# ocrd_calamari > Recognize text using [Calamari OCR](https://github.com/Calamari-OCR/calamari). [![image](https://circleci.com/gh/OCR-D/ocrd_calamari.svg?style=svg)](https://circleci.com/gh/OCR-D/ocrd_calamari) [![image](https://img.shields.io/pypi/v/ocrd_calamari.svg)](https://pypi.org/project/ocrd_calamari/) [![image](https://codecov.io/gh/OCR-D/ocrd_calamari/branch/master/graph/badge.svg)](https://codecov.io/gh/OCR-D/ocrd_calamari) ## Introduction This offers a OCR-D compliant workspace processor for some of the functionality of Calamari OCR. This processor only operates on the text line level and so needs a line segmentation (and by extension a binarized image) as its input. ## Installation ### From PyPI ``` pip install ocrd_calamari ``` ### From Repo ```sh pip install . ``` ## Install models Download standard models: ``` wget https://github.com/Calamari-OCR/calamari_models/archive/master.zip unzip master.zip ``` Download models trained on GT4HistOCR data: ``` wget https://file.spk-berlin.de:8443/calamari-models/GT4HistOCR/model.tar.xz mkdir gt4hist-calamari cd gt4hist-calamari tar xf ../model.tar.xz ``` ## Example Usage ~~~ ocrd-calamari-recognize -p test-parameters.json -m mets.xml -I OCR-D-SEG-LINE -O OCR-D-OCR-CALAMARI ~~~ With `test-parameters.json`: ~~~ { "checkpoint": "/path/to/some/trained/models/*.ckpt.json" } ~~~ ## Development & Testing For information regarding development and testing, please see [README-DEV.md](README-DEV.md). TODO ---- * Support Calamari's "extended prediction data" output * Currently, the processor only supports a prediction using confidence voting of multiple models. While this is superior, it makes sense to support single model prediction, too.