move bert pre-training code to sbb_ner

master
Kai 2 years ago
parent 9cc644edac
commit c2ff011010

@ -0,0 +1,163 @@
import re
import pandas as pd
from tqdm import tqdm as tqdm
import click
import codecs
import os
import sqlite3
from qurator.utils.parallel import run as prun
class ChunkTask:
selection = None
def __init__(self, chunk, min_line_len):
self._chunk = chunk
self._min_line_len = min_line_len
def __call__(self, *args, **kwargs):
return ChunkTask.reformat_chunk(self._chunk, self._min_line_len)
@staticmethod
def reformat_chunk(chunk, min_line_len):
"""
Process a chunk of documents.
:param chunk: pandas DataFrame that contains one document per row.
:param min_line_len: Break the document text up in lines that have this minimum length.
:return: One big text where the documents are separated by an empty line.
"""
text = ''
for i, r in chunk.iterrows():
if type(r.text) != str:
continue
ppn = r.ppn if str(r.ppn).startswith('PPN') else 'PPN' + r.ppn
filename = str(r['file name'])
if not ChunkTask.selection.loc[(ppn, filename)].selected.iloc[0]:
continue
for se in sentence_split(str(r.text), min_line_len):
text += se
text += '\n\n'
return text
@staticmethod
def initialize(selection_file):
ChunkTask.selection = \
pd.read_pickle(selection_file).\
reset_index().\
set_index(['ppn', 'filename']).\
sort_index()
def get_csv_chunks(alto_csv_file, chunksize):
for ch in tqdm(pd.read_csv(alto_csv_file, chunksize=chunksize)):
yield ch
def get_sqlite_chunks(alto_sqlite_file, chunksize):
yield pd.DataFrame()
with sqlite3.connect(alto_sqlite_file) as conn:
conn.execute('pragma journal_mode=wal')
total = int(conn.execute('select count(*) from text;').fetchone()[0] / chunksize)
for ch in tqdm(pd.read_sql('select * from text', conn, chunksize=chunksize), total=total):
yield ch
def get_chunk_tasks(chunks, min_len_len):
for chunk in chunks:
if len(chunk) == 0:
continue
yield ChunkTask(chunk, min_len_len)
def sentence_split(s, min_len):
"""
Reformat text of an entire document such that each line has at least length min_len
:param s: str
:param min_len: minimum line length
:return: reformatted text
"""
parts = s.split(' ')
se = ''
for p in parts:
se += ' ' + p
if len(se) > min_len and len(p) > 2 and re.match(r'.*([^0-9])[.]$', p):
yield se + '\n'
se = ''
yield se + '\n'
@click.command()
@click.argument('fulltext-file', type=click.Path(exists=True), required=True, nargs=1)
@click.argument('selection-file', type=click.Path(exists=True), required=True, nargs=1)
@click.argument('corpus-file', type=click.Path(), required=True, nargs=1)
@click.option('--chunksize', default=10**4, help="Process the corpus in chunks of <chunksize>. default:10**4")
@click.option('--processes', default=6, help="Number of parallel processes. default: 6")
@click.option('--min-line-len', default=80, help="Lower bound of line length in output file. default:80")
def collect(fulltext_file, selection_file, corpus_file, chunksize, processes, min_line_len):
"""
Reads the fulltext from a CSV or SQLITE3 file (see also altotool) and write it to one big text file.
FULLTEXT_FILE: The CSV or SQLITE3 file to read from.
SELECTION_FILE: Consider only a subset of all pages that is defined by the DataFrame
that is stored in <selection_file>.
CORPUS_FILE: The output file that can be used by bert-pregenerate-trainingdata.
"""
os.makedirs(os.path.dirname(corpus_file), exist_ok=True)
print('Open {}.'.format(corpus_file))
corpus_fh = codecs.open(corpus_file, 'w+', 'utf-8')
corpus_fh.write(u'\ufeff')
if fulltext_file.endswith('.csv'):
chunks = get_csv_chunks(fulltext_file, chunksize)
elif fulltext_file.endswith('.sqlite3'):
chunks = get_sqlite_chunks(fulltext_file, chunksize)
else:
raise RuntimeError('Unsupported input file format.')
for text in prun(get_chunk_tasks(chunks, min_line_len), processes=processes, initializer=ChunkTask.initialize,
initargs=(selection_file,)):
corpus_fh.write(text)
corpus_fh.close()
return
if __name__ == '__main__':
main()

@ -0,0 +1,363 @@
from argparse import ArgumentParser
from pathlib import Path
import torch
import logging
import json
import random
import numpy as np
from collections import namedtuple
from tempfile import TemporaryDirectory
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from pytorch_pretrained_bert.modeling import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
log_format = '%(asctime)-10s: %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
def convert_example_to_features(example, tokenizer, max_seq_length):
tokens = example["tokens"]
segment_ids = example["segment_ids"]
is_random_next = example["is_random_next"]
masked_lm_positions = example["masked_lm_positions"]
masked_lm_labels = example["masked_lm_labels"]
assert len(tokens) == len(segment_ids) <= max_seq_length # The preprocessed data should be already truncated
input_ids = tokenizer.convert_tokens_to_ids(tokens)
masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels)
input_array = np.zeros(max_seq_length, dtype=np.int)
input_array[:len(input_ids)] = input_ids
mask_array = np.zeros(max_seq_length, dtype=np.bool)
mask_array[:len(input_ids)] = 1
segment_array = np.zeros(max_seq_length, dtype=np.bool)
segment_array[:len(segment_ids)] = segment_ids
lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1)
lm_label_array[masked_lm_positions] = masked_label_ids
features = InputFeatures(input_ids=input_array,
input_mask=mask_array,
segment_ids=segment_array,
lm_label_ids=lm_label_array,
is_next=is_random_next)
return features
class PregeneratedDataset(Dataset):
def __init__(self, training_path, epoch, tokenizer, num_data_epochs, reduce_memory=False, prefix=None):
self.vocab = tokenizer.vocab
self.tokenizer = tokenizer
self.epoch = epoch
self.data_epoch = epoch % num_data_epochs
data_file = training_path / f"epoch_{self.data_epoch}.json"
metrics_file = training_path / f"epoch_{self.data_epoch}_metrics.json"
assert data_file.is_file() and metrics_file.is_file()
metrics = json.loads(metrics_file.read_text())
num_samples = metrics['num_training_examples']
seq_len = metrics['max_seq_len']
self.temp_dir = None
self.working_dir = None
if reduce_memory:
self.temp_dir = TemporaryDirectory(prefix=prefix)
self.working_dir = Path(self.temp_dir.name)
input_ids = np.memmap(filename=self.working_dir/'input_ids.memmap',
mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
input_masks = np.memmap(filename=self.working_dir/'input_masks.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
segment_ids = np.memmap(filename=self.working_dir/'segment_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
lm_label_ids = np.memmap(filename=self.working_dir/'lm_label_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
lm_label_ids[:] = -1
is_nexts = np.memmap(filename=self.working_dir/'is_nexts.memmap',
shape=(num_samples,), mode='w+', dtype=np.bool)
else:
input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool)
logging.info(f"Loading training examples for epoch {epoch}")
with data_file.open() as f:
for i, line in enumerate(tqdm(f, total=num_samples, desc="Training examples")):
line = line.strip()
example = json.loads(line)
features = convert_example_to_features(example, tokenizer, seq_len)
input_ids[i] = features.input_ids
segment_ids[i] = features.segment_ids
input_masks[i] = features.input_mask
lm_label_ids[i] = features.lm_label_ids
is_nexts[i] = features.is_next
assert i == num_samples - 1 # Assert that the sample count metric was true
logging.info("Loading complete!")
self.num_samples = num_samples
self.seq_len = seq_len
self.input_ids = input_ids
self.input_masks = input_masks
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
self.is_nexts = is_nexts
def __len__(self):
return self.num_samples
def __getitem__(self, item):
return (torch.tensor(self.input_ids[item].astype(np.int64)),
torch.tensor(self.input_masks[item].astype(np.int64)),
torch.tensor(self.segment_ids[item].astype(np.int64)),
torch.tensor(self.lm_label_ids[item].astype(np.int64)),
torch.tensor(self.is_nexts[item].astype(np.int64)))
def main():
parser = ArgumentParser()
parser.add_argument('--pregenerated_data', type=Path, required=True)
parser.add_argument('--output_dir', type=Path, required=True)
parser.add_argument("--bert_model", type=str, required=True, help="Directory where the Bert pre-trained model can be found "
"or Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--reduce_memory", action="store_true",
help="Store training data as on-disc memmaps to massively reduce memory usage")
parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--save_interval",
default=20000,
type=int,
help="Save model every save_interval training steps.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--temp_prefix',
type=str,
default=None,
help="where to store temporary data")
args = parser.parse_args()
assert args.pregenerated_data.is_dir(), \
"--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"
samples_per_epoch = []
for i in range(args.epochs):
epoch_file = args.pregenerated_data / f"epoch_{i}.json"
metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
if epoch_file.is_file() and metrics_file.is_file():
metrics = json.loads(metrics_file.read_text())
samples_per_epoch.append(metrics['num_training_examples'])
else:
if i == 0:
exit("No training data was found!")
