You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
Go to file
Gerber, Mike a5b4e06a09 Allow skipping validation 5 years ago
data@dcd3643917 ⬆ Update calamari-models URL + path 5 years ago
ocrd-bugs 🐛 ocrd-bugs: Most/All workspaces in bag files don't validate 5 years ago
xsd Use PAGE 2019 6 years ago
.gitmodules Run Calamari OCR 5 years ago
.travis.yml 👷 Travis: Hopefully fix deploy on tags 5 years ago
Dockerfile ⬆ Update ocrd_olena 5 years ago
README-DEV.md 📝 README-DEV.md 5 years ago
README.md 📝 README: Use the image from Docker Hub 5 years ago
build Travis: Cache Docker builds from previous image 5 years ago
my_ocrd_workflow Allow skipping validation 5 years ago
ocrd_logging.py 🔧 Set up logging level using /etc/ocrd_logging.py instead of "-l" 5 years ago
qurator_data_lib.sh ⬆ Update qurator_data_lib.sh to use a silent curl instead of wget 5 years ago
requirements.txt 🐛 Add tessdata_best Tesseract models again 5 years ago
run Support --input-file-grp/-I command line parameter 5 years ago
run-docker-hub Support --input-file-grp/-I command line parameter 5 years ago

README.md

My OCR-D workflow

Build Status

WIP. Given a OCR-D workspace with document images in the OCR-D-IMG file group, this workflow produces:

  • Binarized images
  • Line segmentation
  • OCR text (using Calamari and Tesseract, both with GT4HistOCR models)
  • (Given ground truth in OCR-D-GT-PAGE, also an OCR text evaluation report)

If you're interested in the exact processors, versions and parameters, please take a look at the script and possibly the Dockerfile and the requirements.

Goal

Provide a test environment to produce OCR output for historical prints, using OCR-D, especially ocrd_calamari and sbb_textline_detection, including all dependencies in Docker.

How to use

It's easiest to use it as a pre-built container. To run the container on an example workspace:

# Download an example workspace
cd /tmp
wget https://qurator-data.de/examples/actevedef_718448162.first-page.zip
unzip actevedef_718448162.first-page.zip

# Run the workflow on it
cd actevedef_718448162.first-page
~/devel/my_ocrd_workflow/run-docker-hub

Build the container yourself

To build the container yourself using Docker:

cd ~/devel/my_ocrd_workflow
./build

You may then use the script run to use your self-built container, analogous to the example above.

Viewing results

You may then examine the results using PRImA's PAGE Viewer:

java -jar /path/to/JPageViewer.jar --resolve-dir . OCR-D-OCR-CALAMARI/OCR-D-OCR-CALAMARI_00000024.xml

The workflow also produces OCR evaluation reports using dinglehopper, if ground truth was available:

firefox OCR-D-OCR-CALAMARI-EVAL/OCR-D-OCR-CALAMARI-EVAL_00000024.html