|
|
|
from tensorflow.keras import backend as K
|
|
|
|
import tensorflow as tf
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def focal_loss(gamma=2., alpha=4.):
|
|
|
|
gamma = float(gamma)
|
|
|
|
alpha = float(alpha)
|
|
|
|
|
|
|
|
def focal_loss_fixed(y_true, y_pred):
|
|
|
|
"""Focal loss for multi-classification
|
|
|
|
FL(p_t)=-alpha(1-p_t)^{gamma}ln(p_t)
|
|
|
|
Notice: y_pred is probability after softmax
|
|
|
|
gradient is d(Fl)/d(p_t) not d(Fl)/d(x) as described in paper
|
|
|
|
d(Fl)/d(p_t) * [p_t(1-p_t)] = d(Fl)/d(x)
|
|
|
|
Focal Loss for Dense Object Detection
|
|
|
|
https://arxiv.org/abs/1708.02002
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
y_true {tensor} -- ground truth labels, shape of [batch_size, num_cls]
|
|
|
|
y_pred {tensor} -- model's output, shape of [batch_size, num_cls]
|
|
|
|
|
|
|
|
Keyword Arguments:
|
|
|
|
gamma {float} -- (default: {2.0})
|
|
|
|
alpha {float} -- (default: {4.0})
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
[tensor] -- loss.
|
|
|
|
"""
|
|
|
|
epsilon = 1.e-9
|
|
|
|
y_true = tf.convert_to_tensor(y_true, tf.float32)
|
|
|
|
y_pred = tf.convert_to_tensor(y_pred, tf.float32)
|
|
|
|
|
|
|
|
model_out = tf.add(y_pred, epsilon)
|
|
|
|
ce = tf.multiply(y_true, -tf.log(model_out))
|
|
|
|
weight = tf.multiply(y_true, tf.pow(tf.subtract(1., model_out), gamma))
|
|
|
|
fl = tf.multiply(alpha, tf.multiply(weight, ce))
|
|
|
|
reduced_fl = tf.reduce_max(fl, axis=1)
|
|
|
|
return tf.reduce_mean(reduced_fl)
|
|
|
|
|
|
|
|
return focal_loss_fixed
|
|
|
|
|
|
|
|
|
|
|
|
def weighted_categorical_crossentropy(weights=None):
|
|
|
|
""" weighted_categorical_crossentropy
|
|
|
|
|
|
|
|
Args:
|
|
|
|
* weights<ktensor|nparray|list>: crossentropy weights
|
|
|
|
Returns:
|
|
|
|
* weighted categorical crossentropy function
|
|
|
|
"""
|
|
|
|
|
|
|
|
def loss(y_true, y_pred):
|
|
|
|
labels_floats = tf.cast(y_true, tf.float32)
|
|
|
|
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
|
|
|
|
|
|
|
|
if weights is not None:
|
|
|
|
weight_mask = tf.maximum(tf.reduce_max(tf.constant(
|
|
|
|
np.array(weights, dtype=np.float32)[None, None, None])
|
|
|
|
* labels_floats, axis=-1), 1.0)
|
|
|
|
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
|
|
|
|
return tf.reduce_mean(per_pixel_loss)
|
|
|
|
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
def image_categorical_cross_entropy(y_true, y_pred, weights=None):
|
|
|
|
"""
|
|
|
|
:param y_true: tensor of shape (batch_size, height, width) representing the ground truth.
|
|
|
|
:param y_pred: tensor of shape (batch_size, height, width) representing the prediction.
|
|
|
|
:return: The mean cross-entropy on softmaxed tensors.
