# sbb_binarization
> Document Image Binarization
[![pip release](https://img.shields.io/pypi/v/sbb-binarization.svg)](https://pypi.org/project/sbb-binarization/)
[![GHActions CI](https://github.com/qurator-spk/sbb_binarization/actions/workflows/test.yml/badge.svg)](https://github.com/qurator-spk/sbb_binarization/actions/workflows/test.yml)
[![GHActions CD](https://github.com/qurator-spk/sbb_binarization/actions/workflows/docker-image.yml/badge.svg)](https://github.com/qurator-spk/sbb_binarization/actions/workflows/docker-image.yml)
## Installation
Python `3.8-3.11` with Tensorflow `<2.13` are currently supported. While newer versions might also work, we currently don't test this.
You can either install from PyPI via
pip install sbb-binarization
or clone the repository, enter it and install (editable) with
git clone git@github.com:qurator-spk/sbb_binarization.git
cd sbb_binarization; pip install -e .
Alternatively, download the prebuilt image from Dockerhub:
docker pull ocrd/sbb_binarization
### Models
Pre-trained models can be downloaded from the locations below. We also provide models and [model cards](https://huggingface.co/SBB/sbb_binarization) on 🤗
| Version | Format | Download |
|------------|:-------------:|------------------------------------------------------------------------------------------------------|
| 2021-03-09 | `SavedModel` | https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2021_03_09.zip |
| 2021-03-09 | `HDF5` | https://qurator-data.de/sbb_binarization/2021-03-09/models.tar.gz |
| 2020-01-16 | `SavedModel` | https://github.com/qurator-spk/sbb_binarization/releases/download/v0.0.11/saved_model_2020_01_16.zip |
| 2020-01-16 | `HDF5` | https://qurator-data.de/sbb_binarization/2020-01-16/models.tar.gz |
With [OCR-D](https://ocr-d.de/), you can also use the [Resource Manager](https://ocr-d.de/en/models), e.g.
ocrd resmgr download ocrd-sbb-binarize "*"
## Usage
```sh
sbb_binarize \
-m \
\