This repository contains the source code for training an encoder model for document image segmentation.
## Installation
Either clone the repository via `git clone https://github.com/qurator-spk/sbb_pixelwise_segmentation.git` or download and unpack the [ZIP](https://github.com/qurator-spk/sbb_pixelwise_segmentation/archive/master.zip).
* patches: If you want to break input images into smaller patches (input size of the model) you need to set this parameter to ``true``. In the case that the model should see the image once, like page extraction, patches should be set to ``false``.
* n_batch: Number of batches at each iteration.
* n_classes: Number of classes. In the case of binary classification this should be 2.
* n_epochs: Number of epochs.
* input_height: This indicates the height of model's input.
* input_width: This indicates the width of model's input.
* weight_decay: Weight decay of l2 regularization of model layers.
* augmentation: If you want to apply any kind of augmentation this parameter should first set to ``true``.
* flip_aug: If ``true``, different types of filp will applied on image. Type of flips is given by "flip_index" in train.py file.