# Binarization > Binarization for document images ## Examples ## Introduction This tool performs document image binarization using a trained ResNet50-UNet model. ## Installation Clone the repository, enter it and run `pip install .` ### Models Pre-trained models in `h5` format can be downloaded from here: https://qurator-data.de/sbb_binarization/ We also provide a Tensorflow `saved_model` via Huggingface: https://huggingface.co/SBB/sbb_binarization ## Usage ```sh sbb_binarize \ --patches \ -m \ \ ``` In virtually all cases, applying the `--patches` flag will improve the quality of results. Images containing a lot of border noise (black pixels) should be cropped beforehand to improve the quality of results. ### Example ```sh sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif ``` To use the [OCR-D](https://ocr-d.de/) interface: ```sh ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization" ```