|
|
|
import numpy as np
|
|
|
|
import click
|
|
|
|
import pandas as pd
|
|
|
|
from io import StringIO
|
|
|
|
import os
|
|
|
|
import xml.etree.ElementTree as ET
|
|
|
|
import requests
|
|
|
|
import json
|
|
|
|
import glob
|
|
|
|
import re
|
|
|
|
|
|
|
|
from .ned import ned
|
|
|
|
from .ner import ner
|
|
|
|
from .tsv import read_tsv, write_tsv, extract_doc_links
|
|
|
|
from .ocr import get_conf_color
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1)
|
|
|
|
@click.argument('url-file', type=click.Path(exists=False), required=True, nargs=1)
|
|
|
|
def extract_document_links(tsv_file, url_file):
|
|
|
|
|
|
|
|
parts = extract_doc_links(tsv_file)
|
|
|
|
|
|
|
|
urls = [part['url'] for part in parts]
|
|
|
|
|
|
|
|
urls = pd.DataFrame(urls, columns=['url'])
|
|
|
|
|
|
|
|
urls.to_csv(url_file, sep="\t", quoting=3, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1)
|
|
|
|
@click.argument('annotated-tsv-file', type=click.Path(exists=False), required=True, nargs=1)
|
|
|
|
def annotate_tsv(tsv_file, annotated_tsv_file):
|
|
|
|
|
|
|
|
parts = extract_doc_links(tsv_file)
|
|
|
|
|
|
|
|
annotated_parts = []
|
|
|
|
|
|
|
|
for part in parts:
|
|
|
|
|
|
|
|
part_data = StringIO(part['header'] + part['text'])
|
|
|
|
|
|
|
|
df = pd.read_csv(part_data, sep="\t", comment='#', quoting=3)
|
|
|
|
|
|
|
|
df['url_id'] = len(annotated_parts)
|
|
|
|
|
|
|
|
annotated_parts.append(df)
|
|
|
|
|
|
|
|
df = pd.concat(annotated_parts)
|
|
|
|
|
|
|
|
df.to_csv(annotated_tsv_file, sep="\t", quoting=3, index=False)
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.argument('page-xml-file', type=click.Path(exists=True), required=True, nargs=1)
|
|
|
|
@click.argument('tsv-out-file', type=click.Path(), required=True, nargs=1)
|
|
|
|
@click.option('--purpose', type=click.Choice(['NERD', 'OCR'], case_sensitive=False), default="NERD",
|
|
|
|
help="Purpose of output tsv file. "
|
|
|
|
"\n\nNERD: NER/NED application/ground-truth creation. "
|
|
|
|
"\n\nOCR: OCR application/ground-truth creation. "
|
|
|
|
"\n\ndefault: NERD.")
|
|
|
|
@click.option('--image-url', type=str, default='http://empty')
|
|
|
|
@click.option('--ner-rest-endpoint', type=str, default=None,
|
|
|
|
help="REST endpoint of sbb_ner service. See https://github.com/qurator-spk/sbb_ner for details. "
|
|
|
|
"Only applicable in case of NERD.")
|
|
|
|
@click.option('--ned-rest-endpoint', type=str, default=None,
|
|
|
|
help="REST endpoint of sbb_ned service. See https://github.com/qurator-spk/sbb_ned for details. "
|
|
|
|
"Only applicable in case of NERD.")
|
|
|
|
@click.option('--noproxy', type=bool, is_flag=True, help='disable proxy. default: enabled.')
|
|
|
|
@click.option('--scale-factor', type=float, default=0.5685, help='default: 0.5685')
|
|
|
|
@click.option('--ned-threshold', type=float, default=None)
|
|
|
|
@click.option('--min-confidence', type=float, default=None)
|
|
|
|
@click.option('--max-confidence', type=float, default=None)
|
|
|
|
def page2tsv(page_xml_file, tsv_out_file, purpose, image_url, ner_rest_endpoint, ned_rest_endpoint, noproxy, scale_factor,
|
|
|
|
ned_threshold, min_confidence, max_confidence):
|
|
|
|
|
|
|
|
if purpose == "NERD":
|
|
|
|
out_columns = ['No.', 'TOKEN', 'NE-TAG', 'NE-EMB', 'ID', 'url_id', 'left', 'right', 'top', 'bottom', 'conf']
|
|
|
|
elif purpose == "OCR":
|
|
|
|
out_columns = ['TEXT', 'url_id', 'left', 'right', 'top', 'bottom', 'conf']
|
|
|
|
|
|
|
|
if min_confidence is not None and max_confidence is not None:
|
|
|
|
out_columns += ['ocrconf']
|
|
|
|
else:
|
|
|
|
raise RuntimeError("Unknown purpose.")
