You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ocrd_calamari/test/test_recognize.py

99 lines
3.3 KiB
Python

import os
import shutil
import subprocess
import urllib.request
from lxml import etree
import pytest
from ocrd.resolver import Resolver
from ocrd_calamari import CalamariRecognize
from .base import assets
METS_KANT = assets.url_of('kant_aufklaerung_1784-page-block-line-word_glyph/data/mets.xml')
WORKSPACE_DIR = '/tmp/test-ocrd-calamari'
CHECKPOINT = os.path.join(os.getcwd(), 'gt4histocr-calamari/*.ckpt.json')
@pytest.fixture
def workspace():
if os.path.exists(WORKSPACE_DIR):
shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR)
resolver = Resolver()
workspace = resolver.workspace_from_url(METS_KANT, dst_dir=WORKSPACE_DIR)
# XXX Work around data bug(?):
# PAGE-XML links to OCR-D-IMG/INPUT_0017.tif, but this is nothing core can download
os.makedirs(os.path.join(WORKSPACE_DIR, 'OCR-D-IMG'))
for f in ['INPUT_0017.tif', 'INPUT_0020.tif']:
urllib.request.urlretrieve(
"https://github.com/OCR-D/assets/raw/master/data/kant_aufklaerung_1784/data/OCR-D-IMG/" + f,
os.path.join(WORKSPACE_DIR, 'OCR-D-IMG', f))
# The binarization options I have are:
#
# a. ocrd_kraken which tries to install cltsm, whose installation is borken on my machine (protobuf)
# b. ocrd_olena which 1. I cannot fully install via pip and 2. whose dependency olena doesn't compile on my
# machine
# c. just fumble with the original files
#
# So I'm going for option c.
for f in ['INPUT_0017.tif', 'INPUT_0020.tif']:
ff = os.path.join(WORKSPACE_DIR, 'OCR-D-IMG', f)
subprocess.call(['convert', ff, '-threshold', '50%', ff])
return workspace
def test_recognize(workspace):
# XXX Should remove GT text to really test this
CalamariRecognize(
workspace,
input_file_grp="OCR-D-GT-SEG-LINE",
output_file_grp="OCR-D-OCR-CALAMARI",
parameter={
"checkpoint": CHECKPOINT,
}
).process()
workspace.save_mets()
page1 = os.path.join(workspace.directory, "OCR-D-OCR-CALAMARI/OCR-D-OCR-CALAMARI_0001.xml")
assert os.path.exists(page1)
with open(page1, "r", encoding="utf-8") as f:
assert "verſchuldeten" in f.read()
def test_word_segmentation(workspace):
CalamariRecognize(
workspace,
input_file_grp="OCR-D-GT-SEG-LINE",
output_file_grp="OCR-D-OCR-CALAMARI",
parameter={
"checkpoint": CHECKPOINT,
}
).process()
workspace.save_mets()
page1 = os.path.join(workspace.directory, "OCR-D-OCR-CALAMARI/OCR-D-OCR-CALAMARI_0001.xml")
assert os.path.exists(page1)
tree = etree.parse(page1)
NSMAP = { "pc": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2019-07-15" }
# The result should contain a TextLine that contains the text "December"
line = tree.xpath(".//pc:TextLine[pc:TextEquiv/pc:Unicode[contains(text(),'December')]]", namespaces=NSMAP)[0]
assert line
# The textline should a. contain multiple words and b. these should concatenate fine to produce the same line text
words = line.xpath(".//pc:Word", namespaces=NSMAP)
assert len(words) >= 2
words_text = " ".join(word.xpath("pc:TextEquiv/pc:Unicode", namespaces=NSMAP)[0].text for word in words)
line_text = line.xpath("pc:TextEquiv/pc:Unicode", namespaces=NSMAP)[0].text
assert words_text == line_text
# vim:tw=120: