fix NER output; fix BERT Tokenizer
parent
b24687c484
commit
9bf2e6f51b
@ -0,0 +1,419 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Tokenization classes."""
|
||||||
|
|
||||||
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||||
|
|
||||||
|
import collections
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import unicodedata
|
||||||
|
from io import open
|
||||||
|
|
||||||
|
from pytorch_pretrained_bert.file_utils import cached_path
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
PRETRAINED_VOCAB_ARCHIVE_MAP = {
|
||||||
|
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
|
||||||
|
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
|
||||||
|
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
|
||||||
|
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
|
||||||
|
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
|
||||||
|
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
|
||||||
|
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
|
||||||
|
}
|
||||||
|
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
|
||||||
|
'bert-base-uncased': 512,
|
||||||
|
'bert-large-uncased': 512,
|
||||||
|
'bert-base-cased': 512,
|
||||||
|
'bert-large-cased': 512,
|
||||||
|
'bert-base-multilingual-uncased': 512,
|
||||||
|
'bert-base-multilingual-cased': 512,
|
||||||
|
'bert-base-chinese': 512,
|
||||||
|
}
|
||||||
|
VOCAB_NAME = 'vocab.txt'
|
||||||
|
|
||||||
|
|
||||||
|
def load_vocab(vocab_file):
|
||||||
|
"""Loads a vocabulary file into a dictionary."""
|
||||||
|
vocab = collections.OrderedDict()
|
||||||
|
index = 0
|
||||||
|
with open(vocab_file, "r", encoding="utf-8") as reader:
|
||||||
|
while True:
|
||||||
|
token = reader.readline()
|
||||||
|
if not token:
|
||||||
|
break
|
||||||
|
token = token.strip()
|
||||||
|
vocab[token] = index
|
||||||
|
index += 1
|
||||||
|
return vocab
|
||||||
|
|
||||||
|
|
||||||
|
def whitespace_tokenize(text):
|
||||||
|
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
||||||
|
text = text.strip()
|
||||||
|
if not text:
|
||||||
|
return []
|
||||||
|
tokens = text.split()
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
|
||||||
|
class BertTokenizer(object):
|
||||||
|
"""Runs end-to-end tokenization: punctuation splitting + wordpiece"""
|
||||||
|
|
||||||
|
def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True,
|
||||||
|
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
|
||||||
|
"""Constructs a BertTokenizer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab_file: Path to a one-wordpiece-per-line vocabulary file
|
||||||
|
do_lower_case: Whether to lower case the input
|
||||||
|
Only has an effect when do_wordpiece_only=False
|
||||||
|
do_basic_tokenize: Whether to do basic tokenization before wordpiece.
|
||||||
|
max_len: An artificial maximum length to truncate tokenized sequences to;
|
||||||
|
Effective maximum length is always the minimum of this
|
||||||
|
value (if specified) and the underlying BERT model's
|
||||||
|
sequence length.
|
||||||
|
never_split: List of tokens which will never be split during tokenization.
|
||||||
|
Only has an effect when do_wordpiece_only=False
|
||||||
|
"""
|
||||||
|
if not os.path.isfile(vocab_file):
|
||||||
|
raise ValueError(
|
||||||
|
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
||||||
|
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
|
||||||
|
self.vocab = load_vocab(vocab_file)
|
||||||
|
self.ids_to_tokens = collections.OrderedDict(
|
||||||
|
[(ids, tok) for tok, ids in self.vocab.items()])
|
||||||
|
self.do_basic_tokenize = do_basic_tokenize
|
||||||
|
if do_basic_tokenize:
|
||||||
|
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
|
||||||
|
never_split=never_split)
|
||||||
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
|
||||||
|
self.max_len = max_len if max_len is not None else int(1e12)
|
||||||
|
|
||||||
|
def tokenize(self, text):
|
||||||
|
split_tokens = []
|
||||||
|
if self.do_basic_tokenize:
|
||||||
|
for token in self.basic_tokenizer.tokenize(text):
|
||||||
|
for sub_token in self.wordpiece_tokenizer.tokenize(token):
|
||||||
|
split_tokens.append(sub_token)
|
||||||
|
else:
|
||||||
|
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
||||||
|
return split_tokens
|
||||||
|
|
||||||
|
def convert_tokens_to_ids(self, tokens):
|
||||||
|
"""Converts a sequence of tokens into ids using the vocab."""
