fix NER output; fix BERT Tokenizer

pull/2/head
Kai Labusch 5 years ago
parent b24687c484
commit 9bf2e6f51b

@ -37,7 +37,8 @@ class InputExample(object):
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id, tokens):
def __init__(self, guid, input_ids, input_mask, segment_ids, label_id, tokens):
self.guid = guid
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
@ -74,6 +75,8 @@ class WikipediaDataset(Dataset):
# noinspection PyUnresolvedReferences
self._random_state = np.random.RandomState(seed=self._seed)
self._features = []
self._reset()
return
@ -85,9 +88,8 @@ class WikipediaDataset(Dataset):
return int(self._counter) % int(1.0 / self._no_entity_fraction) != 0
def __getitem__(self, index):
def _get_features(self):
del index
if self._counter > self._data_epochs * self._epoch_size:
self._reset()
@ -113,14 +115,24 @@ class WikipediaDataset(Dataset):
sample = InputExample(guid="%s-%s" % (self._set_file, self._counter),
text_a=sen_words, text_b=None, label=sen_tags)
features = convert_examples_to_features(sample, self._label_map, self._max_seq_length, self._tokenizer)
return [fe for fe in
convert_examples_to_features(sample, self._label_map, self._max_seq_length, self._tokenizer)]
def __getitem__(self, index):
del index
if len(self._features) == 0:
self._features = self._get_features()
fe = self._features.pop()
self._counter += 1
return torch.tensor(features.input_ids, dtype=torch.long), \
torch.tensor(features.input_mask, dtype=torch.long), \
torch.tensor(features.segment_ids, dtype=torch.long), \
torch.tensor(features.label_id, dtype=torch.long)
return torch.tensor(fe.input_ids, dtype=torch.long), \
torch.tensor(fe.input_mask, dtype=torch.long), \
torch.tensor(fe.segment_ids, dtype=torch.long), \
torch.tensor(fe.label_id, dtype=torch.long)
def __len__(self):
@ -324,8 +336,8 @@ class NerProcessor(DataProcessor):
sequential=False):
if features is None:
features = [convert_examples_to_features(ex, label_map, max_seq_length, tokenizer)
for ex in examples]
features = [fe for ex in examples for fe in
convert_examples_to_features(ex, label_map, max_seq_length, tokenizer)]
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
@ -362,74 +374,59 @@ class NerProcessor(DataProcessor):
return data
def convert_examples_to_features(example, label_map, max_seq_length, tokenizer):
def convert_examples_to_features(example, label_map, max_seq_len, tokenizer):
"""
:param example: instance of InputExample
:param label_map:
:param max_seq_length:
:param tokenizer:
:param label_map: Maps labels like B-ORG ... to numbers (ids).
:param max_seq_len: Maximum length of sequences to be delivered to the model.
:param tokenizer: BERT-Tokenizer
:return:
"""
words = example.text_a
word_labels = example.label
tokens = []
labels = []
for i, word in enumerate(words):
for i, word in enumerate(example.text_a): # example.text_a is a sequence of words
token = tokenizer.tokenize(word)
tokens.extend(token)
label_1 = word_labels[i] if i < len(word_labels) else 'O'
label_1 = example.label[i] if i < len(example.label) else 'O'
for m in range(len(token)):
for m in range(len(token)): # a word might have been split into several tokens
if m == 0:
labels.append(label_1)
else:
labels.append("X")
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)]
labels = labels[0:(max_seq_length - 2)]
n_tokens = []
segment_ids = []
label_ids = []
n_tokens.append("[CLS]")
segment_ids.append(0)
label_ids.append(label_map["[CLS]"])
for i, token in enumerate(tokens):
n_tokens.append(token)
segment_ids.append(0)
label_ids.append(label_map[labels[i]])
n_tokens.append("[SEP]")
segment_ids.append(0)
label_ids.append(label_map["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(n_tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
label_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
# if ex_index < 5:
# logger.info("*** Example ***")
# logger.info("guid: %s" % example.guid)
# logger.info("tokens: %s" % " ".join(
# [str(x) for x in tokens]))
# logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
# logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
# logger.info(
# "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
# logger.info("label: %s (id = %d)" % (example.label, label_ids))
return InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_ids,
tokens=n_tokens)
start_pos = 0
while start_pos < len(tokens):
window_len = min(max_seq_len - 2, len(tokens) - start_pos) # -2 since we also need [CLS] and [SEP]
# Make sure that we do not split the sentence within a word.
while window_len > 1 and start_pos + window_len < len(tokens) and\
tokens[start_pos + window_len].startswith('##'):
window_len -= 1
token_window = tokens[start_pos:start_pos+window_len]
start_pos += window_len
augmented_tokens = ["[CLS]"] + token_window + ["[SEP]"]
input_ids = tokenizer.convert_tokens_to_ids(augmented_tokens) + max(0, max_seq_len - len(augmented_tokens))*[0]
input_mask = [1] * len(augmented_tokens) + max(0, max_seq_len - len(augmented_tokens))*[0]
segment_ids = [0] + len(token_window) * [0] + [0] + max(0, max_seq_len - len(augmented_tokens))*[0]
label_ids = [label_map["[CLS]"]] + [label_map[labels[i]] for i in range(len(token_window))] + \
[label_map["[SEP]"]] + max(0, max_seq_len - len(augmented_tokens)) * [0]
assert len(input_ids) == max_seq_len
assert len(input_mask) == max_seq_len
assert len(segment_ids) == max_seq_len
assert len(label_ids) == max_seq_len
yield InputFeatures(guid=example.guid, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids,
label_id=label_ids, tokens=augmented_tokens)