print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
print("This script will loop over the available data, but training diversity may be negatively impacted.")
num_data_epochs = i
break
else:
num_data_epochs = args.epochs
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logging.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
args.output_dir.mkdir(parents=True, exist_ok=True)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
total_train_examples = 0
for i in range(args.epochs):
# The modulo takes into account the fact that we may loop over limited epochs of data
total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]
num_train_optimization_steps = int(
total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
# Prepare model
model = BertForPreTraining.from_pretrained(args.bert_model)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
logging.info("***** Running training *****")
logging.info(f" Num examples = {total_train_examples}")
logging.info(" Batch size = %d", args.train_batch_size)
logging.info(" Num steps = %d", num_train_optimization_steps)
model.train()
def save_model():
logging.info("** ** * Saving fine-tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = args.output_dir / "pytorch_model.bin"
torch.save(model_to_save.state_dict(), str(output_model_file))
for epoch in range(args.epochs):
epoch_dataset = PregeneratedDataset(epoch=epoch, training_path=args.pregenerated_data, tokenizer=tokenizer,
num_data_epochs=num_data_epochs, reduce_memory=args.reduce_memory,
prefix=args.temp_prefix)
if args.local_rank == -1:
train_sampler = RandomSampler(epoch_dataset)
else:
train_sampler = DistributedSampler(epoch_dataset)
train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
pbar.update(1)
mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
if step % args.save_interval == 0:
save_model()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
# Save a trained model
# logging.info("** ** * Saving fine-tuned model ** ** * ")
# model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
# output_model_file = args.output_dir / "pytorch_model.bin"
# torch.save(model_to_save.state_dict(), str(output_model_file))
save_model()
if __name__ == '__main__':
main()

@ -0,0 +1,302 @@
from argparse import ArgumentParser
from pathlib import Path
from tqdm import tqdm, trange
from tempfile import TemporaryDirectory
import shelve
from random import random, randrange, randint, shuffle, choice, sample
from pytorch_pretrained_bert.tokenization import BertTokenizer
import numpy as np
import json
class DocumentDatabase:
def __init__(self, reduce_memory=False):
if reduce_memory:
self.temp_dir = TemporaryDirectory()
self.working_dir = Path(self.temp_dir.name)
self.document_shelf_filepath = self.working_dir / 'shelf.db'
self.document_shelf = shelve.open(str(self.document_shelf_filepath),
flag='n', protocol=-1)
self.documents = None
else:
self.documents = []
self.document_shelf = None
self.document_shelf_filepath = None
self.temp_dir = None
self.doc_lengths = []
self.doc_cumsum = None
self.cumsum_max = None
self.reduce_memory = reduce_memory
def add_document(self, document):
if not document:
return
if self.reduce_memory:
current_idx = len(self.doc_lengths)
self.document_shelf[str(current_idx)] = document
else:
self.documents.append(document)
self.doc_lengths.append(len(document))
def _precalculate_doc_weights(self):
self.doc_cumsum = np.cumsum(self.doc_lengths)
self.cumsum_max = self.doc_cumsum[-1]
def sample_doc(self, current_idx, sentence_weighted=True):
# Uses the current iteration counter to ensure we don't sample the same doc twice
if sentence_weighted:
# With sentence weighting, we sample docs proportionally to their sentence length
if self.doc_cumsum is None or len(self.doc_cumsum) != len(self.doc_lengths):
self._precalculate_doc_weights()
rand_start = self.doc_cumsum[current_idx]
rand_end = rand_start + self.cumsum_max - self.doc_lengths[current_idx]
sentence_index = randrange(rand_start, rand_end) % self.cumsum_max
sampled_doc_index = np.searchsorted(self.doc_cumsum, sentence_index, side='right')
else:
# If we don't use sentence weighting, then every doc has an equal chance to be chosen
sampled_doc_index = (current_idx + randrange(1, len(self.doc_lengths))) % len(self.doc_lengths)
assert sampled_doc_index != current_idx
if self.reduce_memory:
return self.document_shelf[str(sampled_doc_index)]
else:
return self.documents[sampled_doc_index]
def __len__(self):
return len(self.doc_lengths)
def __getitem__(self, item):
if self.reduce_memory:
return self.document_shelf[str(item)]
else:
return self.documents[item]
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, traceback):
if self.document_shelf is not None:
self.document_shelf.close()
if self.temp_dir is not None:
self.temp_dir.cleanup()
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
"""Truncates a pair of sequences to a maximum sequence length. Lifted from Google's BERT repo."""