|
||||||
|
ids = []
|
||||||
|
for token in tokens:
|
||||||
|
ids.append(self.vocab[token])
|
||||||
|
if len(ids) > self.max_len:
|
||||||
|
logger.warning(
|
||||||
|
"Token indices sequence length is longer than the specified maximum "
|
||||||
|
" sequence length for this BERT model ({} > {}). Running this"
|
||||||
|
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
|
||||||
|
)
|
||||||
|
return ids
|
||||||
|
|
||||||
|
def convert_ids_to_tokens(self, ids):
|
||||||
|
"""Converts a sequence of ids in wordpiece tokens using the vocab."""
|
||||||
|
tokens = []
|
||||||
|
for i in ids:
|
||||||
|
tokens.append(self.ids_to_tokens[i])
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
def save_vocabulary(self, vocab_path):
|
||||||
|
"""Save the tokenizer vocabulary to a directory or file."""
|
||||||
|
index = 0
|
||||||
|
if os.path.isdir(vocab_path):
|
||||||
|
vocab_file = os.path.join(vocab_path, VOCAB_NAME)
|
||||||
|
with open(vocab_file, "w", encoding="utf-8") as writer:
|
||||||
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
||||||
|
if index != token_index:
|
||||||
|
logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
|
||||||
|
" Please check that the vocabulary is not corrupted!".format(vocab_file))
|
||||||
|
index = token_index
|
||||||
|
writer.write(token + u'\n')
|
||||||
|
index += 1
|
||||||
|
return vocab_file
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
|
||||||
|
"""
|
||||||
|
Instantiate a PreTrainedBertModel from a pre-trained model file.
|
||||||
|
Download and cache the pre-trained model file if needed.
|
||||||
|
"""
|
||||||
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
|
||||||
|
vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
|
||||||
|
if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
|
||||||
|
logger.warning("The pre-trained model you are loading is a cased model but you have not set "
|
||||||
|
"`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
|
||||||
|
"you may want to check this behavior.")
|
||||||
|
kwargs['do_lower_case'] = False
|
||||||
|
elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
|
||||||
|
logger.warning("The pre-trained model you are loading is an uncased model but you have set "
|
||||||
|
"`do_lower_case` to False. We are setting `do_lower_case=True` for you "
|
||||||
|
"but you may want to check this behavior.")
|
||||||
|
kwargs['do_lower_case'] = True
|
||||||
|
else:
|
||||||
|
vocab_file = pretrained_model_name_or_path
|
||||||
|
if os.path.isdir(vocab_file):
|
||||||
|
vocab_file = os.path.join(vocab_file, VOCAB_NAME)
|
||||||
|
# redirect to the cache, if necessary
|
||||||
|
try:
|
||||||
|
resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
|
||||||
|
except EnvironmentError:
|
||||||
|
logger.error(
|
||||||
|
"Model name '{}' was not found in model name list ({}). "
|
||||||
|
"We assumed '{}' was a path or url but couldn't find any file "
|
||||||
|
"associated to this path or url.".format(
|
||||||
|
pretrained_model_name_or_path,
|
||||||
|
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
|
||||||
|
vocab_file))
|
||||||
|
return None
|
||||||
|
if resolved_vocab_file == vocab_file:
|
||||||
|
logger.info("loading vocabulary file {}".format(vocab_file))
|
||||||
|
else:
|
||||||
|
logger.info("loading vocabulary file {} from cache at {}".format(
|
||||||
|
vocab_file, resolved_vocab_file))
|
||||||
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
|
||||||
|
# if we're using a pretrained model, ensure the tokenizer wont index sequences longer
|
||||||
|
# than the number of positional embeddings
|
||||||
|
max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
|
||||||
|
kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
|
||||||
|
# Instantiate tokenizer.
|
||||||
|
tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
|
||||||
|
return tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
class BasicTokenizer(object):
|
||||||
|
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
do_lower_case=True,
|
||||||
|
never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
|
||||||
|
"""Constructs a BasicTokenizer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
do_lower_case: Whether to lower case the input.
|
||||||
|
"""
|
||||||
|
self.do_lower_case = do_lower_case
|
||||||
|
self.never_split = never_split
|
||||||
|
|
||||||
|
def tokenize(self, text):
|
||||||
|
"""Tokenizes a piece of text."""
