|
|
|
from tensorflow.keras.models import *
|
|
|
|
from tensorflow.keras.layers import *
|
|
|
|
from tensorflow.keras import layers
|
|
|
|
from tensorflow.keras.regularizers import l2
|
|
|
|
|
|
|
|
resnet50_Weights_path = './pretrained_model/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
|
|
|
|
IMAGE_ORDERING = 'channels_last'
|
|
|
|
MERGE_AXIS = -1
|
|
|
|
|
|
|
|
|
|
|
|
def one_side_pad(x):
|
|
|
|
x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(x)
|
|
|
|
if IMAGE_ORDERING == 'channels_first':
|
|
|
|
x = Lambda(lambda x: x[:, :, :-1, :-1])(x)
|
|
|
|
elif IMAGE_ORDERING == 'channels_last':
|
|
|
|
x = Lambda(lambda x: x[:, :-1, :-1, :])(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def identity_block(input_tensor, kernel_size, filters, stage, block):
|
|
|
|
"""The identity block is the block that has no conv layer at shortcut.
|
|
|
|
# Arguments
|
|
|
|
input_tensor: input tensor
|
|
|
|
kernel_size: defualt 3, the kernel size of middle conv layer at main path
|
|
|
|
filters: list of integers, the filterss of 3 conv layer at main path
|
|
|
|
stage: integer, current stage label, used for generating layer names
|
|
|
|
block: 'a','b'..., current block label, used for generating layer names
|
|
|
|
# Returns
|
|
|
|
Output tensor for the block.
|
|
|
|
"""
|
|
|
|
filters1, filters2, filters3 = filters
|
|
|
|
|
|
|
|
if IMAGE_ORDERING == 'channels_last':
|
|
|
|
bn_axis = 3
|
|
|
|
else:
|
|
|
|
bn_axis = 1
|
|
|
|
|
|
|
|
conv_name_base = 'res' + str(stage) + block + '_branch'
|
|
|
|
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
|
|
|
|
|
|
|
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2a')(input_tensor)
|
|
|
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
|
|
|
|
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING,
|
|
|
|
padding='same', name=conv_name_base + '2b')(x)
|
|
|
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
|
|
|
|
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
|
|
|
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
|
|
|
|
|
|
|
|
x = layers.add([x, input_tensor])
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
|
|
|
|
"""conv_block is the block that has a conv layer at shortcut
|
|
|
|
# Arguments
|
|
|
|
input_tensor: input tensor
|
|
|
|
kernel_size: defualt 3, the kernel size of middle conv layer at main path
|
|
|
|
filters: list of integers, the filterss of 3 conv layer at main path
|
|
|
|
stage: integer, current stage label, used for generating layer names
|
|
|
|
block: 'a','b'..., current block label, used for generating layer names
|
|
|
|
# Returns
|
|
|
|
Output tensor for the block.
|
|
|
|
Note that from stage 3, the first conv layer at main path is with strides=(2,2)
|
|
|
|
And the shortcut should have strides=(2,2) as well
|
|
|
|
"""
|
|
|
|
filters1, filters2, filters3 = filters
|
|
|
|
|
|
|
|
if IMAGE_ORDERING == 'channels_last':
|
|
|
|
bn_axis = 3
|
|
|
|
else:
|
|
|
|
bn_axis = 1
|
|
|
|
|
|
|
|
conv_name_base = 'res' + str(stage) + block + '_branch'
|
|
|
|
bn_name_base = 'bn' + str(stage) + block + '_branch'
|
|
|
|
|
|
|
|
x = Conv2D(filters1, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
|
|
|
|
name=conv_name_base + '2a')(input_tensor)
|
|
|
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
|
|
|
|
x = Conv2D(filters2, kernel_size, data_format=IMAGE_ORDERING, padding='same',
|
|
|
|
name=conv_name_base + '2b')(x)
|
|
|
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
|
|
|
|
x = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, name=conv_name_base + '2c')(x)
|
|
|
|
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
|
|
|
|
|
|
|
|
shortcut = Conv2D(filters3, (1, 1), data_format=IMAGE_ORDERING, strides=strides,
|
|
|
|
name=conv_name_base + '1')(input_tensor)
|
|
|
|
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
|
|
|
|
|
|
|
|
x = layers.add([x, shortcut])
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def resnet50_unet_light(n_classes, input_height=224, input_width=224, weight_decay=1e-6, pretraining=False):
|
|
|
|
assert input_height % 32 == 0
|
|
|
|
assert input_width % 32 == 0
|
|
|
|
|
|
|
|
img_input = Input(shape=(input_height, input_width, 3))
|
|
|
|
|
|
|
|
if IMAGE_ORDERING == 'channels_last':
|
|
|
|
bn_axis = 3
|
|
|
|
else:
|
|
|
|
bn_axis = 1
|
|
|
|
|
|
|
|
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
|
|
|
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
|
|
|
|
name='conv1')(x)
|
|
|
|
f1 = x
|
|
|
|
|
|
|
|
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
|
|
|
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
|
|
|
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
|
|
|
f2 = one_side_pad(x)
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
|
|
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
|
|
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
|
|
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
|
|
|
f3 = x
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
|
|
|
f4 = x
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
|
|
|
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
|
|
|
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
|
|
|
f5 = x
|
|
|
|
|
|
|
|
if pretraining:
|
|
|
|
model = Model(img_input, x).load_weights(resnet50_Weights_path)
|
|
|
|
|
|
|
|
v512_2048 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f5)
|
|
|
|
v512_2048 = (BatchNormalization(axis=bn_axis))(v512_2048)
|
|
|
|
v512_2048 = Activation('relu')(v512_2048)
|
|
|
|
|
|
|
|
v512_1024 = Conv2D(512, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(f4)
|
|
|
|
v512_1024 = (BatchNormalization(axis=bn_axis))(v512_1024)
|
|
|
|
v512_1024 = Activation('relu')(v512_1024)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v512_2048)
|
|
|
|
o = (concatenate([o, v512_1024], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, f3], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, f2], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, f1], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, img_input], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = (Activation('softmax'))(o)
|
|
|
|
|
|
|
|
model = Model(img_input, o)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def resnet50_unet(n_classes, input_height=224, input_width=224, weight_decay=1e-6, pretraining=False):
|
|
|
|
assert input_height % 32 == 0
|
|
|
|
assert input_width % 32 == 0
|
|
|
|
|
|
|
|
img_input = Input(shape=(input_height, input_width, 3))
|
|
|
|
|
|
|
|
if IMAGE_ORDERING == 'channels_last':
|
|
|
|
bn_axis = 3
|
|
|
|
else:
|
|
|
|
bn_axis = 1
|
|
|
|
|
|
|
|
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(img_input)
|
|
|
|
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING, strides=(2, 2), kernel_regularizer=l2(weight_decay),
|
|
|
|
name='conv1')(x)
|
|
|
|
f1 = x
|
|
|
|
|
|
|
|
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
|
|
|
|
x = Activation('relu')(x)
|
|
|
|
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
|
|
|
|
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
|
|
|
|
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
|
|
|
|
f2 = one_side_pad(x)
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
|
|
|
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
|
|
|
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
|
|
|
|
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
|
|
|
|
f3 = x
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
|
|
|
|
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
|
|
|
|
f4 = x
|
|
|
|
|
|
|
|
x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
|
|
|
|
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
|
|
|
|
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
|
|
|
|
f5 = x
|
|
|
|
|
|
|
|
if pretraining:
|
|
|
|
Model(img_input, x).load_weights(resnet50_Weights_path)
|
|
|
|
|
|
|
|
v1024_2048 = Conv2D(1024, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(
|
|
|
|
f5)
|
|
|
|
v1024_2048 = (BatchNormalization(axis=bn_axis))(v1024_2048)
|
|
|
|
v1024_2048 = Activation('relu')(v1024_2048)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(v1024_2048)
|
|
|
|
o = (concatenate([o, f4], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(512, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, f3], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(256, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, f2], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(128, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, f1], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(64, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = (UpSampling2D((2, 2), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (concatenate([o, img_input], axis=MERGE_AXIS))
|
|
|
|
o = (ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING))(o)
|
|
|
|
o = (Conv2D(32, (3, 3), padding='valid', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay)))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = Activation('relu')(o)
|
|
|
|
|
|
|
|
o = Conv2D(n_classes, (1, 1), padding='same', data_format=IMAGE_ORDERING, kernel_regularizer=l2(weight_decay))(o)
|
|
|
|
o = (BatchNormalization(axis=bn_axis))(o)
|
|
|
|
o = (Activation('softmax'))(o)
|
|
|
|
|
|
|
|
model = Model(img_input, o)
|
|
|
|
|
|
|
|
return model
|