|
|
|
|
|
|
|
|
if noproxy:
|
|
|
|
os.environ['no_proxy'] = '*'
|
|
|
|
|
|
|
|
tree = ET.parse(page_xml_file)
|
|
|
|
xmlns = tree.getroot().tag.split('}')[0].strip('{')
|
|
|
|
|
|
|
|
urls = []
|
|
|
|
if os.path.exists(tsv_out_file):
|
|
|
|
parts = extract_doc_links(tsv_out_file)
|
|
|
|
|
|
|
|
urls = [part['url'] for part in parts]
|
|
|
|
else:
|
|
|
|
pd.DataFrame([], columns=out_columns).to_csv(tsv_out_file, sep="\t", quoting=3, index=False)
|
|
|
|
|
|
|
|
tsv = []
|
|
|
|
line_info = []
|
|
|
|
for rgn_number, region in enumerate(tree.findall('.//{%s}TextRegion' % xmlns)):
|
|
|
|
|
|
|
|
for line_number, text_line in enumerate(region.findall('.//{%s}TextLine' % xmlns)):
|
|
|
|
|
|
|
|
points = [int(scale_factor * float(pos)) for coords in text_line.findall('./{%s}Coords' % xmlns) for p in
|
|
|
|
coords.attrib['points'].split(' ') for pos in p.split(',')]
|
|
|
|
|
|
|
|
x_points, y_points = points[0::2], points[1::2]
|
|
|
|
|
|
|
|
left, right, top, bottom = min(x_points), max(x_points), min(y_points), max(y_points)
|
|
|
|
|
|
|
|
if min_confidence is not None and max_confidence is not None:
|
|
|
|
conf = np.max([float(text.attrib['conf']) for text in text_line.findall('./{%s}TextEquiv' % xmlns)])
|
|
|
|
else:
|
|
|
|
conf = np.nan
|
|
|
|
|
|
|
|
line_info.append((line_number, len(urls), left, right, top, bottom, conf))
|
|
|
|
|
|
|
|
for word in text_line.findall('./{%s}Word' % xmlns):
|
|
|
|
|
|
|
|
for text_equiv in word.findall('./{%s}TextEquiv/{%s}Unicode' % (xmlns, xmlns)):
|
|
|
|
text = text_equiv.text
|
|
|
|
|
|
|
|
points = []
|
|
|
|
|
|
|
|
for coords in word.findall('./{%s}Coords' % xmlns):
|
|
|
|
|
|
|
|
# transform OCR coordinates using `scale_factor` to derive
|
|
|
|
# correct coordinates for the web presentation image
|
|
|
|
points += [int(scale_factor * float(pos))
|
|
|
|
for p in coords.attrib['points'].split(' ') for pos in p.split(',')]
|
|
|
|
|
|
|
|
x_points, y_points = points[0::2], points[1::2]
|
|
|
|
|
|
|
|
left, right, top, bottom = min(x_points), max(x_points), min(y_points), max(y_points)
|
|
|
|
|
|
|
|
tsv.append((rgn_number, line_number, left + (right - left) / 2.0, text,
|
|
|
|
len(urls), left, right, top, bottom))
|
|
|
|
|
|
|
|
line_info = pd.DataFrame(line_info, columns=['line', 'url_id', 'left', 'right', 'top', 'bottom', 'conf'])
|
|
|
|
|
|
|
|
if min_confidence is not None and max_confidence is not None:
|
|
|
|
line_info['ocrconf'] = line_info.conf.map(lambda x: get_conf_color(x, min_confidence, max_confidence))
