extract TSV Tools from qurator-spk/neath

pull/2/head
cneud 5 years ago
parent 92a81a869c
commit 59a1e81243

@ -1,2 +1,61 @@
# page2tsv
PAGE-XML to TSV
# TSV - Processing Tools
## Installation:
Setup virtual environment:
```
virtualenv --python=python3.6 venv
```
Activate virtual environment:
```
source venv/bin/activate
```
Upgrade pip:
```
pip install -U pip
```
Install package together with its dependencies in development mode:
```
pip install -e ./
```
## PAGE-XML to TSV Transformation:
Create a TSV file from OCR in PAGE-XML format (with word segmentation):
```
page2tsv PAGE1.xml PAGE.tsv --image-url=http://link-to-corresponding-image-1
```
In order to create a TSV file for multiple PAGE XML files just perform successive calls
of the tool using the same TSV file:
```
page2tsv PAGE1.xml PAGE.tsv --image-url=http://link-to-corresponding-image-1
page2tsv PAGE2.xml PAGE.tsv --image-url=http://link-to-corresponding-image-2
page2tsv PAGE3.xml PAGE.tsv --image-url=http://link-to-corresponding-image-3
page2tsv PAGE4.xml PAGE.tsv --image-url=http://link-to-corresponding-image-4
page2tsv PAGE5.xml PAGE.tsv --image-url=http://link-to-corresponding-image-5
...
...
...
```
For instance, for the file assets/example.xml:
```
page2tsv example.xml example.tsv --image-url=http://content.staatsbibliothek-berlin.de/zefys/SNP27646518-18800101-0-3-0-0/left,top,width,height/full/0/default.jpg
```
---
## Processing of already existing TSV files:
Create a URL-annotated TSV file from an existing TSV file:
```
annotate-tsv enp_DE.tsv enp_DE-annotated.tsv
```

