|
|
|
@ -48,10 +48,10 @@ class CalamariRecognize(Processor):
|
|
|
|
|
checkpoints = glob(self.parameter['checkpoint'])
|
|
|
|
|
self.predictor = MultiPredictor(checkpoints=checkpoints)
|
|
|
|
|
|
|
|
|
|
self.input_channels = self.predictor.predictors[0].network.input_channels
|
|
|
|
|
#self.input_channels = self.predictor.predictors[0].network_params.channels # not used!
|
|
|
|
|
self.network_input_channels = self.predictor.predictors[0].network.input_channels
|
|
|
|
|
#self.network_input_channels = self.predictor.predictors[0].network_params.channels # not used!
|
|
|
|
|
# binarization = self.predictor.predictors[0].model_params.data_preprocessor.binarization # not used!
|
|
|
|
|
# self.features = ('' if self.input_channels != 1 else
|
|
|
|
|
# self.features = ('' if self.network_input_channels != 1 else
|
|
|
|
|
# 'binarized' if binarization != 'GRAY' else
|
|
|
|
|
# 'grayscale_normalized')
|
|
|
|
|
self.features = ''
|
|
|
|
@ -91,7 +91,7 @@ class CalamariRecognize(Processor):
|
|
|
|
|
log.debug("Recognizing line '%s' in region '%s'", line.id, region.id)
|
|
|
|
|
|
|
|
|
|
line_image, line_coords = self.workspace.image_from_segment(line, region_image, region_coords, feature_selector=self.features)
|
|
|
|
|
if ('binarized' not in line_coords['features'] and 'grayscale_normalized' not in line_coords['features'] and self.input_channels == 1):
|
|
|
|
|
if ('binarized' not in line_coords['features'] and 'grayscale_normalized' not in line_coords['features'] and self.network_input_channels == 1):
|
|
|
|
|
# We cannot use a feature selector for this since we don't
|
|
|
|
|
# know whether the model expects (has been trained on)
|
|
|
|
|
# binarized or grayscale images; but raw images are likely
|
|
|
|
|