ocrd-galley =========== [![Build Status](https://travis-ci.com/qurator-spk/ocrd-galley.svg?branch=master)](https://travis-ci.com/qurator-spk/ocrd-galley) A Dockerized test environment for OCR-D processors 🚢 WIP. Given a OCR-D workspace with document images in the OCR-D-IMG file group, the example workflow produces: * Binarized images * Line segmentation * OCR text (using Calamari and Tesseract, both with GT4HistOCR models) * (Given ground truth in OCR-D-GT-PAGE, also an OCR text evaluation report) If you're interested in the exact processors, versions and parameters, please take a look at the [script](my_ocrd_workflow) and possibly the individual Dockerfiles. Goal ---- Provide a **test environment** to produce OCR output for historical prints, using OCR-D, especially [ocrd_calamari](https://github.com/OCR-D/ocrd_calamari) and [sbb_textline_detection](https://github.com/qurator-spk/sbb_textline_detection), including all dependencies in Docker. How to use ---------- **Currently, due to problems with the Travis CI, we do not provide pre-built containers anymore.*** To build the containers yourself using Docker: ~~~ cd ~/devel/ocrd-galley/ ./build ~~~ You can then install the wrappers into a Python venv: ~~~ cd ~/devel/ocrd-galley/wrapper pip install . ~~~ You may then use the script `my_ocrd_workflow` to use your self-built containers on an example workspace: ~~~ # Download an example workspace cd /tmp wget https://qurator-data.de/examples/actevedef_718448162.first-page.zip unzip actevedef_718448162.first-page.zip # Run the workflow on it cd actevedef_718448162.first-page ~/devel/ocrd-galley/my_ocrd_workflow ~~~ ### Viewing results You may then examine the results using [PRImA's PAGE Viewer](https://www.primaresearch.org/tools/PAGEViewer): ~~~ java -jar /path/to/JPageViewer.jar \ --resolve-dir . \ OCR-D-OCR-CALAMARI/OCR-D-OCR-CALAMARI_00000024.xml ~~~ The example workflow also produces OCR evaluation reports using [dinglehopper](https://github.com/qurator-spk/dinglehopper), if ground truth was available: ~~~ firefox OCR-D-OCR-CALAMARI-EVAL/OCR-D-OCR-CALAMARI-EVAL_00000024.html ~~~ ppn2ocr ------- The `ppn2ocr` script produces a workspace and METS file with the best images for a given document in the State Library Berlin (SBB)'s digitized collection. Install it with an up-to-date pip (otherwise this will fail due to [a opencv-python-headless build failure](https://github.com/skvark/opencv-python#frequently-asked-questions)): ~~~ pip install -r ~/devel/ocrd-galley/requirements-ppn2ocr.txt ~~~ The document must be specified by its PPN, for example: ~~~ ~/devel/ocrd-galley/ppn2ocr PPN77164308X cd PPN77164308X ~/devel/ocrd-galley/my_ocrd_workflow -I BEST --skip-validation ~~~ This produces a workspace directory `PPN77164308X` with the OCR results in it; the results are viewable as explained above. ppn2ocr requires properly set up environment variables for the proxy configuration. At SBB, please read `howto/docker-proxy.md` and `howto/proxy-settings-for-shell+python.md` (in qurator's mono-repo). ocrd-workspace-from-images -------------------------- The `ocrd-workspace-from-images` script produces a OCR-D workspace (incl. METS) for the given images. ~~~ ~/devel/ocrd-galley/ocrd-workspace-from-images 0005.png cd workspace-xxxxx # output by the last command ~/devel/ocrd-galley/my_ocrd_workflow ~~~ This produces a workspace from the files and then runs the OCR workflow on it.