pull/18/merge
johnlockejrr 2 weeks ago committed by GitHub
commit 0261225610
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -567,6 +567,7 @@ class sbb_predict:
img_seg_overlayed, only_layout = self.visualize_model_output(res, self.img_org, self.task)
if self.save:
cv2.imwrite(self.save,img_seg_overlayed)
if self.save_layout:
cv2.imwrite(self.save_layout, only_layout)
if self.ground_truth:

@ -278,16 +278,16 @@ def run(_config, n_classes, n_epochs, input_height,
if (task == "segmentation" or task == "binarization"):
if not is_loss_soft_dice and not weighted_loss:
model.compile(loss='categorical_crossentropy',
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
if is_loss_soft_dice:
model.compile(loss=soft_dice_loss,
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
if weighted_loss:
model.compile(loss=weighted_categorical_crossentropy(weights),
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
elif task == "enhancement":
model.compile(loss='mean_squared_error',
optimizer=Adam(lr=learning_rate), metrics=['accuracy'])
optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy'])
# generating train and evaluation data
@ -300,7 +300,7 @@ def run(_config, n_classes, n_epochs, input_height,
##score_best=[]
##score_best.append(0)
for i in tqdm(range(index_start, n_epochs + index_start)):
model.fit_generator(
model.fit(
train_gen,
steps_per_epoch=int(len(os.listdir(dir_flow_train_imgs)) / n_batch) - 1,
validation_data=val_gen,
@ -385,7 +385,7 @@ def run(_config, n_classes, n_epochs, input_height,
#f1score_tot = [0]
indexer_start = 0
opt = SGD(lr=0.01, momentum=0.9)
opt = SGD(learning_rate=0.01, momentum=0.9)
opt_adam = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(loss="binary_crossentropy",
optimizer = opt_adam,metrics=['accuracy'])

Loading…
Cancel
Save