You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ocrd_calamari/ocrd_calamari/recognize.py

152 lines
6.4 KiB
Python

from __future__ import absolute_import
import os
from glob import glob
import numpy as np
from calamari_ocr.ocr import MultiPredictor
from calamari_ocr.ocr.voting import voter_from_proto
from calamari_ocr.proto import VoterParams
from ocrd import Processor
from ocrd_modelfactory import page_from_file
from ocrd_models.ocrd_page import (
LabelType, LabelsType,
MetadataItemType,
TextEquivType,
to_xml
)
from ocrd_utils import getLogger, concat_padded, MIMETYPE_PAGE
from ocrd_calamari.config import OCRD_TOOL, TF_CPP_MIN_LOG_LEVEL
TOOL = 'ocrd-calamari-recognize'
log = getLogger('processor.CalamariRecognize')
class CalamariRecognize(Processor):
def __init__(self, *args, **kwargs):
kwargs['ocrd_tool'] = OCRD_TOOL['tools'][TOOL]
kwargs['version'] = OCRD_TOOL['version']
super(CalamariRecognize, self).__init__(*args, **kwargs)
def _init_calamari(self):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = TF_CPP_MIN_LOG_LEVEL
checkpoints = glob(self.parameter['checkpoint'])
self.predictor = MultiPredictor(checkpoints=checkpoints)
voter_params = VoterParams()
voter_params.type = VoterParams.Type.Value(self.parameter['voter'].upper())
self.voter = voter_from_proto(voter_params)
def _make_file_id(self, input_file, n):
file_id = input_file.ID.replace(self.input_file_grp, self.output_file_grp)
if file_id == input_file.ID:
file_id = concat_padded(self.output_file_grp, n)
return file_id
def process(self):
"""
Performs the recognition.
"""
self._init_calamari()
for (n, input_file) in enumerate(self.input_files):
page_id = input_file.pageId or input_file.ID
log.info("INPUT FILE %i / %s", n, page_id)
pcgts = page_from_file(self.workspace.download_file(input_file))
page = pcgts.get_Page()
page_image, page_xywh, page_image_info = self.workspace.image_from_page(page, page_id)
for region in pcgts.get_Page().get_TextRegion():
region_image, region_xywh = self.workspace.image_from_segment(region, page_image, page_xywh)
textlines = region.get_TextLine()
log.info("About to recognize %i lines of region '%s'", len(textlines), region.id)
for (line_no, line) in enumerate(textlines):
log.debug("Recognizing line '%s' in region '%s'", line_no, region.id)
line_image, line_xywh = self.workspace.image_from_segment(line, region_image, region_xywh)
line_image_np = np.array(line_image, dtype=np.uint8)
raw_results = list(self.predictor.predict_raw([line_image_np], progress_bar=False))[0]
for i, p in enumerate(raw_results):
p.prediction.id = "fold_{}".format(i)
prediction = self.voter.vote_prediction_result(raw_results)
prediction.id = "voted"
line_text = prediction.sentence
line_conf = prediction.avg_char_probability
if line.get_TextEquiv():
log.warning("Line '%s' already contained text results", line.id)
line.set_TextEquiv([TextEquivType(Unicode=line_text, conf=line_conf)])
if line.get_Word():
log.warning("Line '%s' already contained word segmentation", line.id)
line.set_Word([])
_page_update_higher_textequiv_levels('line', pcgts)
# Add metadata about this operation and its runtime parameters:
metadata = pcgts.get_Metadata() # ensured by from_file()
metadata.add_MetadataItem(
MetadataItemType(type_="processingStep",
name=self.ocrd_tool['steps'][0],
value=TOOL,
Labels=[LabelsType(
externalModel="ocrd-tool",
externalId="parameters",
Label=[LabelType(type_=name, value=self.parameter[name])
for name in self.parameter.keys()])]))
file_id = self._make_file_id(input_file, n)
self.workspace.add_file(
ID=file_id,
file_grp=self.output_file_grp,
pageId=input_file.pageId,
mimetype=MIMETYPE_PAGE,
local_filename=os.path.join(self.output_file_grp, file_id + '.xml'),
content=to_xml(pcgts))
# TODO: This is a copy of ocrd_tesserocr's function, and should probably be moved to a ocrd lib
def _page_update_higher_textequiv_levels(level, pcgts):
"""Update the TextEquivs of all PAGE-XML hierarchy levels above `level` for consistency.
Starting with the hierarchy level chosen for processing,
join all first TextEquiv (by the rules governing the respective level)
into TextEquiv of the next higher level, replacing them.
"""
regions = pcgts.get_Page().get_TextRegion()
if level != 'region':
for region in regions:
lines = region.get_TextLine()
if level != 'line':
for line in lines:
words = line.get_Word()
if level != 'word':
for word in words:
glyphs = word.get_Glyph()
word_unicode = u''.join(glyph.get_TextEquiv()[0].Unicode
if glyph.get_TextEquiv()
else u'' for glyph in glyphs)
word.set_TextEquiv(
[TextEquivType(Unicode=word_unicode)]) # remove old
line_unicode = u' '.join(word.get_TextEquiv()[0].Unicode
if word.get_TextEquiv()
else u'' for word in words)
line.set_TextEquiv(
[TextEquivType(Unicode=line_unicode)]) # remove old
region_unicode = u'\n'.join(line.get_TextEquiv()[0].Unicode
if line.get_TextEquiv()
else u'' for line in lines)
region.set_TextEquiv(
[TextEquivType(Unicode=region_unicode)]) # remove old