|
|
@ -260,6 +260,8 @@ def ner(model_id):
|
|
|
|
for (tokens, word_predictions), (input_sentence, _) in zip(prediction, sentences):
|
|
|
|
for (tokens, word_predictions), (input_sentence, _) in zip(prediction, sentences):
|
|
|
|
|
|
|
|
|
|
|
|
original_text = "".join(input_sentence).replace(" ", "")
|
|
|
|
original_text = "".join(input_sentence).replace(" ", "")
|
|
|
|
|
|
|
|
original_word_positions = \
|
|
|
|
|
|
|
|
[pos for positions in [[idx] * len(word) for idx, word in enumerate(input_sentence)] for pos in positions]
|
|
|
|
|
|
|
|
|
|
|
|
word = ''
|
|
|
|
word = ''
|
|
|
|
last_prediction = 'O'
|
|
|
|
last_prediction = 'O'
|
|
|
@ -274,8 +276,13 @@ def ner(model_id):
|
|
|
|
word = ''
|
|
|
|
word = ''
|
|
|
|
|
|
|
|
|
|
|
|
if token == '[UNK]':
|
|
|
|
if token == '[UNK]':
|
|
|
|
|
|
|
|
|
|
|
|
orig_pos = len("".join([pred['word'] for pred in output_sentence]) + word)
|
|
|
|
orig_pos = len("".join([pred['word'] for pred in output_sentence]) + word)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if orig_pos > 0 and original_word_positions[orig_pos-1] != original_word_positions[orig_pos]:
|
|
|
|
|
|
|
|
output_sentence.append({'word': word, 'prediction': last_prediction})
|
|
|
|
|
|
|
|
word = ''
|
|
|
|
|
|
|
|
|
|
|
|
word += original_text[orig_pos]
|
|
|
|
word += original_text[orig_pos]
|
|
|
|
|
|
|
|
|
|
|
|
continue
|
|
|
|
continue
|
|
|
|