You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
sbb_pixelwise_segmentation/README

28 lines
1.3 KiB
Plaintext

how to train:
just run: python train.py with config_params.json
format of ground truth:
5 years ago
Lables for each pixel is identified by a number . So if you have a binary case n_classes should be set to 2 and
labels should be 0 and 1 for each class and pixel.
In the case of multiclass just set n_classes to the number of classes you have and the try to produce the labels
by pixels set from 0 , 1 ,2 .., n_classes-1.
The labels format should be png.
If you have an image label for binary case it should look like this:
5 years ago
Label: [ [[1 0 0 1], [1 0 0 1] ,[1 0 0 1]], [[1 0 0 1], [1 0 0 1] ,[1 0 0 1]] ,[[1 0 0 1], [1 0 0 1] ,[1 0 0 1]] ]
this means that you have an image by 3*4*3 and pixel[0,0] belongs to class 1 and pixel[0,1] to class 0.
5 years ago
training , evaluation and output:
train and evaluation folder should have subfolder of images and labels.
5 years ago
And output folder should be empty folder which the output model will be written there.
patches:
5 years ago
if you want to train your model with patches, the height and width of patches should be defined and also number of
batchs (how many patches should be seen by model by each iteration).
In the case that model should see the image once, like page extraction, the patches should be set to false.