@ -17,7 +17,8 @@ from pytorch_pretrained_bert.modeling import (CONFIG_NAME, # WEIGHTS_NAME,
BertConfig,
BertForTokenClassification)
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from pytorch_pretrained_bert.tokenization import BertTokenizer
# from pytorch_pretrained_bert.tokenization import BertTokenizer
from .tokenization import BertTokenizer
from conlleval import evaluate as conll_eval
@ -386,6 +387,7 @@ def model_predict(dataloader, device, label_map, model):
y_pred.append(temp_2)
break
else:
temp_2.pop() # skip last token since its [SEP]
y_pred.append(temp_2)
return y_pred

@ -0,0 +1,419 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import, division, print_function, unicode_literals
import collections
import logging
import os
import unicodedata
from io import open
from pytorch_pretrained_bert.file_utils import cached_path
logger = logging.getLogger(__name__)
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'bert-base-uncased': 512,
'bert-large-uncased': 512,
'bert-base-cased': 512,
'bert-large-cased': 512,
'bert-base-multilingual-uncased': 512,
'bert-base-multilingual-cased': 512,
'bert-base-chinese': 512,
}
VOCAB_NAME = 'vocab.txt'
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with open(vocab_file, "r", encoding="utf-8") as reader:
while True:
token = reader.readline()
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertTokenizer(object):
"""Runs end-to-end tokenization: punctuation splitting + wordpiece"""
def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True,
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
"""Constructs a BertTokenizer.
Args:
vocab_file: Path to a one-wordpiece-per-line vocabulary file
do_lower_case: Whether to lower case the input
Only has an effect when do_wordpiece_only=False
do_basic_tokenize: Whether to do basic tokenization before wordpiece.
max_len: An artificial maximum length to truncate tokenized sequences to;
Effective maximum length is always the minimum of this
value (if specified) and the underlying BERT model's
sequence length.
never_split: List of tokens which will never be split during tokenization.
Only has an effect when do_wordpiece_only=False
"""
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
never_split=never_split)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
self.max_len = max_len if max_len is not None else int(1e12)
def tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def convert_tokens_to_ids(self, tokens):
"""Converts a sequence of tokens into ids using the vocab."""
ids = []
for token in tokens:
ids.append(self.vocab[token])
if len(ids) > self.max_len:
logger.warning(
"Token indices sequence length is longer than the specified maximum "
" sequence length for this BERT model ({} > {}). Running this"
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
)
return ids
def convert_ids_to_tokens(self, ids):
"""Converts a sequence of ids in wordpiece tokens using the vocab."""
tokens = []
for i in ids:
tokens.append(self.ids_to_tokens[i])
return tokens
def save_vocabulary(self, vocab_path):
"""Save the tokenizer vocabulary to a directory or file."""
index = 0
if os.path.isdir(vocab_path):
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!".format(vocab_file))
index = token_index
writer.write(token + u'\n')
index += 1
return vocab_file
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedBertModel from a pre-trained model file.
Download and cache the pre-trained model file if needed.
"""
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
logger.warning("The pre-trained model you are loading is a cased model but you have not set "
"`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
"you may want to check this behavior.")
kwargs['do_lower_case'] = False
elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
logger.warning("The pre-trained model you are loading is an uncased model but you have set "
"`do_lower_case` to False. We are setting `do_lower_case=True` for you "
"but you may want to check this behavior.")
kwargs['do_lower_case'] = True
else:
vocab_file = pretrained_model_name_or_path
if os.path.isdir(vocab_file):
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
# redirect to the cache, if necessary
try:
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
except EnvironmentError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name_or_path,
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
vocab_file))
return None
if resolved_vocab_file == vocab_file:
logger.info("loading vocabulary file {}".format(vocab_file))
else:
logger.info("loading vocabulary file {} from cache at {}".format(
vocab_file, resolved_vocab_file))
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
# than the number of positional embeddings
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
# Instantiate tokenizer.
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
return tokenizer
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self,
do_lower_case=True,
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case and token not in self.never_split:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
if text in self.never_split:
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer`.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
# is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
# is_bad = True
# break
sub_tokens.append(self.unk_token)
start += 1
else:
sub_tokens.append(cur_substr)
start = end
# if is_bad:
# output_tokens.append(self.unk_token)
# else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False