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_num_tokens:
break
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
assert len(trunc_tokens) >= 1
# We want to sometimes truncate from the front and sometimes from the
# back to add more randomness and avoid biases.
if random() < 0.5:
del trunc_tokens[0]
else:
trunc_tokens.pop()
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list):
"""Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
with several refactors to clean it up and remove a lot of unnecessary variables."""
cand_indices = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
cand_indices.append(i)
num_to_mask = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))))
shuffle(cand_indices)
mask_indices = sorted(sample(cand_indices, num_to_mask))
masked_token_labels = []
for index in mask_indices:
# 80% of the time, replace with [MASK]
if random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = choice(vocab_list)
masked_token_labels.append(tokens[index])
# Once we've saved the true label for that token, we can overwrite it with the masked version
tokens[index] = masked_token
return tokens, mask_indices, masked_token_labels
def create_instances_from_document(
doc_database, doc_idx, max_seq_length, short_seq_prob,
masked_lm_prob, max_predictions_per_seq, vocab_list):
"""This code is mostly a duplicate of the equivalent function from Google BERT's repo.
However, we make some changes and improvements. Sampling is improved and no longer requires a loop in this function.
Also, documents are sampled proportionally to the number of sentences they contain, which means each sentence
(rather than each document) has an equal chance of being sampled as a false example for the NextSentence task."""
document = doc_database[doc_idx]
# Account for [CLS], [SEP], [SEP]
max_num_tokens = max_seq_length - 3
# We *usually* want to fill up the entire sequence since we are padding
# to `max_seq_length` anyways, so short sequences are generally wasted
# computation. However, we *sometimes*
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
# sequences to minimize the mismatch between pre-training and fine-tuning.
# The `target_seq_length` is just a rough target however, whereas
# `max_seq_length` is a hard limit.
target_seq_length = max_num_tokens
if random() < short_seq_prob:
target_seq_length = randint(2, max_num_tokens)
# We DON'T just concatenate all of the tokens from a document into a long
# sequence and choose an arbitrary split point because this would make the
# next sentence prediction task too easy. Instead, we split the input into
# segments "A" and "B" based on the actual "sentences" provided by the user
# input.
instances = []
current_chunk = []
current_length = 0
i = 0
while i < len(document):
segment = document[i]
current_chunk.append(segment)
current_length += len(segment)
if i == len(document) - 1 or current_length >= target_seq_length:
if current_chunk:
# `a_end` is how many segments from `current_chunk` go into the `A`
# (first) sentence.
a_end = 1
if len(current_chunk) >= 2:
a_end = randrange(1, len(current_chunk))
tokens_a = []
for j in range(a_end):
tokens_a.extend(current_chunk[j])
tokens_b = []
# Random next
if len(current_chunk) == 1 or random() < 0.5:
is_random_next = True
target_b_length = target_seq_length - len(tokens_a)
# Sample a random document, with longer docs being sampled more frequently
random_document = doc_database.sample_doc(current_idx=doc_idx, sentence_weighted=True)
random_start = randrange(0, len(random_document))
for j in range(random_start, len(random_document)):
tokens_b.extend(random_document[j])
if len(tokens_b) >= target_b_length:
break
# We didn't actually use these segments so we "put them back" so
# they don't go to waste.
num_unused_segments = len(current_chunk) - a_end
i -= num_unused_segments
# Actual next
else:
is_random_next = False
for j in range(a_end, len(current_chunk)):
tokens_b.extend(current_chunk[j])
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
assert len(tokens_a) >= 1
assert len(tokens_b) >= 1
tokens = ["[CLS]"] + tokens_a + ["[SEP]"] + tokens_b + ["[SEP]"]
# The segment IDs are 0 for the [CLS] token, the A tokens and the first [SEP]
# They are 1 for the B tokens and the final [SEP]
segment_ids = [0 for _ in range(len(tokens_a) + 2)] + [1 for _ in range(len(tokens_b) + 1)]
tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions(
tokens, masked_lm_prob, max_predictions_per_seq, vocab_list)
instance = {
"tokens": tokens,
"segment_ids": segment_ids,
"is_random_next": is_random_next,
"masked_lm_positions": masked_lm_positions,
"masked_lm_labels": masked_lm_labels}
instances.append(instance)
current_chunk = []
current_length = 0
i += 1
return instances
def main():
parser = ArgumentParser()
parser.add_argument('--train_corpus', type=Path, required=True)
parser.add_argument("--output_dir", type=Path, required=True)
parser.add_argument("--bert_model", type=str, required=True) # ,
# choices=["bert-base-uncased", "bert-large-uncased", "bert-base-cased",
# "bert-base-multilingual", "bert-base-chinese"])
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--reduce_memory", action="store_true",
help="Reduce memory usage for large datasets by keeping data on disc rather than in memory")
parser.add_argument("--epochs_to_generate", type=int, default=3,
help="Number of epochs of data to pregenerate")
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--short_seq_prob", type=float, default=0.1,
help="Probability of making a short sentence as a training example")
parser.add_argument("--masked_lm_prob", type=float, default=0.15,
help="Probability of masking each token for the LM task")
parser.add_argument("--max_predictions_per_seq", type=int, default=20,
help="Maximum number of tokens to mask in each sequence")
args = parser.parse_args()
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
vocab_list = list(tokenizer.vocab.keys())
with DocumentDatabase(reduce_memory=args.reduce_memory) as docs:
with args.train_corpus.open() as f:
doc = []
for line in tqdm(f, desc="Loading Dataset", unit=" lines"):
line = line.strip()
if line == "":
docs.add_document(doc)
doc = []
else:
tokens = tokenizer.tokenize(line)
doc.append(tokens)
if doc:
docs.add_document(doc) # If the last doc didn't end on a newline, make sure it still gets added
if len(docs) <= 1:
exit("ERROR: No document breaks were found in the input file! These are necessary to allow the script to "
"ensure that random NextSentences are not sampled from the same document. Please add blank lines to "
"indicate breaks between documents in your input file. If your dataset does not contain multiple "
"documents, blank lines can be inserted at any natural boundary, such as the ends of chapters, "
"sections or paragraphs.")
args.output_dir.mkdir(exist_ok=True)
for epoch in trange(args.epochs_to_generate, desc="Epoch"):
epoch_filename = args.output_dir / f"epoch_{epoch}.json"
num_instances = 0
with epoch_filename.open('w') as epoch_file:
for doc_idx in trange(len(docs), desc="Document"):
doc_instances = create_instances_from_document(
docs, doc_idx, max_seq_length=args.max_seq_len, short_seq_prob=args.short_seq_prob,
masked_lm_prob=args.masked_lm_prob, max_predictions_per_seq=args.max_predictions_per_seq,
vocab_list=vocab_list)
doc_instances = [json.dumps(instance) for instance in doc_instances]
for instance in doc_instances:
epoch_file.write(instance + '\n')
num_instances += 1
metrics_file = args.output_dir / f"epoch_{epoch}_metrics.json"
with metrics_file.open('w') as metrics_file:
metrics = {
"num_training_examples": num_instances,
"max_seq_len": args.max_seq_len
}
metrics_file.write(json.dumps(metrics))
if __name__ == '__main__':
main()

@ -17,3 +17,4 @@ flask
Flask-Caching
gunicorn
somajo
qurator-sbb-tools

@ -25,7 +25,11 @@ setup(
"compile_conll=qurator.sbb_ner.ground_truth.conll:main",
"compile_wikiner=qurator.sbb_ner.ground_truth.wikiner:main",
"join-gt=qurator.sbb_ner.ground_truth.join_gt:main",
"bert-ner=qurator.sbb_ner.models.bert:main"
"bert-ner=qurator.sbb_ner.models.bert:main",
"collectcorpus=qurator.sbb_ner.models.corpus:collect",
"bert-pregenerate-trainingdata=qurator.sbb_ner.models.pregenerate_training_data:main",
"bert-finetune=qurator.sbb_ner.models.finetune_on_pregenerated:main"
]
},
python_requires='>=3.6.0',

Loading…
Cancel
Save