You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sbb_binarization/sbb_binarize/sbb_binarize.py

188 lines
8.4 KiB
Python

import argparse
import gc
import itertools
import math
import os
import sys
from pathlib import Path
from typing import Union, List, Tuple, Any
5 years ago
import cv2
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
stderr = sys.stderr
sys.stderr = open(os.devnull, 'w')
5 years ago
import tensorflow as tf
from tensorflow.python.keras.saving.save import load_model
sys.stderr = stderr
from mpire import WorkerPool
from mpire.utils import make_single_arguments
class SbbBinarizer:
def __init__(self) -> None:
super().__init__()
self.models: List[Tuple[Any, int, int, int]] = []
def load_model(self, model_dir: Union[str, Path]):
model_dir = Path(model_dir)
model_paths = list(model_dir.glob('*.h5')) or list(model_dir.glob('*/'))
for path in model_paths:
model = load_model(str(path.absolute()), compile=False)
height = model.layers[len(model.layers) - 1].output_shape[1]
width = model.layers[len(model.layers) - 1].output_shape[2]
classes = model.layers[len(model.layers) - 1].output_shape[3]
self.models.append((model, height, width, classes))
def binarize_image_file(self, image_path: Path, save_path: Path):
if not image_path.exists():
raise ValueError(f"Image not found: {str(image_path)}")
# noinspection PyUnresolvedReferences
img = cv2.imread(str(image_path))
full_image = self.binarize_image(img)
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
# noinspection PyUnresolvedReferences
cv2.imwrite(str(save_path), full_image)
def binarize_image(self, img: np.ndarray) -> np.ndarray:
img_last = False
for model, model_height, model_width, _ in self.models:
img_res = self.binarize_image_by_model(img, model, model_height, model_width)
img_last = img_last + (img_res == 0)
img_last = (~img_last).astype(np.uint8) * 255
return img_last
def binarize_image_by_model(self, img: np.ndarray, model: Any, model_height: int, model_width: int) -> np.ndarray:
# Padded images must be multiples of model size
original_image_height, original_image_width, image_channels = img.shape
padded_image_height = math.ceil(original_image_height / model_height) * model_height
padded_image_width = math.ceil(original_image_width / model_width) * model_width
padded_image = np.zeros((padded_image_height, padded_image_width, image_channels))
padded_image[0:original_image_height, 0:original_image_width, :] = img[:, :, :]
image_batch = np.expand_dims(padded_image, 0) # Create the batch dimension
patches = tf.image.extract_patches(
images=image_batch,
sizes=[1, model_height, model_width, 1],
strides=[1, model_height, model_width, 1],
rates=[1, 1, 1, 1],
padding='SAME'
)
number_of_horizontal_patches = patches.shape[1]
number_of_vertical_patches = patches.shape[2]
total_number_of_patches = number_of_horizontal_patches * number_of_vertical_patches
target_shape = (total_number_of_patches, model_height, model_width, image_channels)
# Squeeze all image patches (n, m, width, height, channels) into a single big batch (b, width, height, channels)
image_patches = tf.reshape(patches, target_shape)
# Normalize the image to values between 0.0 - 1.0
image_patches = image_patches / float(255.0)
predicted_patches = model.predict(image_patches, verbose=0)
# We have to manually call garbage collection and clear_session here to avoid memory leaks.
# Taken from https://medium.com/dive-into-ml-ai/dealing-with-memory-leak-issue-in-keras-model-training-e703907a6501
gc.collect()
tf.keras.backend.clear_session()
# The result is a white-on-black image that needs to be inverted to be displayed as black-on-white image
# We do this by converting the binary values to a boolean numpy-array and then inverting the values
black_on_white_patches = np.invert(np.argmax(predicted_patches, axis=3).astype(bool))
# cv2 can't export a boolean numpy array into a black-and-white PNG image, so we have to convert it to uint8 (grayscale) values
grayscale_patches = black_on_white_patches.astype(np.uint8) * 255
full_image_with_padding = self._patches_to_image(
grayscale_patches,
padded_image_height,
padded_image_width,
model_height,
model_width
)
full_image = full_image_with_padding[0:original_image_height, 0:original_image_width]
return full_image
def _patches_to_image(self, patches: np.ndarray, image_height: int, image_width: int, patch_height: int, patch_width: int):
height = math.ceil(image_height / patch_height) * patch_height
width = math.ceil(image_width / patch_width) * patch_width
image_reshaped = np.reshape(
np.squeeze(patches),
[height // patch_height, width // patch_width, patch_height, patch_width]
)
image_transposed = np.transpose(a=image_reshaped, axes=[0, 2, 1, 3])
image_resized = np.reshape(image_transposed, [height, width])
return image_resized
def split_list_into_worker_batches(files: List[Any], number_of_workers: int) -> List[List[Any]]:
""" Splits any given list into batches for the specified number of workers and returns a list of lists. """
batches = []
batch_size = math.ceil(len(files) / number_of_workers)
batch_start = 0
for i in range(1, number_of_workers + 1):
batch_end = i * batch_size
file_batch_to_delete = files[batch_start: batch_end]
batches.append(file_batch_to_delete)
batch_start = batch_end
return batches
def batch_predict(input_data):
model_dir, input_images, output_images, worker_number = input_data
print(f"Setting visible cuda devices to {str(worker_number)}")
# Each worker thread will be assigned only one of the available GPUs to allow multiprocessing across GPUs
os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_number)
binarizer = SbbBinarizer()
binarizer.load_model(model_dir)
for image_path, output_path in zip(input_images, output_images):
binarizer.binarize_image(image_path=image_path, save_path=output_path)
print(f"Binarized {image_path}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model_dir', default="model_2021_03_09", help="Path to the directory where the TF model resides or path to an h5 file.")
parser.add_argument('-i', '--input-path', required=True)
parser.add_argument('-o', '--output-path', required=True)
args = parser.parse_args()
input_path = Path(args.input_path)
output_path = Path(args.output_path)
model_directory = args.model_dir
if input_path.is_dir():
print(f"Enumerating all PNG files in {str(input_path)}")
all_input_images = list(input_path.rglob("*.png"))
print(f"Filtering images that have already been binarized in {str(output_path)}")
input_images = [i for i in all_input_images if not (output_path / (i.relative_to(input_path))).exists()]
output_images = [output_path / (i.relative_to(input_path)) for i in input_images]
input_images = [i for i in input_images]
print(f"Starting batch-binarization of {len(input_images)} images")
number_of_gpus = len(tf.config.list_physical_devices('GPU'))
number_of_workers = max(1, number_of_gpus)
image_batches = split_list_into_worker_batches(input_images, number_of_workers)
output_batches = split_list_into_worker_batches(output_images, number_of_workers)
# Must use spawn to create completely new process that has its own resources to properly multiprocess across GPUs
with WorkerPool(n_jobs=number_of_workers, start_method='spawn') as pool:
model_dirs = itertools.repeat(model_directory, len(image_batches))
input_data = zip(model_dirs, image_batches, output_batches, range(number_of_workers))
contents = pool.map_unordered(
batch_predict,
make_single_arguments(input_data),
iterable_len=number_of_workers,
progress_bar=False
)
else:
binarizer = SbbBinarizer()
binarizer.load_model(model_directory)
binarizer.binarize_image(image_path=input_path, save_path=output_path)