|
|
|
|
|
|
|
|
tsv = pd.DataFrame(tsv, columns=['rid', 'line', 'hcenter'] + ['TEXT', 'url_id', 'left', 'right', 'top', 'bottom'])
|
|
|
|
|
|
|
|
if len(tsv) == 0:
|
|
|
|
return
|
|
|
|
|
|
|
|
with open(tsv_out_file, 'a') as f:
|
|
|
|
|
|
|
|
f.write('# ' + image_url + '\n')
|
|
|
|
|
|
|
|
vlinecenter = pd.DataFrame(tsv[['line', 'top']].groupby('line', sort=False).mean().top +
|
|
|
|
(tsv[['line', 'bottom']].groupby('line', sort=False).mean().bottom -
|
|
|
|
tsv[['line', 'top']].groupby('line', sort=False).mean().top) / 2,
|
|
|
|
columns=['vlinecenter'])
|
|
|
|
|
|
|
|
tsv = tsv.merge(vlinecenter, left_on='line', right_index=True)
|
|
|
|
|
|
|
|
regions = [region.sort_values(['vlinecenter', 'hcenter']) for rid, region in tsv.groupby('rid', sort=False)]
|
|
|
|
|
|
|
|
tsv = pd.concat(regions)
|
|
|
|
|
|
|
|
if purpose == 'NERD':
|
|
|
|
|
|
|
|
tsv['No.'] = 0
|
|
|
|
tsv['NE-TAG'] = 'O'
|
|
|
|
tsv['NE-EMB'] = 'O'
|
|
|
|
tsv['ID'] = '-'
|
|
|
|
tsv['conf'] = '-'
|
|
|
|
|
|
|
|
tsv = tsv.rename(columns={'TEXT': 'TOKEN'})
|
|
|
|
elif purpose == 'OCR':
|
|
|
|
|
|
|
|
tsv = pd.DataFrame([(line, " ".join(part.TEXT.to_list())) for line, part in tsv.groupby('line')],
|
|
|
|
columns=['line', 'TEXT'])
|
|
|
|
|
|
|
|
tsv = tsv.merge(line_info, left_on='line', right_on='line')
|
|
|
|
|
|
|
|
tsv = tsv[out_columns].reset_index(drop=True)
|
|
|
|
|
|
|
|
try:
|
|
|
|
if purpose == 'NERD' and ner_rest_endpoint is not None:
|
|
|
|
|
|
|
|
tsv, ner_result = ner(tsv, ner_rest_endpoint)
|
|
|
|
|
|
|
|
if ned_rest_endpoint is not None:
|
|
|
|
|
|
|
|
tsv, _ = ned(tsv, ner_result, ned_rest_endpoint, threshold=ned_threshold)
|
|
|
|
|
|
|
|
tsv.to_csv(tsv_out_file, sep="\t", quoting=3, index=False, mode='a', header=False)
|
|
|
|
except requests.HTTPError as e:
|
|
|
|
print(e)
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1)
|
|
|
|
@click.argument('tsv-out-file', type=click.Path(), required=True, nargs=1)
|
|
|
|
@click.option('--ner-rest-endpoint', type=str, default=None,
|
|
|
|
help="REST endpoint of sbb_ner service. See https://github.com/qurator-spk/sbb_ner for details.")
|
|
|
|
@click.option('--ned-rest-endpoint', type=str, default=None,
|
|
|
|
help="REST endpoint of sbb_ned service. See https://github.com/qurator-spk/sbb_ned for details.")
|
|
|
|
@click.option('--ned-json-file', type=str, default=None)
|
|
|
|
@click.option('--noproxy', type=bool, is_flag=True, help='disable proxy. default: proxy is enabled.')
