|
|
|
import argparse
|
|
|
|
import gc
|
|
|
|
import itertools
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Union, List, Tuple, Any
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
stderr = sys.stderr
|
|
|
|
sys.stderr = open(os.devnull, 'w')
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow.python.keras.saving.save import load_model
|
|
|
|
sys.stderr = stderr
|
|
|
|
|
|
|
|
from mpire import WorkerPool
|
|
|
|
from mpire.utils import make_single_arguments
|
|
|
|
|
|
|
|
|
|
|
|
class SbbBinarizer:
|
|
|
|
def __init__(self) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.models: List[Tuple[Any, int, int, int]] = []
|
|
|
|
|
|
|
|
def load_model(self, model_dir: Union[str, Path]):
|
|
|
|
model_dir = Path(model_dir)
|
|
|
|
model_paths = list(model_dir.glob('*.h5')) or list(model_dir.glob('*/'))
|
|
|
|
for path in model_paths:
|
|
|
|
model = load_model(str(path.absolute()), compile=False)
|
|
|
|
height = model.layers[len(model.layers) - 1].output_shape[1]
|
|
|
|
width = model.layers[len(model.layers) - 1].output_shape[2]
|
|
|
|
classes = model.layers[len(model.layers) - 1].output_shape[3]
|
|
|
|
self.models.append((model, height, width, classes))
|
|
|
|
|
|
|
|
def binarize_image_file(self, image_path: Path, save_path: Path):
|
|
|
|
if not image_path.exists():
|
|
|
|
raise ValueError(f"Image not found: {str(image_path)}")
|
|
|
|
|
|
|
|
# noinspection PyUnresolvedReferences
|
|
|
|
img = cv2.imread(str(image_path))
|
|
|
|
|
|
|
|
full_image = self.binarize_image(img)
|
|
|
|
|
|
|
|
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
# noinspection PyUnresolvedReferences
|
|
|
|
cv2.imwrite(str(save_path), full_image)
|
|
|
|
|
|
|
|
def binarize_image(self, img: np.ndarray) -> np.ndarray:
|
|
|
|
img_last = False
|
|
|
|
for model, model_height, model_width, _ in self.models:
|
|
|
|
img_res = self.binarize_image_by_model(img, model, model_height, model_width)
|
|
|
|
img_last = img_last + (img_res == 0)
|
|
|
|
img_last = (~img_last).astype(np.uint8) * 255
|
|
|
|
return img_last
|
|
|
|
|
|
|
|
def binarize_image_by_model(self, img: np.ndarray, model: Any, model_height: int, model_width: int) -> np.ndarray:
|
|
|
|
# Padded images must be multiples of model size
|
|
|
|
original_image_height, original_image_width, image_channels = img.shape
|
|
|
|
|
|
|
|
padded_image_height = math.ceil(original_image_height / model_height) * model_height
|
|
|
|
padded_image_width = math.ceil(original_image_width / model_width) * model_width
|
|
|
|
padded_image = np.zeros((padded_image_height, padded_image_width, image_channels))
|
|
|
|
padded_image[0:original_image_height, 0:original_image_width, :] = img[:, :, :]
|
|
|
|
|
|
|
|
image_batch = np.expand_dims(padded_image, 0) # Create the batch dimension
|
|
|
|
patches = tf.image.extract_patches(
|
|
|
|
images=image_batch,
|
|
|
|
sizes=[1, model_height, model_width, 1],
|
|
|
|
strides=[1, model_height, model_width, 1],
|
|
|
|
rates=[1, 1, 1, 1],
|
|
|
|
padding='SAME'
|
|
|
|
)
|
|
|
|
|
|
|
|
number_of_horizontal_patches = patches.shape[1]
|
|
|
|
number_of_vertical_patches = patches.shape[2]
|
|
|
|
total_number_of_patches = number_of_horizontal_patches * number_of_vertical_patches
|
|
|
|
target_shape = (total_number_of_patches, model_height, model_width, image_channels)
|
|
|
|
# Squeeze all image patches (n, m, width, height, channels) into a single big batch (b, width, height, channels)
|
|
|
|
image_patches = tf.reshape(patches, target_shape)
|
|
|
|
# Normalize the image to values between 0.0 - 1.0
|
|
|
|
image_patches = image_patches / float(255.0)
|
|
|
|
|
|
|
|
predicted_patches = model.predict(image_patches, verbose=0)