@ -10,7 +10,7 @@ from somajo import Tokenizer, SentenceSplitter
from qurator.sbb_ner.models.bert import get_device, model_predict
from qurator.sbb_ner.ground_truth.data_processor import NerProcessor, convert_examples_to_features
from pytorch_pretrained_bert.tokenization import BertTokenizer
from qurator.sbb_ner.models.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import (CONFIG_NAME,
BertConfig,
BertForTokenClassification)
@ -90,10 +90,8 @@ class NERPredictor:
examples = NerProcessor.create_examples(sentences, 'test')
features = [convert_examples_to_features(ex, self._label_to_id, self._max_seq_length, self._bert_tokenizer)
for ex in examples]
assert len(sentences) == len(features)
features = [fe for ex in examples for fe in
convert_examples_to_features(ex, self._label_to_id, self._max_seq_length, self._bert_tokenizer)]
data_loader = NerProcessor.make_data_loader(None, self._batch_size, self._local_rank, self._label_to_id,
self._max_seq_length, self._bert_tokenizer, features=features,
@ -101,11 +99,22 @@ class NERPredictor:
prediction_tmp = model_predict(data_loader, self._device, self._label_map, self._model)
assert len(sentences) == len(prediction_tmp)
assert len(prediction_tmp) == len(features)
prediction = []
prev_guid = None
for fe, pr in zip(features, prediction_tmp):
prediction.append((fe.tokens[1:-1], pr))
# longer sentences might have been processed in several steps
# therefore we have to glue them together. This can be done on the basis of the guid.
if prev_guid != fe.guid:
prediction.append((fe.tokens[1:-1], pr))
else:
prediction[-1] = (prediction[-1][0] + fe.tokens[1:-1], prediction[-1][1] + pr)
prev_guid = fe.guid
assert len(sentences) == len(prediction)
return prediction
@ -243,23 +252,28 @@ def ner(model_id):
output = []
for tokens, word_predictions in prediction:
for (tokens, word_predictions), (input_sentence, _) in zip(prediction, sentences):
word = None
original_text = "".join(input_sentence)
word = ''
last_prediction = 'O'
output_sentence = []
for token, word_pred in zip(tokens, word_predictions):
if token == '[UNK]':
continue
for pos, (token, word_pred) in enumerate(zip(tokens, word_predictions)):
if not token.startswith('##'):
if word is not None:
if len(word) > 0:
output_sentence.append({'word': word, 'prediction': last_prediction})
word = ''
if token == '[UNK]':
orig_pos = len("".join([pred['word'] for pred in output_sentence]))
output_sentence.append({'word': original_text[orig_pos], 'prediction': 'O'})
continue
token = token[2:] if token.startswith('##') else token
word += token
@ -267,11 +281,18 @@ def ner(model_id):
if word_pred != 'X':
last_prediction = word_pred
if word is not None and len(word) > 0:
if len(word) > 0:
output_sentence.append({'word': word, 'prediction': last_prediction})
output.append(output_sentence)
for output_sentence, (input_sentence, _) in zip(output, sentences):
try:
assert "".join([pred['word'] for pred in output_sentence]) == "".join(input_sentence).replace(" ", "")
except AssertionError:
import ipdb;ipdb.set_trace()
return jsonify(output)

Loading…
Cancel
Save