# Binarization > Binarization for document images ## Examples ## Introduction This tool performs document image binarization using a trained ResNet50-UNet model. ## Installation Clone the repository, enter it and run `pip install .` ### Models Pre-trained models in HDF5 format can be downloaded from here: https://qurator-data.de/sbb_binarization/ We also provide a Tensorflow `saved_model` via Huggingface: https://huggingface.co/SBB/sbb_binarization With [OCR-D](https://ocr-d.de/), you can use the [Resource Manager](Tensorflow SavedModel) to deploy models, e.g. ocrd resmgr download ocrd-sbb-binarize "*" ## Usage ```sh sbb_binarize \ -m \ ``` Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results. ### Example sbb_binarize -m /path/to/model/ myimage.tif myimage-bin.tif To use the [OCR-D](https://ocr-d.de/en/spec/cli) interface: ocrd-sbb-binarize -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model default ## Testing For simple smoke tests, the following will - download models - download test data - run the OCR-D wrapper (on page and region level): make model make test