|
|
|
|
"""
|
|
|
|
|
|
|
|
labels_floats = tf.cast(y_true, tf.float32)
|
|
|
|
per_pixel_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_floats, logits=y_pred)
|
|
|
|
|
|
|
|
if weights is not None:
|
|
|
|
weight_mask = tf.maximum(
|
|
|
|
tf.reduce_max(tf.constant(
|
|
|
|
np.array(weights, dtype=np.float32)[None, None, None])
|
|
|
|
* labels_floats, axis=-1), 1.0)
|
|
|
|
per_pixel_loss = per_pixel_loss * weight_mask[:, :, :, None]
|
|
|
|
|
|
|
|
return tf.reduce_mean(per_pixel_loss)
|
|
|
|
|
|
|
|
|
|
|
|
def class_tversky(y_true, y_pred):
|
|
|
|
smooth = 1.0 # 1.00
|
|
|
|
|
|
|
|
y_true = K.permute_dimensions(y_true, (3, 1, 2, 0))
|
|
|
|
y_pred = K.permute_dimensions(y_pred, (3, 1, 2, 0))
|
|
|
|
|
|
|
|
y_true_pos = K.batch_flatten(y_true)
|
|
|
|
y_pred_pos = K.batch_flatten(y_pred)
|
|
|
|
true_pos = K.sum(y_true_pos * y_pred_pos, 1)
|
|
|
|
false_neg = K.sum(y_true_pos * (1 - y_pred_pos), 1)
|
|
|
|
false_pos = K.sum((1 - y_true_pos) * y_pred_pos, 1)
|
|
|
|
alpha = 0.2 # 0.5
|
|
|
|
beta = 0.8
|
|
|
|
return (true_pos + smooth) / (true_pos + alpha * false_neg + beta * false_pos + smooth)
|
|
|
|
|
|
|
|
|
|
|
|
def focal_tversky_loss(y_true, y_pred):
|
|
|
|
pt_1 = class_tversky(y_true, y_pred)
|
|
|
|
gamma = 1.3 # 4./3.0#1.3#4.0/3.00# 0.75
|
|
|
|
return K.sum(K.pow((1 - pt_1), gamma))
|
|
|
|
|
|
|
|
|
|
|
|
def generalized_dice_coeff2(y_true, y_pred):
|
|
|
|
n_el = 1
|
|
|
|
for dim in y_true.shape:
|
|
|
|
n_el *= int(dim)
|
|
|
|
n_cl = y_true.shape[-1]
|
|
|
|
w = K.zeros(shape=(n_cl,))
|
|
|
|
w = (K.sum(y_true, axis=(0, 1, 2))) / n_el
|
|
|
|
w = 1 / (w ** 2 + 0.000001)
|
|
|
|
numerator = y_true * y_pred
|
|
|
|
numerator = w * K.sum(numerator, (0, 1, 2))
|
|
|
|
numerator = K.sum(numerator)
|
|
|
|
denominator = y_true + y_pred
|
|
|
|
denominator = w * K.sum(denominator, (0, 1, 2))
|
|
|
|
denominator = K.sum(denominator)
|
|
|
|
return 2 * numerator / denominator
|
|
|
|
|
|
|
|
|
|
|
|
def generalized_dice_coeff(y_true, y_pred):
|
|
|
|
axes = tuple(range(1, len(y_pred.shape) - 1))
|
|
|
|
Ncl = y_pred.shape[-1]
|
|
|
|
w = K.zeros(shape=(Ncl,))
|
|
|
|
w = K.sum(y_true, axis=axes)
|
|
|
|
w = 1 / (w ** 2 + 0.000001)
|
|
|
|
# Compute gen dice coef:
|
|
|
|
numerator = y_true * y_pred
|
|
|
|
numerator = w * K.sum(numerator, axes)
|
|
|
|
numerator = K.sum(numerator)
|
|
|
|
|
|
|
|
denominator = y_true + y_pred
|
|
|
|
denominator = w * K.sum(denominator, axes)
|
|
|
|
denominator = K.sum(denominator)
|
|
|
|
|
|
|
|
gen_dice_coef = 2 * numerator / denominator
|
|
|
|
|
|
|
|
return gen_dice_coef
|
|
|
|
|
|
|
|
|
|
|
|
def generalized_dice_loss(y_true, y_pred):
|
|
|
|
return 1 - generalized_dice_coeff2(y_true, y_pred)
|
|
|
|
|
|
|
|
|
|
|
|
def soft_dice_loss(y_true, y_pred, epsilon=1e-6):
|
|
|
|
"""
|
|
|
|
Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions.
|
|
|
|
Assumes the `channels_last` format.
|
|
|
|
|
|
|
|
# Arguments
|
|
|
|
y_true: b x X x Y( x Z...) x c One hot encoding of ground truth
|
|
|
|
y_pred: b x X x Y( x Z...) x c Network output, must sum to 1 over c channel (such as after softmax)
|
|
|
|
epsilon: Used for numerical stability to avoid divide by zero errors
|
|
|
|
|
|
|
|
# References
|
|
|
|
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
|
|
|
|
https://arxiv.org/abs/1606.04797
|
|
|
|
More details on Dice loss formulation
|
|
|
|
https://mediatum.ub.tum.de/doc/1395260/1395260.pdf (page 72)
|
|
|
|
|
|
|
|
Adapted from https://github.com/Lasagne/Recipes/issues/99#issuecomment-347775022
|
|
|
|
"""
|
|
|
|
|
|
|
|
# skip the batch and class axis for calculating Dice score
|
|
|
|
axes = tuple(range(1, len(y_pred.shape) - 1))
|
|
|
|
|
|
|
|
numerator = 2. * K.sum(y_pred * y_true, axes)
|
|
|
|
|
|
|
|
denominator = K.sum(K.square(y_pred) + K.square(y_true), axes)
|
|
|
|
return 1.00 - K.mean(numerator / (denominator + epsilon)) # average over classes and batch
|
|
|
|
|
|
|
|
|
|
|
|
def seg_metrics(y_true, y_pred, metric_name, metric_type='standard', drop_last=True, mean_per_class=False,
|
|
|
|
verbose=False):
|
|
|
|
"""
|
|
|
|
Compute mean metrics of two segmentation masks, via Keras.
|
|
|
|
|
|
|
|
IoU(A,B) = |A & B| / (| A U B|)
|
|
|
|
Dice(A,B) = 2*|A & B| / (|A| + |B|)
|
|
|
|
|
|
|
|
Args:
|
|
|
|
y_true: true masks, one-hot encoded.
|
|
|
|
y_pred: predicted masks, either softmax outputs, or one-hot encoded.
|
|
|
|
metric_name: metric to be computed, either 'iou' or 'dice'.
|
|
|
|
metric_type: one of 'standard' (default), 'soft', 'naive'.
|
|
|
|
In the standard version, y_pred is one-hot encoded and the mean
|
|
|
|
is taken only over classes that are present (in y_true or y_pred).
|
|
|
|
The 'soft' version of the metrics are computed without one-hot
|
|
|
|
encoding y_pred.
|
|
|
|
The 'naive' version return mean metrics where absent classes contribute
|
|
|
|
to the class mean as 1.0 (instead of being dropped from the mean).
|
|
|
|
drop_last = True: boolean flag to drop last class (usually reserved
|
|
|
|
for background class in semantic segmentation)
|
|
|
|
mean_per_class = False: return mean along batch axis for each class.
|
|
|
|
verbose = False: print intermediate results such as intersection, union
|
|
|
|
(as number of pixels).
|
|
|
|
Returns:
|
|
|
|
IoU/Dice of y_true and y_pred, as a float, unless mean_per_class == True
|
|
|
|
in which case it returns the per-class metric, averaged over the batch.
