|
|
|
"""
|
|
|
|
Tool to load model and binarize a given image.
|
|
|
|
"""
|
|
|
|
|
|
|
|
import sys
|
|
|
|
from glob import glob
|
|
|
|
from os import environ, devnull
|
|
|
|
from os.path import join
|
|
|
|
from warnings import catch_warnings, simplefilter
|
|
|
|
import os
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from PIL import Image
|
|
|
|
import cv2
|
|
|
|
environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
stderr = sys.stderr
|
|
|
|
sys.stderr = open(devnull, 'w')
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow.keras.models import load_model
|
|
|
|
from tensorflow.python.keras import backend as tensorflow_backend
|
|
|
|
sys.stderr = stderr
|
|
|
|
|
|
|
|
|
|
|
|
import logging
|
|
|
|
|
|
|
|
def resize_image(img_in, input_height, input_width):
|
|
|
|
return cv2.resize(img_in, (input_width, input_height), interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
|
class SbbBinarizer:
|
|
|
|
|
|
|
|
def __init__(self, model_dir, logger=None):
|
|
|
|
self.model_dir = model_dir
|
|
|
|
self.log = logger if logger else logging.getLogger('SbbBinarizer')
|
|
|
|
|
|
|
|
self.start_new_session()
|
|
|
|
|
|
|
|
self.model_files = glob(self.model_dir+"/*/", recursive = True)
|
|
|
|
|
|
|
|
self.models = []
|
|
|
|
for model_file in self.model_files:
|
|
|
|
self.models.append(self.load_model(model_file))
|
|
|
|
|
|
|
|
def start_new_session(self):
|
|
|
|
config = tf.compat.v1.ConfigProto()
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
|
|
|
|
self.session = tf.compat.v1.Session(config=config) # tf.InteractiveSession()
|
|
|
|
tensorflow_backend.set_session(self.session)
|
|
|
|
|
|
|
|
def end_session(self):
|
|
|
|
tensorflow_backend.clear_session()
|
|
|
|
self.session.close()
|
|
|
|
del self.session
|
|
|
|
|
|
|
|
def load_model(self, model_name):
|
|
|
|
model = load_model(join(self.model_dir, model_name), compile=False)
|
|
|
|
model_height = model.layers[len(model.layers)-1].output_shape[1]
|
|
|
|
model_width = model.layers[len(model.layers)-1].output_shape[2]
|
|
|
|
n_classes = model.layers[len(model.layers)-1].output_shape[3]
|
|
|
|
return model, model_height, model_width, n_classes
|
|
|
|
|
|
|
|
def predict(self, model_in, img, use_patches, n_batch_inference=5):
|
|
|
|
tensorflow_backend.set_session(self.session)
|
|
|
|
model, model_height, model_width, n_classes = model_in
|
|
|
|
|
|
|
|
img_org_h = img.shape[0]
|
|
|
|
img_org_w = img.shape[1]
|
|
|
|
|
|
|
|
if img.shape[0] < model_height and img.shape[1] >= model_width:
|
|
|
|
img_padded = np.zeros(( model_height, img.shape[1], img.shape[2] ))
|
|
|
|
|
|
|
|
index_start_h = int( abs( img.shape[0] - model_height) /2.)
|
|
|
|
index_start_w = 0
|
|
|
|
|
|
|
|
img_padded [ index_start_h: index_start_h+img.shape[0], :, : ] = img[:,:,:]
|
|
|
|
|
|
|
|
elif img.shape[0] >= model_height and img.shape[1] < model_width:
|
|
|
|
img_padded = np.zeros(( img.shape[0], model_width, img.shape[2] ))
|
|
|
|
|
|
|
|
index_start_h = 0
|
|
|
|
index_start_w = int( abs( img.shape[1] - model_width) /2.)
|
|
|
|
|
|
|
|
img_padded [ :, index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:]
|
|
|
|
|
|
|
|
|
|
|
|
elif img.shape[0] < model_height and img.shape[1] < model_width:
|
|
|
|
img_padded = np.zeros(( model_height, model_width, img.shape[2] ))
|
|
|
|
|
|
|
|
index_start_h = int( abs( img.shape[0] - model_height) /2.)
