import re
from pathlib import Path
import pandas as pd
import pytest
from lxml import etree as ET
from ..lib import flatten
from ..mods4pandas import mods_to_dict, process
TESTS_DATA_DIR = Path(__file__).parent / "data"
def dict_fromstring(x):
"""Helper function to parse a MODS XML string to a flattened dict"""
return flatten(mods_to_dict(ET.fromstring(x)))
def test_single_language_languageTerm():
d = dict_fromstring(
"""
lat
ger
"""
)
assert d["language_languageTerm"] == {"ger", "lat"}
def test_multitple_language_languageTerm():
"""
Different languages MAY have multiple mods:language elements.
See MODS-AP 2.3.1
"""
d = dict_fromstring(
"""
lat
ger
"""
)
assert d["language_languageTerm"] == {"ger", "lat"}
def test_role_roleTerm():
d = dict_fromstring(
"""
Wurm, Mary
Mary
078789583
Wurm
cmp
"""
)
assert d["name0_role_roleTerm"] == {"cmp"}
def test_multiple_role_roleTerm():
"""
Multiple mods:role/mods:roleTerm should be merged into one column.
"""
d = dict_fromstring(
"""
Wurm, Mary
Mary
078789583
Wurm
cmp
aut
"""
)
assert d["name0_role_roleTerm"] == {"cmp", "aut"}
def test_scriptTerm():
"""
Same language using different scripts have one mods:language, with multiple scriptTerms inside.
See MODS-AP 2.3.1.
"""
d = dict_fromstring(
"""
ger
215
217
lat
216
"""
)
assert d["language_scriptTerm"] == {"215", "216", "217"}
def test_recordInfo():
d = dict_fromstring(
"""
PPN610714341
"""
)
assert d["recordInfo_recordIdentifier"] == "PPN610714341"
def test_accessCondition():
d = dict_fromstring(
"""
UNKNOWN
"""
)
assert d["accessCondition-use and reproduction"] == "UNKNOWN"
def test_originInfo_no_event_type():
with pytest.warns(UserWarning) as ws:
d = dict_fromstring(
"""
Berlin
"""
)
assert d == {} # empty
assert len(ws) == 1
assert (
ws[0].message.args[0]
== "Filtered {http://www.loc.gov/mods/v3}originInfo element (has no eventType)"
)
def test_relatedItem():
d = dict_fromstring(
"""
PPN167755803
"""
)
assert d["relatedItem-original_recordInfo_recordIdentifier"] == "PPN167755803"
# mods:relatedItem may also have source="dnb-ppn" recordIdentifiers:
d = dict_fromstring(
"""
1236513355
"""
)
assert d["relatedItem-original_recordInfo_recordIdentifier-dnb-ppn"] == "1236513355"
def test_dtypes(tmp_path):
mets_files = [
p.absolute().as_posix() for p in (TESTS_DATA_DIR / "mets-mods").glob("*.xml")
]
mods_info_df_parquet = (tmp_path / "test_dtypes_mods_info.parquet").as_posix()
page_info_df_parquet = (tmp_path / "test_dtypes_page_info.parquet").as_posix()
process(mets_files, mods_info_df_parquet, page_info_df_parquet)
mods_info_df = pd.read_parquet(mods_info_df_parquet)
page_info_df = pd.read_parquet(page_info_df_parquet)
EXPECTED_TYPES = {
# mods_info
r"mets_file": ("object", ["str"]),
r"titleInfo_title": ("object", ["str"]),
r"titleInfo_subTitle": ("object", ["str", "NoneType"]),
r"titleInfo_partName": ("object", ["str", "NoneType"]),
r"identifier-.*": ("object", ["str", "NoneType"]),
r"location_.*": ("object", ["str", "NoneType"]),
r"name\d+_.*roleTerm": ("object", ["ndarray", "NoneType"]),
r"name\d+_.*": ("object", ["str", "NoneType"]),
r"relatedItem-.*_recordInfo_recordIdentifier": ("object", ["str", "NoneType"]),
r"typeOfResource": ("object", ["str", "NoneType"]),
r"accessCondition-.*": ("object", ["str", "NoneType"]),
r"originInfo-.*": ("object", ["str", "NoneType"]),
r".*-count": ("Int64", None),
r"genre-.*": ("object", ["ndarray", "NoneType"]),
r"subject-.*": ("object", ["ndarray", "NoneType"]),
r"language_.*Term": ("object", ["ndarray", "NoneType"]),
r"classification-.*": ("object", ["ndarray", "NoneType"]),
# page_info
r"fileGrp_.*_file_FLocat_href": ("object", ["str", "NoneType"]),
r"structMap-LOGICAL_TYPE_.*": ("boolean", None),
}
def expected_types(c):
"""Return the expected types for column c."""
for r, types in EXPECTED_TYPES.items():
if re.fullmatch(r, c):
edt = types[0]
einner_types = types[1]
if einner_types:
einner_types = set(einner_types)
return edt, einner_types
return None, None
def check_types(df):
"""Check the types of the DataFrame df."""
for c in df.columns:
dt = df.dtypes[c]
edt, einner_types = expected_types(c)
print(c, dt, edt)
assert edt is not None, f"No expected dtype known for column {c} (got {dt})"
assert dt == edt, f"Unexpected dtype {dt} for column {c} (expected {edt})"
if edt == "object":
inner_types = set(type(v).__name__ for v in df[c])
assert all(
it in einner_types for it in inner_types
), f"Unexpected inner types {inner_types} for column {c} (expected {einner_types})"
check_types(mods_info_df)
check_types(page_info_df)