|
||||||
|
text = self._clean_text(text)
|
||||||
|
# This was added on November 1st, 2018 for the multilingual and Chinese
|
||||||
|
# models. This is also applied to the English models now, but it doesn't
|
||||||
|
# matter since the English models were not trained on any Chinese data
|
||||||
|
# and generally don't have any Chinese data in them (there are Chinese
|
||||||
|
# characters in the vocabulary because Wikipedia does have some Chinese
|
||||||
|
# words in the English Wikipedia.).
|
||||||
|
text = self._tokenize_chinese_chars(text)
|
||||||
|
orig_tokens = whitespace_tokenize(text)
|
||||||
|
split_tokens = []
|
||||||
|
for token in orig_tokens:
|
||||||
|
if self.do_lower_case and token not in self.never_split:
|
||||||
|
token = token.lower()
|
||||||
|
token = self._run_strip_accents(token)
|
||||||
|
split_tokens.extend(self._run_split_on_punc(token))
|
||||||
|
|
||||||
|
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
||||||
|
return output_tokens
|
||||||
|
|
||||||
|
def _run_strip_accents(self, text):
|
||||||
|
"""Strips accents from a piece of text."""
|
||||||
|
text = unicodedata.normalize("NFD", text)
|
||||||
|
output = []
|
||||||
|
for char in text:
|
||||||
|
cat = unicodedata.category(char)
|
||||||
|
if cat == "Mn":
|
||||||
|
continue
|
||||||
|
output.append(char)
|
||||||
|
return "".join(output)
|
||||||
|
|
||||||
|
def _run_split_on_punc(self, text):
|
||||||
|
"""Splits punctuation on a piece of text."""
|
||||||
|
if text in self.never_split:
|
||||||
|
return [text]
|
||||||
|
chars = list(text)
|
||||||
|
i = 0
|
||||||
|
start_new_word = True
|
||||||
|
output = []
|
||||||
|
while i < len(chars):
|
||||||
|
char = chars[i]
|
||||||
|
if _is_punctuation(char):
|
||||||
|
output.append([char])
|
||||||
|
start_new_word = True
|
||||||
|
else:
|
||||||
|
if start_new_word:
|
||||||
|
output.append([])
|
||||||
|
start_new_word = False
|
||||||
|
output[-1].append(char)
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
return ["".join(x) for x in output]
|
||||||
|
|
||||||
|
def _tokenize_chinese_chars(self, text):
|
||||||
|
"""Adds whitespace around any CJK character."""
|
||||||
|
output = []
|
||||||
|
for char in text:
|
||||||
|
cp = ord(char)
|
||||||
|
if self._is_chinese_char(cp):
|
||||||
|
output.append(" ")
|
||||||
|
output.append(char)
|
||||||
|
output.append(" ")
|
||||||
|
else:
|
||||||
|
output.append(char)
|
||||||
|
return "".join(output)
|
||||||
|
|
||||||
|
def _is_chinese_char(self, cp):
|
||||||
|
"""Checks whether CP is the codepoint of a CJK character."""
|
||||||
|
# This defines a "chinese character" as anything in the CJK Unicode block:
|
||||||
|
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
||||||
|
#
|
||||||
|
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
||||||
|
# despite its name. The modern Korean Hangul alphabet is a different block,
|
||||||
|
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
||||||
|
# space-separated words, so they are not treated specially and handled
|
||||||
|
# like the all of the other languages.
|
||||||
|
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
|
||||||
|
(cp >= 0x3400 and cp <= 0x4DBF) or #
|
||||||
|
(cp >= 0x20000 and cp <= 0x2A6DF) or #
|
||||||
|
(cp >= 0x2A700 and cp <= 0x2B73F) or #
|
||||||
|
(cp >= 0x2B740 and cp <= 0x2B81F) or #
|
||||||
|
(cp >= 0x2B820 and cp <= 0x2CEAF) or
|
||||||
|
(cp >= 0xF900 and cp <= 0xFAFF) or #
|
||||||
|
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _clean_text(self, text):
|
||||||
|
"""Performs invalid character removal and whitespace cleanup on text."""
