import json import glob import re import os from io import StringIO import numpy as np import click import pandas as pd import requests from ocrd_models.ocrd_page import parse from ocrd_utils import bbox_from_points from .ned import ned from .ner import ner from .tsv import read_tsv, write_tsv, extract_doc_links from .ocr import get_conf_color @click.command() @click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1) @click.argument('url-file', type=click.Path(exists=False), required=True, nargs=1) def extract_document_links(tsv_file, url_file): parts = extract_doc_links(tsv_file) urls = [part['url'] for part in parts] urls = pd.DataFrame(urls, columns=['url']) urls.to_csv(url_file, sep="\t", quoting=3, index=False) @click.command() @click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1) @click.argument('annotated-tsv-file', type=click.Path(exists=False), required=True, nargs=1) def annotate_tsv(tsv_file, annotated_tsv_file): parts = extract_doc_links(tsv_file) annotated_parts = [] for part in parts: part_data = StringIO(part['header'] + part['text']) df = pd.read_csv(part_data, sep="\t", comment='#', quoting=3) df['url_id'] = len(annotated_parts) annotated_parts.append(df) df = pd.concat(annotated_parts) df.to_csv(annotated_tsv_file, sep="\t", quoting=3, index=False) @click.command() @click.argument('page-xml-file', type=click.Path(exists=True), required=True, nargs=1) @click.argument('tsv-out-file', type=click.Path(), required=True, nargs=1) @click.option('--purpose', type=click.Choice(['NERD', 'OCR'], case_sensitive=False), default="NERD", help="Purpose of output tsv file. " "\n\nNERD: NER/NED application/ground-truth creation. " "\n\nOCR: OCR application/ground-truth creation. " "\n\ndefault: NERD.") @click.option('--image-url', type=str, default='http://empty') @click.option('--ner-rest-endpoint', type=str, default=None, help="REST endpoint of sbb_ner service. See https://github.com/qurator-spk/sbb_ner for details. " "Only applicable in case of NERD.") @click.option('--ned-rest-endpoint', type=str, default=None, help="REST endpoint of sbb_ned service. See https://github.com/qurator-spk/sbb_ned for details. " "Only applicable in case of NERD.") @click.option('--noproxy', type=bool, is_flag=True, help='disable proxy. default: enabled.') @click.option('--scale-factor', type=float, default=0.5685, help='default: 0.5685') @click.option('--ned-threshold', type=float, default=None) @click.option('--min-confidence', type=float, default=None) @click.option('--max-confidence', type=float, default=None) def page2tsv(page_xml_file, tsv_out_file, purpose, image_url, ner_rest_endpoint, ned_rest_endpoint, noproxy, scale_factor, ned_threshold, min_confidence, max_confidence): if purpose == "NERD": out_columns = ['No.', 'TOKEN', 'NE-TAG', 'NE-EMB', 'ID', 'url_id', 'left', 'right', 'top', 'bottom', 'conf'] elif purpose == "OCR": out_columns = ['TEXT', 'url_id', 'left', 'right', 'top', 'bottom', 'conf', 'line_id'] if min_confidence is not None and max_confidence is not None: out_columns += ['ocrconf'] else: raise RuntimeError("Unknown purpose.") if noproxy: os.environ['no_proxy'] = '*' urls = [] if os.path.exists(tsv_out_file): parts = extract_doc_links(tsv_out_file) urls = [part['url'] for part in parts] else: pd.DataFrame([], columns=out_columns).to_csv(tsv_out_file, sep="\t", quoting=3, index=False) pcgts = parse(page_xml_file) tsv = [] line_info = [] for region_idx, region in enumerate(pcgts.get_Page().get_AllRegions(classes=['Text'], order='reading-order')): for text_line in region.get_TextLine(): left, top, right, bottom = [int(scale_factor * x) for x in bbox_from_points(text_line.get_Coords().points)] if min_confidence is not None and max_confidence is not None: conf = np.max([textequiv.conf for textequiv in text_line.get_TextEquiv()]) else: conf = np.nan line_info.append((len(urls), left, right, top, bottom, conf, text_line.id)) for word in text_line.get_Word(): for text_equiv in word.get_TextEquiv(): # transform OCR coordinates using `scale_factor` to derive # correct coordinates for the web presentation image left, top, right, bottom = [int(scale_factor * x) for x in bbox_from_points(word.get_Coords().points)] tsv.append((region_idx, len(line_info) - 1, left + (right - left) / 2.0, text_equiv.get_Unicode(), len(urls), left, right, top, bottom, text_line.id)) line_info = pd.DataFrame(line_info, columns=['url_id', 'left', 'right', 'top', 'bottom', 'conf', 'line_id']) if min_confidence is not None and max_confidence is not None: line_info['ocrconf'] = line_info.conf.map(lambda x: get_conf_color(x, min_confidence, max_confidence)) tsv = pd.DataFrame(tsv, columns=['rid', 