1
0
Fork 0
mirror of https://github.com/mikegerber/ocrd_calamari.git synced 2025-07-02 23:19:53 +02:00
ocrd_calamari/README.md

59 lines
1.5 KiB
Markdown
Raw Normal View History

2019-08-08 16:37:30 +02:00
# ocrd_calamari
> Recognize text using [Calamari OCR](https://github.com/Calamari-OCR/calamari).
[![image](https://circleci.com/gh/OCR-D/ocrd_calamari.svg?style=svg)](https://circleci.com/gh/OCR-D/ocrd_calamari)
[![image](https://img.shields.io/pypi/v/ocrd_calamari.svg)](https://pypi.org/project/ocrd_calamari/)
[![image](https://codecov.io/gh/OCR-D/ocrd_calamari/branch/master/graph/badge.svg)](https://codecov.io/gh/OCR-D/ocrd_calamari)
2019-08-08 16:37:30 +02:00
2019-10-26 22:17:58 +02:00
## Introduction
2019-08-08 16:37:30 +02:00
This offers a OCR-D compliant workspace processor for some of the functionality of Calamari OCR.
This processor only operates on the text line level and so needs a line segmentation (and by extension a binarized
image) as its input.
2019-08-08 17:26:02 +02:00
## Installation
```
pip install ocrd_calamari
```
2019-12-02 13:19:45 +01:00
## Install models
2019-08-08 17:26:02 +02:00
2019-12-02 13:38:36 +01:00
Download standard models:
2019-10-26 22:17:58 +02:00
```
2019-12-02 13:19:45 +01:00
wget https://github.com/Calamari-OCR/calamari_models/archive/master.zip
unzip master.zip
```
2019-12-02 13:38:36 +01:00
Download models trained on GT4HistOCR data:
```
wget https://file.spk-berlin.de:8443/calamari-models/GT4HistOCR/model.tar.xz
mkdir gt4hist-calamari
cd gt4hist-calamari
tar xf ../model.tar.xz
```
## Example Usage
~~~
ocrd-calamari-recognize -p test-parameters.json -m mets.xml -I OCR-D-SEG-LINE -O OCR-D-OCR-CALAMARI
~~~
With `test-parameters.json`:
~~~
2019-08-08 17:26:02 +02:00
{
"checkpoint": "/path/to/some/trained/models/*.ckpt.json"
}
~~~
2019-08-08 17:27:15 +02:00
TODO
----
* Support Calamari's "extended prediction data" output
* Currently, the processor only supports a prediction using confidence voting of multiple models. While this is
superior, it makes sense to support single model prediction, too.