|
||||||
|
output = []
|
||||||
|
for char in text:
|
||||||
|
cp = ord(char)
|
||||||
|
if cp == 0 or cp == 0xfffd or _is_control(char):
|
||||||
|
continue
|
||||||
|
if _is_whitespace(char):
|
||||||
|
output.append(" ")
|
||||||
|
else:
|
||||||
|
output.append(char)
|
||||||
|
return "".join(output)
|
||||||
|
|
||||||
|
|
||||||
|
class WordpieceTokenizer(object):
|
||||||
|
"""Runs WordPiece tokenization."""
|
||||||
|
|
||||||
|
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
|
||||||
|
self.vocab = vocab
|
||||||
|
self.unk_token = unk_token
|
||||||
|
self.max_input_chars_per_word = max_input_chars_per_word
|
||||||
|
|
||||||
|
def tokenize(self, text):
|
||||||
|
"""Tokenizes a piece of text into its word pieces.
|
||||||
|
|
||||||
|
This uses a greedy longest-match-first algorithm to perform tokenization
|
||||||
|
using the given vocabulary.
|
||||||
|
|
||||||
|
For example:
|
||||||
|
input = "unaffable"
|
||||||
|
output = ["un", "##aff", "##able"]
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: A single token or whitespace separated tokens. This should have
|
||||||
|
already been passed through `BasicTokenizer`.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A list of wordpiece tokens.
|
||||||
|
"""
|
||||||
|
|
||||||
|
output_tokens = []
|
||||||
|
for token in whitespace_tokenize(text):
|
||||||
|
chars = list(token)
|
||||||
|
if len(chars) > self.max_input_chars_per_word:
|
||||||
|
output_tokens.append(self.unk_token)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# is_bad = False
|
||||||
|
start = 0
|
||||||
|
sub_tokens = []
|
||||||
|
while start < len(chars):
|
||||||
|
end = len(chars)
|
||||||
|
cur_substr = None
|
||||||
|
while start < end:
|
||||||
|
substr = "".join(chars[start:end])
|
||||||
|
if start > 0:
|
||||||
|
substr = "##" + substr
|
||||||
|
if substr in self.vocab:
|
||||||
|
cur_substr = substr
|
||||||
|
break
|
||||||
|
end -= 1
|
||||||
|
if cur_substr is None:
|
||||||
|
# is_bad = True
|
||||||
|
# break
|
||||||
|
sub_tokens.append(self.unk_token)
|
||||||
|
start += 1
|
||||||
|
else:
|
||||||
|
sub_tokens.append(cur_substr)
|
||||||
|
start = end
|
||||||
|
|
||||||
|
# if is_bad:
|
||||||
|
# output_tokens.append(self.unk_token)
|
||||||
|
# else:
|
||||||
|
output_tokens.extend(sub_tokens)
|
||||||
|
|
||||||
|
return output_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def _is_whitespace(char):
|
||||||
|
"""Checks whether `chars` is a whitespace character."""
|
||||||
|
# \t, \n, and \r are technically contorl characters but we treat them
|
||||||
|
# as whitespace since they are generally considered as such.
|
||||||
|
if char == " " or char == "\t" or char == "\n" or char == "\r":
|
||||||
|
return True
|
||||||
|
cat = unicodedata.category(char)
|
||||||
|
if cat == "Zs":
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def _is_control(char):
|
||||||
|
"""Checks whether `chars` is a control character."""
|
||||||
|
# These are technically control characters but we count them as whitespace
|
||||||
|
# characters.
|
||||||
|
if char == "\t" or char == "\n" or char == "\r":
|
||||||
|
return False
|
||||||
|
cat = unicodedata.category(char)
|
||||||
|
if cat.startswith("C"):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def _is_punctuation(char):
|
||||||
|
"""Checks whether `chars` is a punctuation character."""
|
||||||
|
cp = ord(char)
|
||||||
|
# We treat all non-letter/number ASCII as punctuation.
|
||||||
|
# Characters such as "^", "$", and "`" are not in the Unicode
|
||||||
|
# Punctuation class but we treat them as punctuation anyways, for
|
||||||
|
# consistency.
|
||||||
|
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
|
||||||
|
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
|
||||||
|
return True
|
||||||
|
cat = unicodedata.category(char)
|
||||||
|
if cat.startswith("P"):
|
||||||
|
return True
|
||||||
|
return False
|
Loading…
Reference in New Issue