'line', 'hcenter'] + ['TEXT', 'url_id', 'left', 'right', 'top', 'bottom', 'line_id']) if len(tsv) == 0: return with open(tsv_out_file, 'a') as f: f.write('# ' + image_url + '\n') vlinecenter = pd.DataFrame(tsv[['line', 'top']].groupby('line', sort=False).mean().top + (tsv[['line', 'bottom']].groupby('line', sort=False).mean().bottom - tsv[['line', 'top']].groupby('line', sort=False).mean().top) / 2, columns=['vlinecenter']) tsv = tsv.merge(vlinecenter, left_on='line', right_index=True) regions = [region.sort_values(['vlinecenter', 'hcenter']) for rid, region in tsv.groupby('rid', sort=False)] tsv = pd.concat(regions) if purpose == 'NERD': tsv['No.'] = 0 tsv['NE-TAG'] = 'O' tsv['NE-EMB'] = 'O' tsv['ID'] = '-' tsv['conf'] = '-' tsv = tsv.rename(columns={'TEXT': 'TOKEN'}) elif purpose == 'OCR': tsv = pd.DataFrame([(line, " ".join(part.TEXT.to_list())) for line, part in tsv.groupby('line')], columns=['line', 'TEXT']) tsv = tsv.merge(line_info, left_on='line', right_index=True) tsv = tsv[out_columns].reset_index(drop=True) try: if purpose == 'NERD' and ner_rest_endpoint is not None: tsv, ner_result = ner(tsv, ner_rest_endpoint) if ned_rest_endpoint is not None: tsv, _ = ned(tsv, ner_result, ned_rest_endpoint, threshold=ned_threshold) tsv.to_csv(tsv_out_file, sep="\t", quoting=3, index=False, mode='a', header=False) except requests.HTTPError as e: print(e) @click.command() @click.argument('tsv-file', type=click.Path(exists=True), required=True, nargs=1) @click.argument('tsv-out-file', type=click.Path(), required=True, nargs=1) @click.option('--ner-rest-endpoint', type=str, default=None, help="REST endpoint of sbb_ner service. See https://github.com/qurator-spk/sbb_ner for details.") @click.option('--ned-rest-endpoint', type=str, default=None, help="REST endpoint of sbb_ned service. See https://github.com/qurator-spk/sbb_ned for details.") @click.option('--ned-json-file', type=str, default=None) @click.option('--noproxy', type=bool, is_flag=True, help='disable proxy. default: proxy is enabled.') @click.option('--ned-threshold', type=float, default=None) def find_entities(tsv_file, tsv_out_file, ner_rest_endpoint, ned_rest_endpoint, ned_json_file, noproxy, ned_threshold): if noproxy: os.environ['no_proxy'] = '*' tsv, urls = read_tsv(tsv_file) try: if ner_rest_endpoint is not None: tsv, ner_result = ner(tsv, ner_rest_endpoint) elif os.path.exists(tsv_file): print('Using NER information that is already contained in file: {}'.format(tsv_file)) tmp = tsv.copy() tmp['sen'] = (tmp['No.'] == 0).cumsum() tmp.loc[~tmp['NE-TAG'].isin(['O', 'B-PER', 'B-LOC', 'B-ORG', 'I-PER', 'I-LOC', 'I-ORG']), 'NE-TAG'] = 'O' ner_result = [[{'word': str(row.TOKEN), 'prediction': row['NE-TAG']} for _, row in sen.iterrows()] for _, sen in tmp.groupby('sen')] else: raise RuntimeError("Either NER rest endpoint or NER-TAG information within tsv_file required.") if ned_rest_endpoint is not None: tsv, ned_result = ned(tsv, ner_result, ned_rest_endpoint, json_file=ned_json_file, threshold=ned_threshold) if ned_json_file is not None and not os.path.exists(ned_json_file): with open(ned_json_file, "w") as fp_json: json.dump(ned_result, fp_json, indent=2, separators=(',', ': ')) write_tsv(tsv, urls, tsv_out_file) except requests.HTTPError as e: print(e) @click.command() @click.option('--xls-file', type=click.Path(exists=True), default=None, help="Read parameters from xls-file. Expected columns: Filename, iiif_url, scale_factor.") @click.option('--directory', type=click.Path(exists=True), default=None, help="Search directory for PPN**/*.xml files. Extract PPN and file number into image-url.") @click.option('--purpose', type=click.Choice(['NERD', 'OCR'], case_sensitive=False), default="NERD", help="Purpose of output tsv file. " "\n\nNERD: NER/NED application/ground-truth creation. " "\n\nOCR: OCR application/ground-truth creation. " "\n\ndefault: NERD.") def make_page2tsv_commands(xls_file, directory, purpose): if xls_file is not None: df = pd.read_excel(xls_file) for _, row in df.iterrows(): print('page2tsv $(OPTIONS) {}.xml {}.tsv --image-url={} --scale-factor={} --purpose={}'. format(row.Filename, row.Filename, row.iiif_url.replace('/full/full', '/left,top,width,height/full'), row.scale_factor, purpose)) elif directory is not None: for file in glob.glob('{}/**/*.xml'.format(directory), recursive=True): ma = re.match('(.*/(PPN[0-9]+)/.*?([0-9]+).*?).xml', file) if ma: print('page2tsv {} {}.tsv ' '--image-url=https://content.staatsbibliothek-berlin.de/dc/' '{}-{:08d}/left,top,width,height/full/0/default.jpg --scale-factor=1.0 --purpose={}'. format(file, ma.group(1), ma.group(2), int(ma.group(3)), purpose))