🎨 Rename input_channels variable to network_input_channels

fix/readme-no-checkpoint
Gerber, Mike 4 years ago
parent c0902cdef5
commit 4cf25b8119

@ -48,10 +48,10 @@ class CalamariRecognize(Processor):
checkpoints = glob(self.parameter['checkpoint']) checkpoints = glob(self.parameter['checkpoint'])
self.predictor = MultiPredictor(checkpoints=checkpoints) self.predictor = MultiPredictor(checkpoints=checkpoints)
self.input_channels = self.predictor.predictors[0].network.input_channels self.network_input_channels = self.predictor.predictors[0].network.input_channels
#self.input_channels = self.predictor.predictors[0].network_params.channels # not used! #self.network_input_channels = self.predictor.predictors[0].network_params.channels # not used!
# binarization = self.predictor.predictors[0].model_params.data_preprocessor.binarization # not used! # binarization = self.predictor.predictors[0].model_params.data_preprocessor.binarization # not used!
# self.features = ('' if self.input_channels != 1 else # self.features = ('' if self.network_input_channels != 1 else
# 'binarized' if binarization != 'GRAY' else # 'binarized' if binarization != 'GRAY' else
# 'grayscale_normalized') # 'grayscale_normalized')
self.features = '' self.features = ''
@ -91,7 +91,7 @@ class CalamariRecognize(Processor):
log.debug("Recognizing line '%s' in region '%s'", line.id, region.id) log.debug("Recognizing line '%s' in region '%s'", line.id, region.id)
line_image, line_coords = self.workspace.image_from_segment(line, region_image, region_coords, feature_selector=self.features) line_image, line_coords = self.workspace.image_from_segment(line, region_image, region_coords, feature_selector=self.features)
if ('binarized' not in line_coords['features'] and 'grayscale_normalized' not in line_coords['features'] and self.input_channels == 1): if ('binarized' not in line_coords['features'] and 'grayscale_normalized' not in line_coords['features'] and self.network_input_channels == 1):
# We cannot use a feature selector for this since we don't # We cannot use a feature selector for this since we don't
# know whether the model expects (has been trained on) # know whether the model expects (has been trained on)
# binarized or grayscale images; but raw images are likely # binarized or grayscale images; but raw images are likely

Loading…
Cancel
Save