
|
seg = seg[:, :, 0]
|
|
|
|
seg_img = np.zeros((np.shape(seg)[0], np.shape(seg)[1], 3)).astype(np.uint8)
|
|
colors = sns.color_palette("hls", n_classes)
|
|
|
|
for c in ann_u:
|
|
c = int(c)
|
|
segl = seg == c
|
|
seg_img[:, :, 0] = segl * c
|
|
seg_img[:, :, 1] = segl * c
|
|
seg_img[:, :, 2] = segl * c
|
|
return seg_img
|
|
|
|
def cleaning_probs(self, probs: np.ndarray, sigma: float) -> np.ndarray:
|
|
# Smooth
|
|
if sigma > 0.0:
|
|
return cv2.GaussianBlur(probs, (int(3 * sigma) * 2 + 1, int(3 * sigma) * 2 + 1), sigma)
|
|
elif sigma == 0.0:
|
|
return cv2.fastNlMeansDenoising((probs * 255).astype(np.uint8), h=20) / 255
|
|
else: # Negative sigma, do not do anything
|
|
return probs
|
|
|