|
|
|
|
index_start_w = int( abs( img.shape[1] - model_width) /2.)
|
|
|
|
|
|
|
|
img_padded [ index_start_h: index_start_h+img.shape[0], index_start_w: index_start_w+img.shape[1], : ] = img[:,:,:]
|
|
|
|
|
|
|
|
else:
|
|
|
|
index_start_h = 0
|
|
|
|
index_start_w = 0
|
|
|
|
img_padded = np.copy(img)
|
|
|
|
|
|
|
|
|
|
|
|
img = np.copy(img_padded)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if use_patches:
|
|
|
|
|
|
|
|
margin = int(0.1 * model_width)
|
|
|
|
|
|
|
|
width_mid = model_width - 2 * margin
|
|
|
|
height_mid = model_height - 2 * margin
|
|
|
|
|
|
|
|
|
|
|
|
img = img / float(255.0)
|
|
|
|
|
|
|
|
img_h = img.shape[0]
|
|
|
|
img_w = img.shape[1]
|
|
|
|
|
|
|
|
prediction_true = np.zeros((img_h, img_w, 3))
|
|
|
|
mask_true = np.zeros((img_h, img_w))
|
|
|
|
nxf = img_w / float(width_mid)
|
|
|
|
nyf = img_h / float(height_mid)
|
|
|
|
|
|
|
|
if nxf > int(nxf):
|
|
|
|
nxf = int(nxf) + 1
|
|
|
|
else:
|
|
|
|
nxf = int(nxf)
|
|
|
|
|
|
|
|
if nyf > int(nyf):
|
|
|
|
nyf = int(nyf) + 1
|
|
|
|
else:
|
|
|
|
nyf = int(nyf)
|
|
|
|
|
|
|
|
|
|
|
|
list_i_s = []
|
|
|
|
list_j_s = []
|
|
|
|
list_x_u = []
|
|
|
|
list_x_d = []
|
|
|
|
list_y_u = []
|
|
|
|
list_y_d = []
|
|
|
|
|
|
|
|
batch_indexer = 0
|
|
|
|
|
|
|
|
img_patch = np.zeros((n_batch_inference, model_height, model_width,3))
|
|
|
|
|
|
|
|
for i in range(nxf):
|
|
|
|
for j in range(nyf):
|
|
|
|
|
|
|
|
if i == 0:
|
|
|
|
index_x_d = i * width_mid
|
|
|
|
index_x_u = index_x_d + model_width
|
|
|
|
elif i > 0:
|
|
|
|
index_x_d = i * width_mid
|
|
|
|
index_x_u = index_x_d + model_width
|
|
|
|
|
|
|
|
if j == 0:
|
|
|
|
index_y_d = j * height_mid
|
|
|
|
index_y_u = index_y_d + model_height
|
|
|
|
elif j > 0:
|
|
|
|
index_y_d = j * height_mid
|
|
|
|
index_y_u = index_y_d + model_height
|
|
|
|
|
|
|
|
if index_x_u > img_w:
|
|
|
|
index_x_u = img_w
|
|
|
|
index_x_d = img_w - model_width
|
|
|
|
if index_y_u > img_h:
|
|
|
|
index_y_u = img_h
|
|
|
|
index_y_d = img_h - model_height
|
|
|
|
|
|
|
|
|
|
|
|
list_i_s.append(i)
|
|
|
|
list_j_s.append(j)
|
|
|
|
list_x_u.append(index_x_u)
|
|
|
|
list_x_d.append(index_x_d)
|
|
|
|
list_y_d.append(index_y_d)
|
|
|
|
list_y_u.append(index_y_u)
|
|
|
|
|
|
|
|
|
|
|
|
img_patch[batch_indexer,:,:,:] = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
|
|
|
|
|
|
|
batch_indexer = batch_indexer + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if batch_indexer == n_batch_inference:
|
|
|
|
|
|
|
|
label_p_pred = model.predict(img_patch,verbose=0)
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)
|
|
|
|
|
|
|
|
#print(seg.shape, len(seg), len(list_i_s))
|
|
|
|
|
|
|
|
indexer_inside_batch = 0
|
|
|
|
for i_batch, j_batch in zip(list_i_s, list_j_s):
|
|
|
|
seg_in = seg[indexer_inside_batch,:,:]
|
|
|
|
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
|
|
|
index_y_u_in = list_y_u[indexer_inside_batch]
|
|
|
|
index_y_d_in = list_y_d[indexer_inside_batch]
|
|
|
|
|
|
|
|
index_x_u_in = list_x_u[indexer_inside_batch]
|
|
|
|
index_x_d_in = list_x_d[indexer_inside_batch]
|
|
|
|
|
|
|
|
if i_batch == 0 and j_batch == 0:
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch == nxf - 1 and j_batch == nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
|
|
|
|
elif i_batch == 0 and j_batch == nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch == nxf - 1 and j_batch == 0:
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
|
|
|
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
|
|
|
|
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
|
|
|
|
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
|
|
|
|
else:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
|
|
|
|
|
|
|
|
indexer_inside_batch = indexer_inside_batch +1
|
|
|
|
|
|
|
|
|
|
|
|
list_i_s = []
|
|
|
|
list_j_s = []
|
|
|
|
list_x_u = []
|
|
|
|
list_x_d = []
|
|
|
|
list_y_u = []
|
|
|
|
list_y_d = []
|
|
|
|
|
|
|
|
batch_indexer = 0
|
|
|
|
|
|
|
|
img_patch = np.zeros((n_batch_inference, model_height, model_width,3))
|
|
|
|
|
|
|
|
elif i==(nxf-1) and j==(nyf-1):
|
|
|
|
label_p_pred = model.predict(img_patch,verbose=0)
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)
|
|
|
|
|
|
|
|
#print(seg.shape, len(seg), len(list_i_s))
|
|
|
|
|
|
|
|
indexer_inside_batch = 0
|
|
|
|
for i_batch, j_batch in zip(list_i_s, list_j_s):
|
|
|
|
seg_in = seg[indexer_inside_batch,:,:]
|
|
|
|
seg_color = np.repeat(seg_in[:, :, np.newaxis], 3, axis=2)
|
|
|
|
|
|
|
|
index_y_u_in = list_y_u[indexer_inside_batch]
|
|
|
|
index_y_d_in = list_y_d[indexer_inside_batch]
|
|
|
|
|
|
|
|
index_x_u_in = list_x_u[indexer_inside_batch]
|
|
|
|
index_x_d_in = list_x_d[indexer_inside_batch]
|
|
|
|
|
|
|
|
if i_batch == 0 and j_batch == 0:
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch == nxf - 1 and j_batch == nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
|
|
|
|
elif i_batch == 0 and j_batch == nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch == nxf - 1 and j_batch == 0:
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
|
|
|
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
|
|
|
|
elif i_batch == 0 and j_batch != 0 and j_batch != nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + 0 : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch == nxf - 1 and j_batch != 0 and j_batch != nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - 0, :] = seg_color
|
|
|
|
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == 0:
|
|
|
|
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + 0 : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
|
|
|
|
elif i_batch != 0 and i_batch != nxf - 1 and j_batch == nyf - 1:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - 0, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
|
|
|
|
else:
|
|
|
|
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
|
|
|
prediction_true[index_y_d_in + margin : index_y_u_in - margin, index_x_d_in + margin : index_x_u_in - margin, :] = seg_color
|
|
|
|
|
|
|
|
indexer_inside_batch = indexer_inside_batch +1
|
|
|
|
|
|
|
|
|
|
|
|
list_i_s = []
|
|
|
|
list_j_s = []
|
|
|
|
list_x_u = []
|
|
|
|
list_x_d = []
|
|
|
|
list_y_u = []
|
|
|
|
list_y_d = []
|
|
|
|
|
|
|
|
batch_indexer = 0
|
|
|
|
|
|
|
|