198
cli.py

@ -0,0 +1,198 @@
import re
import click
import pandas as pd
from io import StringIO
import os
import xml.etree.ElementTree as ET
import requests
import unicodedata
import json
@click.command()
@click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1)
@click.argument('url-file', type=click.Path(exists=False), required=True, nargs=1)
def extract_document_links(tsv_file, url_file):
parts = extract_doc_links(tsv_file)
urls = [part['url'] for part in parts]
urls = pd.DataFrame(urls, columns=['url'])
urls.to_csv(url_file, sep="\t", quoting=3, index=False)
@click.command()
@click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1)
@click.argument('annotated-tsv-file', type=click.Path(exists=False), required=True, nargs=1)
def annotate_tsv(tsv_file, annotated_tsv_file):
parts = extract_doc_links(tsv_file)
annotated_parts = []
for part in parts:
part_data = StringIO(part['header'] + part['text'])
df = pd.read_csv(part_data, sep="\t", comment='#', quoting=3)
df['url_id'] = len(annotated_parts)
annotated_parts.append(df)
df = pd.concat(annotated_parts)
df.to_csv(annotated_tsv_file, sep="\t", quoting=3, index=False)
def extract_doc_links(tsv_file):
parts = []
header = None
with open(tsv_file, 'r') as f:
text = []
url = None
for line in f:
if header is None:
header = "\t".join(line.split()) + '\n'
continue
urls = [url for url in
re.findall(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', line)]
if len(urls) > 0:
if url is not None:
parts.append({"url": url, 'header': header, 'text': "".join(text)})
text = []
url = urls[-1]
else:
if url is None:
continue
line = '\t'.join(line.split())
if line.count('\t') == 2:
line = "\t" + line
if line.count('\t') >= 3:
text.append(line + '\n')
continue
if line.startswith('#'):
continue
if len(line) == 0:
continue
print('Line error: |', line, '|Number of Tabs: ', line.count('\t'))
if url is not None:
parts.append({"url": url, 'header': header, 'text': "".join(text)})
return parts
def ner(tsv, ner_rest_endpoint):
resp = requests.post(url=ner_rest_endpoint, json={'text': " ".join(tsv.TOKEN.tolist())})
def iterate_ner_results(result_sentences):
for sen in result_sentences:
for token in sen:
yield unicodedata.normalize('NFC', token['word']), token['prediction'], False
yield '', '', True
result_sequence = iterate_ner_results(json.loads(resp.content))
tsv_result = []
for idx, row in tsv.iterrows():
row_token = unicodedata.normalize('NFC', row.TOKEN.replace(' ', ''))
ner_token_concat = ''
while row_token != ner_token_concat:
ner_token, ner_tag, sentence_break = next(result_sequence)
ner_token_concat += ner_token
assert len(row_token) >= len(ner_token_concat)
if sentence_break:
tsv_result.append((0, '', 'O', 'O', '-', row.url_id, row.left, row.right, row.top, row.bottom))
else:
tsv_result.append((0, ner_token, ner_tag, 'O', '-', row.url_id, row.left, row.right, row.top,
row.bottom))
return pd.DataFrame(tsv_result, columns=['No.', 'TOKEN', 'NE-TAG', 'NE-EMB', 'GND-ID', 'url_id',
'left', 'right', 'top', 'bottom'])
@click.command()
@click.argument('page-xml-file', type=click.Path(exists=True), required=True, nargs=1)
@click.argument('tsv-out-file', type=click.Path(), required=True, nargs=1)
@click.option('--image-url', type=str, default='http://empty')
@click.option('--ner-rest-endpoint', type=str, default=None,
help="REST endpoint of sbb_ner service. See https://github.com/qurator-spk/sbb_ner for details.")
@click.option('--noproxy', type=bool, is_flag=True, help='disable proxy. default: enabled.')
def page2tsv(page_xml_file, tsv_out_file, image_url, ner_rest_endpoint, noproxy):
if noproxy:
os.environ['no_proxy'] = '*'
tree = ET.parse(page_xml_file)
xmlns = tree.getroot().tag.split('}')[0].strip('{')
urls = []
if os.path.exists(tsv_out_file):
parts = extract_doc_links(tsv_out_file)
urls = [part['url'] for part in parts]
else:
pd.DataFrame([], columns=['No.', 'TOKEN', 'NE-TAG', 'NE-EMB', 'GND-ID', 'url_id', 'left', 'right', 'top',
'bottom']). to_csv(tsv_out_file, sep="\t", quoting=3, index=False)
tsv = []
for words in tree.findall('.//{%s}Word' % xmlns):
for word in words.findall('.//{%s}Unicode' % xmlns):
text = word.text
for coords in words.findall('.//{%s}Coords' % xmlns):
# transform the OCR coordinates by 0.5685 to derive the correct coords for the web presentation image
points = [int(0.5685 * float(pos)) for p in coords.attrib['points'].split(' ') for pos in p.split(',')]
x_points = [points[i] for i in range(0, len(points), 2)]
y_points = [points[i] for i in range(1, len(points), 2)]
left = min(x_points)
right = max(x_points)
top = min(y_points)
bottom = max(y_points)
tsv.append((0, text, 'O', 'O', '-', len(urls), left, right, top, bottom))
with open(tsv_out_file, 'a') as f:
f.write('# ' + image_url + '\n')
tsv = pd.DataFrame(tsv, columns=['No.', 'TOKEN', 'NE-TAG', 'NE-EMB', 'GND-ID',
'url_id', 'left', 'right', 'top', 'bottom'])
if ner_rest_endpoint is not None:
tsv = ner(tsv, ner_rest_endpoint)
tsv.to_csv(tsv_out_file, sep="\t", quoting=3, index=False, mode='a', header=False)

@ -0,0 +1,4 @@
numpy
pandas
click
requests

@ -0,0 +1,36 @@
from io import open
from setuptools import find_packages, setup
with open('requirements.txt') as fp:
install_requires = fp.read()
setup(
name="neath",
version="0.0.1",
author="",
author_email="qurator@sbb.spk-berlin.de",
description="neath",
long_description=open("README.md", "r", encoding='utf-8').read(),
long_description_content_type="text/markdown",
keywords='qurator',
license='Apache License 2.0',
url="https://github.com/qurator-spk/neath",
packages=find_packages(exclude=["*.tests", "*.tests.*",
"tests.*", "tests"]),
install_requires=install_requires,
entry_points={
'console_scripts': [
"extract-doc-links=cli:extract_document_links",
"annotate-tsv=cli:annotate_tsv",
"page2tsv=cli:page2tsv"
]
},
python_requires='>=3.6.0',
tests_require=['pytest'],
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
)
Loading…
Cancel
Save