|
|
|
|
# We have to manually call garbage collection and clear_session here to avoid memory leaks.
|
|
|
|
# Taken from https://medium.com/dive-into-ml-ai/dealing-with-memory-leak-issue-in-keras-model-training-e703907a6501
|
|
|
|
gc.collect()
|
|
|
|
tf.keras.backend.clear_session()
|
|
|
|
|
|
|
|
# The result is a white-on-black image that needs to be inverted to be displayed as black-on-white image
|
|
|
|
# We do this by converting the binary values to a boolean numpy-array and then inverting the values
|
|
|
|
black_on_white_patches = np.invert(np.argmax(predicted_patches, axis=3).astype(bool))
|
|
|
|
# cv2 can't export a boolean numpy array into a black-and-white PNG image, so we have to convert it to uint8 (grayscale) values
|
|
|
|
grayscale_patches = black_on_white_patches.astype(np.uint8) * 255
|
|
|
|
full_image_with_padding = self._patches_to_image(
|
|
|
|
grayscale_patches,
|
|
|
|
padded_image_height,
|
|
|
|
padded_image_width,
|
|
|
|
model_height,
|
|
|
|
model_width
|
|
|
|
)
|
|
|
|
full_image = full_image_with_padding[0:original_image_height, 0:original_image_width]
|
|
|
|
return full_image
|
|
|
|
|
|
|
|
def _patches_to_image(self, patches: np.ndarray, image_height: int, image_width: int, patch_height: int, patch_width: int):
|
|
|
|
height = math.ceil(image_height / patch_height) * patch_height
|
|
|
|
width = math.ceil(image_width / patch_width) * patch_width
|
|
|
|
|
|
|
|
image_reshaped = np.reshape(
|
|
|
|
np.squeeze(patches),
|
|
|
|
[height // patch_height, width // patch_width, patch_height, patch_width]
|
|
|
|
)
|
|
|
|
image_transposed = np.transpose(a=image_reshaped, axes=[0, 2, 1, 3])
|
|
|
|
image_resized = np.reshape(image_transposed, [height, width])
|
|
|
|
return image_resized
|
|
|
|
|
|
|
|
|
|
|
|
def split_list_into_worker_batches(files: List[Any], number_of_workers: int) -> List[List[Any]]:
|
|
|
|
""" Splits any given list into batches for the specified number of workers and returns a list of lists. """
|
|
|
|
batches = []
|
|
|
|
batch_size = math.ceil(len(files) / number_of_workers)
|
|
|
|
batch_start = 0
|
|
|
|
for i in range(1, number_of_workers + 1):
|
|
|
|
batch_end = i * batch_size
|
|
|
|
file_batch_to_delete = files[batch_start: batch_end]
|
|
|
|
batches.append(file_batch_to_delete)
|
|
|
|
batch_start = batch_end
|
|
|
|
return batches
|
|
|
|
|
|
|
|
|
|
|
|
def batch_predict(input_data):
|
|
|
|
model_dir, input_images, output_images, worker_number = input_data
|
|
|
|
print(f"Setting visible cuda devices to {str(worker_number)}")
|
|
|
|
# Each worker thread will be assigned only one of the available GPUs to allow multiprocessing across GPUs
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_number)
|
|
|
|
|
|
|
|
binarizer = SbbBinarizer()
|
|
|
|
binarizer.load_model(model_dir)
|
|
|
|
|
|
|
|
for image_path, output_path in zip(input_images, output_images):
|
|
|
|
binarizer.binarize_image(image_path=image_path, save_path=output_path)
|
|
|
|
print(f"Binarized {image_path}")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('-m', '--model_dir', default="model_2021_03_09", help="Path to the directory where the TF model resides or path to an h5 file.")
|
|
|
|
parser.add_argument('-i', '--input-path', required=True)
|
|
|
|
parser.add_argument('-o', '--output-path', required=True)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
input_path = Path(args.input_path)
|
|
|
|
output_path = Path(args.output_path)
|
|
|
|
model_directory = args.model_dir
|
|
|
|
|
|
|
|
if input_path.is_dir():
|
|
|
|
print(f"Enumerating all PNG files in {str(input_path)}")
|
|
|
|
all_input_images = list(input_path.rglob("*.png"))
|
|
|
|
print(f"Filtering images that have already been binarized in {str(output_path)}")
|
|
|
|
input_images = [i for i in all_input_images if not (output_path / (i.relative_to(input_path))).exists()]
|
|
|
|
output_images = [output_path / (i.relative_to(input_path)) for i in input_images]
|
|
|
|
input_images = [i for i in input_images]
|
|
|
|
|
|
|
|
print(f"Starting batch-binarization of {len(input_images)} images")
|
|
|
|
|
|
|
|
number_of_gpus = len(tf.config.list_physical_devices('GPU'))
|
|
|
|
number_of_workers = max(1, number_of_gpus)
|
|
|
|
image_batches = split_list_into_worker_batches(input_images, number_of_workers)
|
|
|
|
output_batches = split_list_into_worker_batches(output_images, number_of_workers)
|
|
|
|
|
|
|
|
# Must use spawn to create completely new process that has its own resources to properly multiprocess across GPUs
|
|
|
|
with WorkerPool(n_jobs=number_of_workers, start_method='spawn') as pool:
|
|
|
|
model_dirs = itertools.repeat(model_directory, len(image_batches))
|
|
|
|
input_data = zip(model_dirs, image_batches, output_batches, range(number_of_workers))
|
|
|
|
contents = pool.map_unordered(
|
|
|
|
batch_predict,
|
|
|
|
make_single_arguments(input_data),
|
|
|
|
iterable_len=number_of_workers,
|
|
|
|
progress_bar=False
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
binarizer = SbbBinarizer()
|
|
|
|
binarizer.load_model(model_directory)
|
|
|
|
binarizer.binarize_image(image_path=input_path, save_path=output_path)
|