|
|
|
|
@click.option('--ned-threshold', type=float, default=None)
|
|
|
|
def find_entities(tsv_file, tsv_out_file, ner_rest_endpoint, ned_rest_endpoint, ned_json_file, noproxy, ned_threshold):
|
|
|
|
|
|
|
|
if noproxy:
|
|
|
|
os.environ['no_proxy'] = '*'
|
|
|
|
|
|
|
|
tsv, urls = read_tsv(tsv_file)
|
|
|
|
|
|
|
|
try:
|
|
|
|
if ner_rest_endpoint is not None:
|
|
|
|
|
|
|
|
tsv, ner_result = ner(tsv, ner_rest_endpoint)
|
|
|
|
|
|
|
|
elif os.path.exists(tsv_file):
|
|
|
|
|
|
|
|
print('Using NER information that is already contained in file: {}'.format(tsv_file))
|
|
|
|
|
|
|
|
tmp = tsv.copy()
|
|
|
|
tmp['sen'] = (tmp['No.'] == 0).cumsum()
|
|
|
|
tmp.loc[~tmp['NE-TAG'].isin(['O', 'B-PER', 'B-LOC', 'B-ORG', 'I-PER', 'I-LOC', 'I-ORG']), 'NE-TAG'] = 'O'
|
|
|
|
|
|
|
|
ner_result = [[{'word': str(row.TOKEN), 'prediction': row['NE-TAG']} for _, row in sen.iterrows()]
|
|
|
|
for _, sen in tmp.groupby('sen')]
|
|
|
|
else:
|
|
|
|
raise RuntimeError("Either NER rest endpoint or NER-TAG information within tsv_file required.")
|
|
|
|
|
|
|
|
if ned_rest_endpoint is not None:
|
|
|
|
|
|
|
|
tsv, ned_result = ned(tsv, ner_result, ned_rest_endpoint, json_file=ned_json_file, threshold=ned_threshold)
|
|
|
|
|
|
|
|
if ned_json_file is not None and not os.path.exists(ned_json_file):
|
|
|
|
|
|
|
|
with open(ned_json_file, "w") as fp_json:
|
|
|
|
json.dump(ned_result, fp_json, indent=2, separators=(',', ': '))
|
|
|
|
|
|
|
|
write_tsv(tsv, urls, tsv_out_file)
|
|
|
|
|
|
|
|
except requests.HTTPError as e:
|
|
|
|
print(e)
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.option('--xls-file', type=click.Path(exists=True), default=None,
|
|
|
|
help="Read parameters from xls-file. Expected columns: Filename, iiif_url, scale_factor.")
|
|
|
|
@click.option('--directory', type=click.Path(exists=True), default=None,
|
|
|
|
help="Search directory for PPN**/*.xml files. Extract PPN and file number into image-url.")
|
|
|
|
@click.option('--purpose', type=click.Choice(['NERD', 'OCR'], case_sensitive=False), default="NERD",
|
|
|
|
help="Purpose of output tsv file. "
|
|
|
|
"\n\nNERD: NER/NED application/ground-truth creation. "
|
|
|
|
"\n\nOCR: OCR application/ground-truth creation. "
|
|
|
|
"\n\ndefault: NERD.")
|
|
|
|
def make_page2tsv_commands(xls_file, directory, purpose):
|
|
|
|
if xls_file is not None:
|
|
|
|
df = pd.read_excel(xls_file)
|
|
|
|
|
|
|
|
for _, row in df.iterrows():
|
|
|
|
print('page2tsv $(OPTIONS) {}.xml {}.tsv --image-url={} --scale-factor={} --purpose={}'.
|
|
|
|
format(row.Filename, row.Filename, row.iiif_url.replace('/full/full', '/left,top,width,height/full'),
|
|
|
|
row.scale_factor, purpose))
|
|
|
|
|
|
|
|
elif directory is not None:
|
|
|
|
for file in glob.glob('{}/**/*.xml'.format(directory), recursive=True):
|
|
|
|
|
|
|
|
ma = re.match('(.*/(PPN[0-9]+)/.*?([0-9]+).*?).xml', file)
|
|
|
|
|
|
|
|
if ma:
|
|
|
|
print('page2tsv {} {}.tsv '
|
|
|
|
'--image-url=https://content.staatsbibliothek-berlin.de/dc/'
|
|
|
|
'{}-{:08d}/left,top,width,height/1200,/0/default.jpg --scale-factor=1.0 --purpose={}'.
|
|
|
|
format(file, ma.group(1), ma.group(2), int(ma.group(3)), purpose))
|
|
|
|
|