|
|
|
|
|
|
|
|
Inputs are B*W*H*N tensors, with
|
|
|
|
B = batch size,
|
|
|
|
W = width,
|
|
|
|
H = height,
|
|
|
|
N = number of classes
|
|
|
|
"""
|
|
|
|
|
|
|
|
flag_soft = (metric_type == 'soft')
|
|
|
|
flag_naive_mean = (metric_type == 'naive')
|
|
|
|
|
|
|
|
# always assume one or more classes
|
|
|
|
num_classes = K.shape(y_true)[-1]
|
|
|
|
|
|
|
|
if not flag_soft:
|
|
|
|
# get one-hot encoded masks from y_pred (true masks should already be one-hot)
|
|
|
|
y_pred = K.one_hot(K.argmax(y_pred), num_classes)
|
|
|
|
y_true = K.one_hot(K.argmax(y_true), num_classes)
|
|
|
|
|
|
|
|
# if already one-hot, could have skipped above command
|
|
|
|
# keras uses float32 instead of float64, would give error down (but numpy arrays or keras.to_categorical gives float64)
|
|
|
|
y_true = K.cast(y_true, 'float32')
|
|
|
|
y_pred = K.cast(y_pred, 'float32')
|
|
|
|
|
|
|
|
# intersection and union shapes are batch_size * n_classes (values = area in pixels)
|
|
|
|
axes = (1, 2) # W,H axes of each image
|
|
|
|
intersection = K.sum(K.abs(y_true * y_pred), axis=axes)
|
|
|
|
mask_sum = K.sum(K.abs(y_true), axis=axes) + K.sum(K.abs(y_pred), axis=axes)
|
|
|
|
union = mask_sum - intersection # or, np.logical_or(y_pred, y_true) for one-hot
|
|
|
|
|
|
|
|
smooth = .001
|
|
|
|
iou = (intersection + smooth) / (union + smooth)
|
|
|
|
dice = 2 * (intersection + smooth) / (mask_sum + smooth)
|
|
|
|
|
|
|
|
metric = {'iou': iou, 'dice': dice}[metric_name]
|
|
|
|
|
|
|
|
# define mask to be 0 when no pixels are present in either y_true or y_pred, 1 otherwise
|
|
|
|
mask = K.cast(K.not_equal(union, 0), 'float32')
|
|
|
|
|
|
|
|
if drop_last:
|
|
|
|
metric = metric[:, :-1]
|
|
|
|
mask = mask[:, :-1]
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
print('intersection, union')
|
|
|
|
print(K.eval(intersection), K.eval(union))
|
|
|
|
print(K.eval(intersection / union))
|
|
|
|
|
|
|
|
# return mean metrics: remaining axes are (batch, classes)
|
|
|
|
if flag_naive_mean:
|
|
|
|
return K.mean(metric)
|
|
|
|
|
|
|
|
# take mean only over non-absent classes
|
|
|
|
class_count = K.sum(mask, axis=0)
|
|
|
|
non_zero = tf.greater(class_count, 0)
|
|
|
|
non_zero_sum = tf.boolean_mask(K.sum(metric * mask, axis=0), non_zero)
|
|
|
|
non_zero_count = tf.boolean_mask(class_count, non_zero)
|
|
|
|
|
|
|
|
if verbose:
|
|
|
|
print('Counts of inputs with class present, metrics for non-absent classes')
|
|
|
|
print(K.eval(class_count), K.eval(non_zero_sum / non_zero_count))
|
|
|
|
|
|
|
|
return K.mean(non_zero_sum / non_zero_count)
|
|
|
|
|
|
|
|
|
|
|
|
def mean_iou(y_true, y_pred, **kwargs):
|
|
|
|
"""
|
|
|
|
Compute mean Intersection over Union of two segmentation masks, via Keras.
|
|
|
|
|
|
|
|
Calls metrics_k(y_true, y_pred, metric_name='iou'), see there for allowed kwargs.
