# sbb_binarization
> Document Image Binarization using pre-trained models
[![pip release](https://img.shields.io/pypi/v/sbb-binarization.svg)](https://pypi.org/project/sbb-binarization/)
[![CircleCI test](https://circleci.com/gh/qurator-spk/sbb_binarization.svg?style=shield)](https://circleci.com/gh/qurator-spk/sbb_binarization)
[![GHActions Tests](https://github.com/qurator-spk/sbb_binarization/actions/workflows/test.yml/badge.svg)](https://github.com/qurator-spk/sbb_binarization/actions/workflows/test.yml)
## Examples
## Installation
Python versions `3.7-3.10` are currently supported.
You can either install via
```
pip install sbb-binarization
```
or clone the repository, enter it and install (editable) with
```
git clone git@github.com:qurator-spk/sbb_binarization.git
cd sbb_binarization; pip install -e .
```
### Models
Pre-trained models can be downloaded from the locations below. We also provide the models and [model card](https://huggingface.co/SBB/sbb_binarization) on 🤗
| Version | Format | Download |
|----------|:-------------:|-------|
| 2021-03-09 | `SavedModel` | https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip |
| 2021-03-09 | `HDF5` | https://qurator-data.de/sbb_binarization/2021-03-09/models.tar.gz |
| 2020-01-16 | `SavedModel` | https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2020_01_16.zip |
| 2020-01-16 | `HDF5` | https://qurator-data.de/sbb_binarization/2020-01-16/models.tar.gz |
With [OCR-D](https://ocr-d.de/), you can use the [Resource Manager](https://ocr-d.de/en/models) to deploy models, e.g.
ocrd resmgr download ocrd-sbb-binarize "*"
## Usage
```sh
sbb_binarize \
-m \
\