|
|
@ -374,7 +374,7 @@ def generate_arrays_from_folder_reading_order(classes_file_dir, modal_dir, batch
|
|
|
|
batchcount = 0
|
|
|
|
batchcount = 0
|
|
|
|
while True:
|
|
|
|
while True:
|
|
|
|
for i in all_labels_files:
|
|
|
|
for i in all_labels_files:
|
|
|
|
file_name = i.split('.')[0]
|
|
|
|
file_name = os.path.splitext(i)[0]
|
|
|
|
img = cv2.imread(os.path.join(modal_dir,file_name+'.png'))
|
|
|
|
img = cv2.imread(os.path.join(modal_dir,file_name+'.png'))
|
|
|
|
|
|
|
|
|
|
|
|
label_class = int( np.load(os.path.join(classes_file_dir,i)) )
|
|
|
|
label_class = int( np.load(os.path.join(classes_file_dir,i)) )
|
|
|
@ -401,7 +401,7 @@ def data_gen(img_folder, mask_folder, batch_size, input_height, input_width, n_c
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(c, c + batch_size): # initially from 0 to 16, c = 0.
|
|
|
|
for i in range(c, c + batch_size): # initially from 0 to 16, c = 0.
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
filename = n[i].split('.')[0]
|
|
|
|
filename = os.path.splitext(n[i])[0]
|
|
|
|
|
|
|
|
|
|
|
|
train_img = cv2.imread(img_folder + '/' + n[i]) / 255.
|
|
|
|
train_img = cv2.imread(img_folder + '/' + n[i]) / 255.
|
|
|
|
train_img = cv2.resize(train_img, (input_width, input_height),
|
|
|
|
train_img = cv2.resize(train_img, (input_width, input_height),
|
|
|
|