img_patch = np.zeros((n_batch_inference, model_height, model_width,3))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prediction_true = prediction_true[index_start_h: index_start_h+img_org_h, index_start_w: index_start_w+img_org_w,:]
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
|
|
|
|
else:
|
|
|
|
img_h_page = img.shape[0]
|
|
|
|
img_w_page = img.shape[1]
|
|
|
|
img = img / float(255.0)
|
|
|
|
img = resize_image(img, model_height, model_width)
|
|
|
|
|
|
|
|
label_p_pred = model.predict(img.reshape(1, img.shape[0], img.shape[1], img.shape[2]))
|
|
|
|
|
|
|
|
seg = np.argmax(label_p_pred, axis=3)[0]
|
|
|
|
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
|
|
|
prediction_true = resize_image(seg_color, img_h_page, img_w_page)
|
|
|
|
prediction_true = prediction_true.astype(np.uint8)
|
|
|
|
return prediction_true[:,:,0]
|
|
|
|
|
|
|
|
def run(self, image=None, image_path=None, save=None, use_patches=False, dir_in=None, dir_out=None):
|
|
|
|
print(dir_in,'dir_in')
|
|
|
|
if not dir_in:
|
|
|
|
if (image is not None and image_path is not None) or \
|
|
|
|
(image is None and image_path is None):
|
|
|
|
raise ValueError("Must pass either a opencv2 image or an image_path")
|
|
|
|
if image_path is not None:
|
|
|
|
image = cv2.imread(image_path)
|
|
|
|
img_last = 0
|
|
|
|
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
|
|
|
|
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
|
|
|
|
|
|
|
|
res = self.predict(model, image, use_patches)
|
|
|
|
|
|
|
|
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
|
|
|
res[:, :][res[:, :] == 0] = 2
|
|
|
|
res = res - 1
|
|
|
|
res = res * 255
|
|
|
|
img_fin[:, :, 0] = res
|
|
|
|
img_fin[:, :, 1] = res
|
|
|
|
img_fin[:, :, 2] = res
|
|
|
|
|
|
|
|
img_fin = img_fin.astype(np.uint8)
|
|
|
|
img_fin = (res[:, :] == 0) * 255
|
|
|
|
img_last = img_last + img_fin
|
|
|
|
|
|
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
|
|
img_last[:, :][img_last[:, :] > 0] = 255
|
|
|
|
img_last = (img_last[:, :] == 0) * 255
|
|
|
|
if save:
|
|
|
|
cv2.imwrite(save, img_last)
|
|
|
|
return img_last
|
|
|
|
else:
|
|
|
|
ls_imgs = os.listdir(dir_in)
|
|
|
|
for image_name in ls_imgs:
|
|
|
|
image_stem = image_name.split('.')[0]
|
|
|
|
print(image_name,'image_name')
|
|
|
|
image = cv2.imread(os.path.join(dir_in,image_name) )
|
|
|
|
img_last = 0
|
|
|
|
for n, (model, model_file) in enumerate(zip(self.models, self.model_files)):
|
|
|
|
self.log.info('Predicting with model %s [%s/%s]' % (model_file, n + 1, len(self.model_files)))
|
|
|
|
|
|
|
|
res = self.predict(model, image, use_patches)
|
|
|
|
|
|
|
|
img_fin = np.zeros((res.shape[0], res.shape[1], 3))
|
|
|
|
res[:, :][res[:, :] == 0] = 2
|
|
|
|
res = res - 1
|
|
|
|
res = res * 255
|
|
|
|
img_fin[:, :, 0] = res
|
|
|
|
img_fin[:, :, 1] = res
|
|
|
|
img_fin[:, :, 2] = res
|
|
|
|
|
|
|
|
img_fin = img_fin.astype(np.uint8)
|
|
|
|
img_fin = (res[:, :] == 0) * 255
|
|
|
|
img_last = img_last + img_fin
|
|
|
|
|
|
|
|
kernel = np.ones((5, 5), np.uint8)
|
|
|
|
img_last[:, :][img_last[:, :] > 0] = 255
|
|
|
|
img_last = (img_last[:, :] == 0) * 255
|
|
|
|
|
|
|
|
cv2.imwrite(os.path.join(dir_out,image_stem+'.png'), img_last)
|