|
|
|
|
"""
|
|
|
|
return seg_metrics(y_true, y_pred, metric_name='iou', **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def Mean_IOU(y_true, y_pred):
|
|
|
|
nb_classes = K.int_shape(y_pred)[-1]
|
|
|
|
iou = []
|
|
|
|
true_pixels = K.argmax(y_true, axis=-1)
|
|
|
|
pred_pixels = K.argmax(y_pred, axis=-1)
|
|
|
|
void_labels = K.equal(K.sum(y_true, axis=-1), 0)
|
|
|
|
for i in range(0, nb_classes): # exclude first label (background) and last label (void)
|
|
|
|
true_labels = K.equal(true_pixels, i) # & ~void_labels
|
|
|
|
pred_labels = K.equal(pred_pixels, i) # & ~void_labels
|
|
|
|
inter = tf.to_int32(true_labels & pred_labels)
|
|
|
|
union = tf.to_int32(true_labels | pred_labels)
|
|
|
|
legal_batches = K.sum(tf.to_int32(true_labels), axis=1) > 0
|
|
|
|
ious = K.sum(inter, axis=1) / K.sum(union, axis=1)
|
|
|
|
iou.append(K.mean(tf.gather(ious, indices=tf.where(legal_batches)))) # returns average IoU of the same objects
|
|
|
|
iou = tf.stack(iou)
|
|
|
|
legal_labels = ~tf.debugging.is_nan(iou)
|
|
|
|
iou = tf.gather(iou, indices=tf.where(legal_labels))
|
|
|
|
return K.mean(iou)
|
|
|
|
|
|
|
|
|
|
|
|
def iou_vahid(y_true, y_pred):
|
|
|
|
nb_classes = tf.shape(y_true)[-1] + tf.to_int32(1)
|
|
|
|
true_pixels = K.argmax(y_true, axis=-1)
|
|
|
|
pred_pixels = K.argmax(y_pred, axis=-1)
|
|
|
|
iou = []
|
|
|
|
|
|
|
|
for i in tf.range(nb_classes):
|
|
|
|
tp = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.equal(pred_pixels, i)))
|
|
|
|
fp = K.sum(tf.to_int32(K.not_equal(true_pixels, i) & K.equal(pred_pixels, i)))
|
|
|
|
fn = K.sum(tf.to_int32(K.equal(true_pixels, i) & K.not_equal(pred_pixels, i)))
|
|
|
|
iouh = tp / (tp + fp + fn)
|
|
|
|
iou.append(iouh)
|
|
|
|
return K.mean(iou)
|
|
|
|
|
|
|
|
|
|
|
|
def IoU_metric(Yi, y_predi):
|
|
|
|
# mean Intersection over Union
|
|
|
|
# Mean IoU = TP/(FN + TP + FP)
|
|
|
|
y_predi = np.argmax(y_predi, axis=3)
|
|
|
|
y_testi = np.argmax(Yi, axis=3)
|
|
|
|
IoUs = []
|
|
|
|
Nclass = int(np.max(Yi)) + 1
|
|
|
|
for c in range(Nclass):
|
|
|
|
TP = np.sum((Yi == c) & (y_predi == c))
|
|
|
|
FP = np.sum((Yi != c) & (y_predi == c))
|
|
|
|
FN = np.sum((Yi == c) & (y_predi != c))
|
|
|
|
IoU = TP / float(TP + FP + FN)
|
|
|
|
IoUs.append(IoU)
|
|
|
|
return K.cast(np.mean(IoUs), dtype='float32')
|
|
|
|
|
|
|
|
|
|
|
|
def IoU_metric_keras(y_true, y_pred):
|
|
|
|
# mean Intersection over Union
|
|
|
|
# Mean IoU = TP/(FN + TP + FP)
|
|
|
|
init = tf.global_variables_initializer()
|
|
|
|
sess = tf.Session()
|
|
|
|
sess.run(init)
|
|
|
|
|
|
|
|
return IoU_metric(y_true.eval(session=sess), y_pred.eval(session=sess))
|
|
|
|
|
|
|
|
|
|
|
|
def jaccard_distance_loss(y_true, y_pred, smooth=100):
|
|
|
|
"""
|
|
|
|
Jaccard = (|X & Y|)/ (|X|+ |Y| - |X & Y|)
|
|
|
|
= sum(|A*B|)/(sum(|A|)+sum(|B|)-sum(|A*B|))
|
|
|
|
|
|
|
|
The jaccard distance loss is usefull for unbalanced datasets. This has been
|
|
|
|
shifted so it converges on 0 and is smoothed to avoid exploding or disapearing
|
|
|
|
gradient.
|
|
|
|
|
|
|
|
Ref: https://en.wikipedia.org/wiki/Jaccard_index
|
|
|
|
|
|
|
|
@url: https://gist.github.com/wassname/f1452b748efcbeb4cb9b1d059dce6f96
|
|
|
|
@author: wassname
|
|
|
|
"""
|
|
|
|
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
|
|
|
|
sum_ = K.sum(K.abs(y_true) + K.abs(y_pred), axis=-1)
|
|
|
|
jac = (intersection + smooth) / (sum_ - intersection + smooth)
|
|
|
|
return (1 - jac) * smooth
|